Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Synthesis and reactivity of low-oxidation-state alkaline earth metal complexes

Abstract

The synthesis of molecules that feature main-group elements in unusual oxidation states and coordination environments is a primary pursuit of main-group chemistry. The p-block elements saw early success towards this goal, and dozens of compounds that contain subvalent p-block metals, semi-metals and non-metals are now known. The development of reliable syntheses for these compounds made it possible to study them in detail, which expanded our understanding of bonding and electronic structure and served as the foundation from which catalysis mediated by main-group elements has emerged. For the group 2 elements, isolating reduced compounds has been a synthetic challenge that has spurred exciting progress in the synthesis of reduced alkaline earth compounds. The past two decades has seen the isolation of stable Be(0), Be(I), Mg(0), Mg(I) and Ca(I) compounds, along with studies of their reactivity profiles. In this Review, we overview the chemistry of isolated low-valent species with a focus on comparing newly discovered chemical trends and features among the different elements in the group. Finally, we discuss future directions and challenges for the field.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of atomic trends in the alkaline earth group.
Fig. 2: Overview of molecular Be redox chemistry.
Fig. 3: Overview of bond activation mediated by Be and other stand-alone Be reactions.
Fig. 4: The synthesis and reactivity of Mg(I) dimers.
Fig. 5: The chemistry of the first Mg(0) complexes.
Fig. 6: Relevant Ca redox chemistry and the reactivity of low-valent Ca intermediates with dinitrogen.

Similar content being viewed by others

References

  1. Power, P. P. Main-group elements as transition metals. Nature 463, 171–177 (2010).

    Article  CAS  PubMed  Google Scholar 

  2. Anastas, P. T. & Kirchhoff, M. M. Origins, current status, and future challenges of green chemistry. Acc. Chem. Res. 35, 686–694 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Greenwood, N. N. & Earnshaw, A. Chemistry of the Elements 2nd edn 107–138 (Butterworth-Heinemann, 1997).

  4. Lide, R. D. CRC Handbook of Chemistry and Physics 77th edn (CRC, 1993).

  5. Anker, M. D. & Hill, M. S. in Encyclopedia of Inorganic and Bioinorganic Chemistry (ed. R. A. Scott) 1–23 (John Wiley & Sons, 2017).

  6. Harder, S. Molecular early main group metal hydrides: synthetic challenge, structures and applications. Chem. Commun. 48, 11165–11177 (2012).

    Article  CAS  Google Scholar 

  7. Krieck, S. & Westerhausen, M. Kudos and renaissance of s-block metal chemistry. Inorganics 5, 17 (2017).

    Article  Google Scholar 

  8. Hill, M. S., Liptrot, D. J. & Weetman, C. Alkaline earths as main group reagents in molecular catalysis. Chem. Soc. Rev. 45, 972–988 (2016).

    Article  CAS  PubMed  Google Scholar 

  9. Harder, S. Alkaline-Earth Metal Compounds: Oddities and Applications (Springer, 2013).

  10. Jones, C. Open questions in low oxidation state group 2 chemistry. Commun. Chem. 3, 159 (2020).

    Article  CAS  Google Scholar 

  11. Rösch, B. & Harder, S. New horizons in low oxidation state group 2 metal chemistry. Chem. Commun. 57, 9354–9365 (2021).

    Article  Google Scholar 

  12. Pritchard, H. & Skinner, H. The concept of electronegativity. Chem. Rev. 55, 745–786 (1955).

    Article  CAS  Google Scholar 

  13. Kambe, N., Iwasaki, T. & Terao, J. Pd-catalyzed cross-coupling reactions of alkyl halides. Chem. Soc. Rev. 40, 4937–4947 (2011).

    Article  CAS  PubMed  Google Scholar 

  14. Small, B. L., Brookhart, M. & Bennett, A. M. A. Highly active iron and cobalt catalysts for the polymerization of ethylene. J. Am. Chem. Soc. 120, 4049–4050 (1998).

    Article  CAS  Google Scholar 

  15. Nakamura, M., Matsuo, K., Ito, S. & Nakamura, E. Iron-catalyzed cross-coupling of primary and secondary alkyl halides with aryl Grignard reagents. J. Am. Chem. Soc. 126, 3686–3687 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Bolm, C., Legros, J., Le Paih, J. & Zani, L. Iron-catalyzed reactions in organic synthesis. Chem. Rev. 104, 6217–6254 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Wenger, O. S. Is iron the new ruthenium? Chem. Eur. J. 25, 6043–6052 (2019).

    Article  CAS  PubMed  Google Scholar 

  18. Amatore, C. & Jutand, A. Anionic Pd(0) and Pd(II) intermediates in palladium-catalyzed Heck and cross-coupling reactions. Acc. Chem. Res. 33, 314–321 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Krieck, S., Görls, H., Yu, L., Reiher, M. & Westerhausen, M. Stable ‘inverse’ sandwich complex with unprecedented organocalcium(I): crystal structures of [(thf)2Mg(Br)-C6H2-2,4,6-Ph3] and [(thf)3Ca{μ-C6H3-1,3,5-Ph3}Ca(thf)3]. J. Am. Chem. Soc. 1391, 2977–2985 (2009).

    Article  Google Scholar 

  20. Green, S. P., Jones, C. & Stasch, A. Stable magnesium(I) compounds with Mg–Mg bonds. Science 318, 1754–1757 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Arrowsmith, M. et al. Neutral zero-valent s-block complexes with strong multiple bonding. Nat. Chem. 8, 890–894 (2016).

    Article  CAS  Google Scholar 

  22. Green, S. P., Jones, C. & Stasch, A. Stable adducts of a dimeric magnesium(I) compound. Angew. Chem. Int. Ed. 47, 9079–9083 (2008).

    Article  CAS  Google Scholar 

  23. Overgaard, J., Jones, C., Stasch, A. & Iversen, B. B. Experimental electron density study of the Mg−Mg bonding character in a magnesium(I) dimer. J. Am. Chem. Soc. 131, 4208–4209 (2009).

    Article  CAS  PubMed  Google Scholar 

  24. Bonyhady, S. J. et al. β-Diketiminate-stabilized magnesium(I) dimers and magnesium(II) hydride complexes: synthesis, characterization, adduct formation, and reactivity studies. Chem. Eur. J. 16, 938–955 (2010).

    Article  CAS  PubMed  Google Scholar 

  25. Stasch, A. & Jones, C. Stable dimeric magnesium(I) compounds: from chemical landmarks to versatile reagents. Dalton Trans. 40, 5659–5672 (2011).

    Article  CAS  PubMed  Google Scholar 

  26. Boutland, A. J., Dange, D., Stasch, A., Maron, L. & Jones, C. Two-coordinate magnesium(I) dimers stabilized by super bulky amido ligands. Angew. Chem. Int. Ed. 55, 9239–9243 (2016).

    Article  CAS  Google Scholar 

  27. Jones, D. D. L., Douair, I., Maron, L. & Jones, C. Photochemically activated dimagnesium(I) compounds: reagents for the reduction and selective C−H bond activation of inert arenes. Angew. Chem. Int. Ed. 60, 7087–7092 (2021).

    Article  CAS  Google Scholar 

  28. Rösch, B. et al. Strongly reducing magnesium(0) complexes. Nature 592, 717–721 (2021).

    Article  PubMed  Google Scholar 

  29. Wang, G. et al. A stable, crystalline beryllium radical cation. J. Am. Chem. Soc. 142, 4560–4564 (2020).

    Article  CAS  PubMed  Google Scholar 

  30. Wang, G. et al. Isolation of cyclic(alkyl)(amino) carbene–bismuthinidene mediated by a beryllium(0) complex. Chem. Eur. J. 25, 4335–4339 (2019).

    Article  CAS  PubMed  Google Scholar 

  31. Ma, M. et al. Mg–Mg-bonded compounds with N,N′-dipp-substituted phenanthrene-diamido and o-phenylene-diamino ligands. Dalton Trans. 48, 2295–2299 (2019).

    Article  CAS  PubMed  Google Scholar 

  32. Liu, Y., Li, S., Yang, X.-J., Yang, P. & Wu, B. Magnesium−magnesium bond stabilized by a doubly reduced α-diimine: synthesis and structure of [K(THF)3]2[LMg−MgL] (L = [(2,6-iPr2C6H3)NC(Me)]22−. J. Am. Chem. Soc. 131, 4210–4211 (2009).

    Article  CAS  PubMed  Google Scholar 

  33. Schlenk, W. & Schlenk, W.Jr Über die Konstitution der Grignardschen Magnesiumverbindungen. Ber. Dtsch. Chem. Ges. 62, 920–924 (1929).

    Article  Google Scholar 

  34. Silverman, G. S. & Rakita, P. E. Handbook of Grignard Reagents (CRC, 1996).

  35. Westerhausen, M. 100 years after Grignard: where does the organometallic chemistry of the heavy alkaline earth metals stand today? Angew. Chem. Int. Ed. 40, 2975–2977 (2001).

    Article  CAS  Google Scholar 

  36. Westerhausen, M., Koch, A., Görls, H. & Krieck, S. Heavy Grignard reagents: synthesis, physical and structural properties, chemical behavior, and reactivity. Chem. Eur. J. 23, 1456–1483 (2017).

    Article  CAS  PubMed  Google Scholar 

  37. Peltzer, R. M., Eisenstein, O., Nova, A. & Cascella, M. How solvent dynamics controls the Schlenk equilibrium of Grignard reagents: a computational study of CH3MgCl in tetrahydrofuran. J. Phys. Chem. B 121, 4226–4237 (2017).

    Article  CAS  PubMed  Google Scholar 

  38. Sarish, S. P., Nembenna, S., Nagendran, S. & Roesky, H. W. Chemistry of soluble β-diketiminatoalkaline-earth metal complexes with M−X bonds (M = Mg, Ca, Sr; X = OH, halides, H). Acc. Chem. Res. 44, 157–170 (2011).

    Article  CAS  PubMed  Google Scholar 

  39. Edelmann, F. T. N-silylated benzamidines: versatile building blocks in main group and coordination chemistry. Coord. Chem. Rev. 137, 403–481 (1994).

    Article  Google Scholar 

  40. Jones, C. Bulky guanidinates for the stabilization of low oxidation state metallacycles. Coord. Chem. Rev. 254, 1273–1289 (2010).

    Article  CAS  Google Scholar 

  41. Ruspic, C. & Harder, S. Big ligands for stabilization of small functionalities in calcium chemistry. Inorg. Chem. 46, 10426–10433 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Nesterov, V. et al. NHCs in main group chemistry. Chem. Rev. 118, 9678–9842 (2018).

    Article  CAS  PubMed  Google Scholar 

  43. Arduengo, A. J., Davidson, F., Krafczyk, R., Marshall, W. J. & Tamm, M. Adducts of carbenes with group II and XII metallocenes. Organometallics 17, 3375–3382 (1998).

    Article  CAS  Google Scholar 

  44. Wolf, R. & Uhl, W. Main-group-metal clusters stabilized by N-heterocyclic carbenes. Angew. Chem. Int. Ed. 48, 6774–6776 (2009).

    Article  CAS  Google Scholar 

  45. Hopkinson, M. N., Richter, C., Schedler, M. & Glorius, F. An overview of N-heterocyclic carbenes. Nature 510, 485–496 (2014).

    Article  CAS  PubMed  Google Scholar 

  46. Bellemin-Laponnaz, S. & Dagorne, S. Group 1 and 2 and early transition metal complexes bearing N-heterocyclic carbene ligands: coordination chemistry, reactivity, and applications. Chem. Rev. 114, 8747–8774 (2014).

    Article  CAS  PubMed  Google Scholar 

  47. Turner, Z. R. & Buffet, J.-C. Group 1 and 2 cyclic (alkyl)(amino)carbene complexes. Dalton Trans. 44, 12985–12989 (2015).

    Article  CAS  PubMed  Google Scholar 

  48. Wong, Y. O. et al. Two carbenes versus one in magnesium chemistry: synthesis of terminal dihalide, dialkyl, and Grignard reagents. Organometallics 38, 688–696 (2019).

    Article  CAS  Google Scholar 

  49. Soleilhavoup, M. & Bertrand, G. Cyclic (alkyl)(amino)carbenes (CAACs): stable carbenes on the rise. Acc. Chem. Res. 48, 256–266 (2015).

    Article  CAS  PubMed  Google Scholar 

  50. Melaimi, M., Jazzar, R., Soleilhavoup, M. & Bertrand, G. Cyclic (alkyl)(amino)carbenes (CAACs): recent developments. Angew. Chem. Int. Ed. 56, 10046–10068 (2017).

    Article  CAS  Google Scholar 

  51. Bailey, P. J., Dick, C. M., Fabre, S., Parsons, S. & Yellowlees, L. Complexation of dimethylmagnesium with α-diimines; structural and EPR characterisation of single electron and alkyl transfer products. Dalton Trans 2006, 1602–1610 (2006).

    Article  Google Scholar 

  52. Freeman, L. A. et al. Stepwise reduction at magnesium and beryllium: cooperative effects of carbenes with redox non-innocent α-diimines. Inorg. Chem. 58, 10554–10568 (2019).

    Article  CAS  PubMed  Google Scholar 

  53. Fedushkin, I. L., Khvoinova, N. M., Skatova, A. A. & Fukin, G. K. Oxidative addition of phenylacetylene through C–H bond cleavage to form the MgII–dpp-bian complex: molecular structure of [Mg{dpp-bian(H)}(C≡CPh)(thf)2] and its diphenylketone insertion product [Mg(dpp-bian)·−{OC(Ph2)C≡CPh}(thf)]. Angew. Chem. Int. Ed. 42, 5223–5226 (2003).

    Article  CAS  Google Scholar 

  54. Fedushkin, I. L. et al. Monomeric magnesium and calcium complexes containing the rigid, dianionic 1, 2-bis[(2,5-di-tert-butylphenyl)imino]acenaphthene (dtb-BIAN) and 1,2-bis[(2-biphenyl)imino]acenaphthene (bph-BIAN) ligands. Z. Anorg. Allg. Chem. 630, 501–507 (2004).

    Article  CAS  Google Scholar 

  55. Fedushkin, I. L., Morozov, A. G., Rassadin, O. V. & Fukin, G. K. Addition of nitriles to alkaline earth metal complexes of 1,2-bis[(phenyl)imino]acenaphthenes. Chem. Eur. J. 11, 5749–5757 (2005).

    Article  CAS  PubMed  Google Scholar 

  56. Fedushkin, I. L., Chudakova, V. A., Skatova, A. A. & Fukin, G. K. Solvent-free alkali and alkaline earth metal complexes of di-imine ligands. Heteroat. Chem. 16, 663–670 (2005).

    Article  CAS  Google Scholar 

  57. Gao, J., Liu, Y., Zhao, Y., Yang, X.-J. & Sui, Y. Syntheses and structures of magnesium complexes with reduced α-diimine ligands. Organometallics 30, 6071–6077 (2011).

    Article  CAS  Google Scholar 

  58. Ren, W., Fang, X., Sun, W., Gu, D. & Yu, Y. A magnesium complex containing a reduced 2,2′-bipyridyl ligand: synthesis, structure, reactivity, and computational studies. J. Organomet. Chem. 842, 47–53 (2017).

    Article  CAS  Google Scholar 

  59. Ren, W. & Gu, D. An azobenzenyl anion radical complex of magnesium: synthesis, structure, and reactivity studies. Inorg. Chem. 55, 11962–11970 (2016).

    Article  CAS  PubMed  Google Scholar 

  60. Couchman, S. A., Holzmann, N., Frenking, G., Wilson, D. J. D. & Dutton, J. L. Beryllium chemistry the safe way: a theoretical evaluation of low oxidation state beryllium compounds. Dalton Trans. 42, 11375–11384 (2013).

    Article  CAS  PubMed  Google Scholar 

  61. Merritt, J. M., Bondybey, V. E. & Heaven, M. C. Beryllium dimer—caught in the act of bonding. Science 324, 1548–1551 (2009).

    Article  CAS  PubMed  Google Scholar 

  62. De, S. & Parameswaran, P. Neutral tricoordinated beryllium(0) compounds—isostructural to BH3 but isoelectronic to NH3. Dalton Trans. 42, 4650–4656 (2013).

    Article  CAS  PubMed  Google Scholar 

  63. Yuan, C., Zhao, X.-F., Wu, Y.-B. & Wang, X. Ultrashort beryllium−beryllium distances rivalling those of metal−metal quintuple bonds between transition metals. Angew. Chem. Int. Ed. 55, 15651–15655 (2016).

    Article  CAS  Google Scholar 

  64. Bondybey, V. E. & English, J. H. Laser vaporization of beryllium: gas phase spectrum and molecular potential of Be2. J. Chem. Phys. 80, 568–570 (1984).

    Article  CAS  Google Scholar 

  65. Patkowski, K., Špirko, V. & Szalewicz, K. On the elusive twelfth vibrational state of beryllium dimer. Science 326, 1382–1384 (2009).

    Article  CAS  PubMed  Google Scholar 

  66. Sharma, S., Yanai, T., Booth, G. H., Umrigar, C. J. & Chan, G. K.-L. Spectroscopic accuracy directly from quantum chemistry: application to ground and excited states of beryllium dimer. J. Chem. Phys. 140, 104112 (2014).

    Article  PubMed  Google Scholar 

  67. Deible, M. J., Kessler, M., Gasperich, K. E. & Jordan, K. D. Quantum Monte Carlo calculation of the binding energy of the beryllium dimer. J. Chem. Phys. 143, 084116 (2015).

    Article  PubMed  Google Scholar 

  68. Liu, X. et al. Beryllium–beryllium double-π bonds in the octahedral cluster of Be22-X)4 (X = Li, Cu, BeF). Chem. Phys. Lett. 20, 23898–23902 (2018).

    CAS  Google Scholar 

  69. Naglav, D., Buchner, M. R., Bendt, G., Kraus, F. & Schulz, S. Off the beaten track—a hitchhiker’s guide to beryllium chemistry. Angew. Chem. Int. Ed. 55, 10562–10576 (2016).

    Article  CAS  Google Scholar 

  70. Buchner, M. R. Recent contributions to the coordination chemistry of beryllium. Chem. Eur. J. 25, 12018–12036 (2019).

    Article  CAS  PubMed  Google Scholar 

  71. Herrmann, W. A., Runte, O. & Artus, G. Synthesis and structure of an ionic beryllium–‘carbene’ complex. J. Organomet. Chem. 501, C1–C4 (1995).

    Article  CAS  Google Scholar 

  72. Schuster, J. K., Roy, D. K., Lenczyk, C., Mies, J. & Braunschweig, H. New outcomes of beryllium chemistry: Lewis base adducts for salt elimination reactions. Inorg. Chem. 58, 2652–2658 (2019).

    Article  CAS  PubMed  Google Scholar 

  73. Walley, J., Wong, Y.-O., Freeman, L., Dickie, D. & Gilliard, R. N-Heterocyclic carbene-supported aryl- and alkoxides of beryllium and magnesium. Catalysts 9, 934 (2019).

    Article  CAS  Google Scholar 

  74. Soleilhavoup, M. & Bertrand, G. Borylenes: an emerging class of compounds. Angew. Chem. Int. Ed. 56, 10282–10292 (2017).

    Article  CAS  Google Scholar 

  75. Singh, A. P. et al. A singlet biradicaloid zinc compound and its nonradical counterpart. J. Am. Chem. Soc. 135, 7324–7329 (2013).

    Article  CAS  PubMed  Google Scholar 

  76. Gilliard, R. J. et al. s‐Block multiple bonds: isolation of a beryllium imido complex. Angew. Chem. Int. Ed. 60, 9407–9411 (2021).

    Article  Google Scholar 

  77. Bondybey, V. E. Electronic structure and bonding of Be2. Chem. Phys. Lett. 109, 436–441 (1984).

    Article  CAS  Google Scholar 

  78. Brea, O., Mó, O., Yáñez, M., Alkorta, I. & Elguero, J. On the existence of intramolecular one-electron Be–Be bonds. Chem. Commun. 52, 9656–9659 (2016).

    Article  CAS  Google Scholar 

  79. Saha, R., Pan, S., Merino, G. & Chattaraj, P. K. Unprecedented bonding situation in viable E2(NHBMe)2 (E = Be, Mg; NHBMe = (HCNMe)2B) complexes: neutral E2 forms a single E−E covalent bond. Angew. Chem. Int. Ed. 58, 8372–8377 (2019).

    Article  CAS  Google Scholar 

  80. Walley, J. E. et al. s-Block carbodicarbene chemistry: C(sp3)–H activation and cyclization mediated by a beryllium center. Chem. Commun. 55, 1967–1970 (2019).

    Article  Google Scholar 

  81. Czernetzki, C. et al. A neutral beryllium(I) radical. Angew. Chem. Int. Ed. 60, 20776–20780 (2021).

    Article  CAS  Google Scholar 

  82. Paparo, A. et al. N-Heterocyclic carbene, carbodiphosphorane and diphosphine adducts of beryllium dihalides: synthesis, characterisation and reduction studies. Dalton Trans. 50, 7604–7609 (2021).

    Article  CAS  PubMed  Google Scholar 

  83. Arrowsmith, M. et al. Three-coordinate beryllium β-diketiminates: synthesis and reduction chemistry. Inorg. Chem. 51, 13408–13418 (2012).

    Article  CAS  PubMed  Google Scholar 

  84. Paparo, A. & Jones, C. Beryllium halide complexes incorporating neutral or anionic ligands: potential precursors for beryllium chemistry. Chem. Asian J. 14, 486–490 (2019).

    Article  CAS  PubMed  Google Scholar 

  85. Walley, J. E. et al. Cyclic(alkyl)(amino) carbene-promoted ring expansion of a carbodicarbene beryllacycle. Inorg. Chem. 58, 11118–11126 (2019).

    Article  CAS  PubMed  Google Scholar 

  86. Paparo, A., Smith, C. D. & Jones, C. Diagonally related s- and p-block metals join forces: synthesis and characterization of complexes with covalent beryllium–aluminum bonds. Angew. Chem. Int. Ed. 58, 11459–11463 (2019).

    Article  CAS  Google Scholar 

  87. Roy, D. K. et al. Isolation and reactivity of an s-block metal antiaromatic. Angew. Chem. Int. Ed. 60, 3812–3818 (2020).

    Article  Google Scholar 

  88. Tjurina, L. A. et al. Synthesis of cluster alkyl and aryl Grignard reagents in solution. Organometallics 23, 1349–1351 (2004).

    Article  CAS  Google Scholar 

  89. Velazquez, A., Fernández, I., Frenking, G. & Merino, G. Multimetallocenes. A theoretical study. Organometallics 26, 4731–4736 (2007).

    Article  CAS  Google Scholar 

  90. Xie, Y., Schaefer, H. F. & Jemmis, E. D. Characteristics of novel sandwiched beryllium, magnesium, and calcium dimers: C5H5BeBeC5H5, C5H5MgMgC5H5, and C5H5CaCaC5H5. Chem. Phys. Lett. 402, 414–421 (2005).

    Article  CAS  Google Scholar 

  91. Petrie, S. Deep space organometallic chemistry. Aust. J. Chem. 56, 259–262 (2003).

    Article  CAS  Google Scholar 

  92. Kruczyński, T. et al. From MgBr via single-electron transfer (SET) to a paramagnetic Mg(II) compound and back to Mg(I): [MgBr(L1)·]2 and [K(thf)3]2[Mg2(L1)2], L1 = RN=C(Me)C(Me)=NR, R = 2,6-diisopropylphenyl. Chem. Commun. 50, 15677–15680 (2014).

    Article  Google Scholar 

  93. Arras, J., Kruczyński, T., Bresien, J., Schulz, A. & Schnöckel, H. Magnesium(I) halide versus magnesium metal: differences in reaction energy and reactivity monitored in reduction processes of P−Cl bonds. Angew. Chem. Int. Ed. 131, 726–731 (2019).

    Article  Google Scholar 

  94. Wang, X. & Andrews, L. Infrared spectra of magnesium hydride molecules, complexes, and solid magnesium dihydride. J. Phys. Chem. A 108, 11511–11520 (2004).

    Article  CAS  Google Scholar 

  95. Jasien, P. G. & Dykstra, C. E. Simplest magnesium cluster Grignard. Theoretical evidence for strong metal–metal stabilization of RMg2X species. J. Am. Chem. Soc. 105, 2089–2090 (1983).

    Article  CAS  Google Scholar 

  96. Jones, C. Dimeric magnesium(I) β-diketiminates: a new class of quasi-universal reducing agent. Nat. Rev. Chem. 1, 0059 (2017).

    Article  CAS  Google Scholar 

  97. Huber, R. & Weber, H. G. The collision complex in the exchange reaction Na + Na2. I. An orthopara pumping experiment on Na2. Chem. Phys. 37, 173–180 (1979).

    Article  CAS  Google Scholar 

  98. Kadlecek, S., Anderson, L. W., Erickson, C. J. & Walker, T. G. Spin relaxation in alkali–metal \({{\,}^1}{\Sigma}_{g}^{+}\) dimers. Phys. Rev. A 64, 052717 (2001).

    Article  Google Scholar 

  99. Terrabuio, L. A., Teodoro, T. Q., Matta, C. F. & Haiduke, R. L. A. Nonnuclear attractors in heteronuclear diatomic systems. J. Phys. Chem. A 120, 1168–1174 (2016).

    Article  CAS  PubMed  Google Scholar 

  100. Timerghazin, Q. K. & Peslherbe, G. H. Non-nuclear attractor of electron density as a manifestation of the solvated electron. J. Chem. Phys. 127, 064108 (2007).

    Article  PubMed  Google Scholar 

  101. Platts, J. A., Overgaard, J., Jones, C., Iversen, B. B. & Stasch, A. First experimental characterization of a non-nuclear attractor in a dimeric magnesium(I) compound. J. Phys. Chem. A 115, 194–200 (2011).

    Article  CAS  PubMed  Google Scholar 

  102. Yuvaraj, K., Douair, I., Paparo, A., Maron, L. & Jones, C. Reductive trimerization of CO to the deltate dianion using activated magnesium (I) compounds. J. Am. Chem. Soc. 141, 8764–8768 (2019).

    Article  CAS  PubMed  Google Scholar 

  103. Boutland, A. J. et al. Reversible insertion of a C═C bond into magnesium(I) dimers: generation of highly active 1,2-dimagnesioethane compounds. J. Am. Chem. Soc. 139, 18190–18193 (2017).

    Article  CAS  PubMed  Google Scholar 

  104. Lalrempuia, R. et al. Activation of CO by hydrogenated magnesium(I) dimers: sterically controlled formation of ethenediolate and cyclopropanetriolate complexes. J. Am. Chem. Soc. 137, 8944–8947 (2015).

    Article  CAS  PubMed  Google Scholar 

  105. Bakewell, C., White, A. J. P. & Crimmin, M. R. Addition of carbon–fluorine bonds to a Mg(I)–Mg(I) bond: an equivalent of Grignard formation in solution. J. Am. Chem. Soc. 138, 12763–12766 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Paparo, A. et al. Reductive hexamerization of CO involving cooperativity between magnesium(I) reductants and [Mo(CO)6]: synthesis of well-defined magnesium benzenehexolate complexes. Angew. Chem. 133, 640–644 (2021).

    Article  Google Scholar 

  107. Rösch, B. et al. Mg–Mg bond polarization induced by a superbulky β-diketiminate ligand. Chem. Commun. 56, 11402–11405 (2020).

    Article  Google Scholar 

  108. Turner, Z. R. Chemically non-innocent cyclic (alkyl)(amino)carbenes: ligand rearrangement, C−H and C−F bond activation. Chem. Eur. J. 22, 11461–11468 (2016).

    Article  CAS  PubMed  Google Scholar 

  109. Hicks, J., Juckel, M., Paparo, A., Dange, D. & Jones, C. Multigram syntheses of magnesium(I) compounds using alkali metal halide supported alkali metals as dispersible reducing agents. Organometallics 37, 4810–4813 (2018).

    Article  CAS  Google Scholar 

  110. Krieck, S., Görls, H. & Westerhausen, M. Mechanistic elucidation of the formation of the inverse Ca(I) sandwich complex[(thf)3Ca(μ-C6H3-1,3,5-Ph3)Ca(thf)3] and stability of aryl-substituted phenylcalcium complexes. J. Am. Chem. Soc. 132, 12492–12501 (2010).

    Article  CAS  PubMed  Google Scholar 

  111. Rösch, B. et al. Dinitrogen complexation and reduction at low-valent calcium. Science 371, 1125–1128 (2021).

    Article  PubMed  Google Scholar 

  112. Wu, X. et al. Observation of alkaline earth complexes M(CO)8 (M = Ca, Sr, or Ba) that mimic transition metals. Science 361, 912–916 (2018).

    Article  CAS  PubMed  Google Scholar 

  113. Koch, D., Chen, Y., Golub, P. & Manzhos, S. Revisiting π backbonding: the influence of d orbitals on metal–CO bonds and ligand red shifts. Chem. Phys. Lett. 21, 20814–20821 (2019).

    CAS  Google Scholar 

  114. Koch, D., Chen, Y., Golub, P. & Manzhos, S. Reply to the ‘Comment on “Revisiting π backbonding: the influence of d orbitals on metal–CO bonds and ligand red shifts”’ by G. Frenking and S. Pan, Phys. Chem. Chem. Phys., 2019, 22. Phys. Chem. Chem. Phys. 22, 5380–5382 (2020).

    Article  CAS  PubMed  Google Scholar 

  115. Pan, S. & Frenking, G. Comment on “Revisiting π backbonding: the influence of d orbitals on metal–CO bonds and ligand red shifts” by D. Koch, Y. Chen, P. Golub and S. Manzhos, Phys. Chem. Chem. Phys., 2019, 21, 20814. Chem. Phys. Lett. 22, 5377–5379 (2020).

    CAS  Google Scholar 

  116. Zhao, L., Pan, S., Zhou, M. & Frenking, G. Response to Comment on “Observation of alkaline earth complexes M(CO)8 (M = Ca, Sr, or Ba) that mimic transition metals”. Science 365, eaay5021 (2019).

    Article  CAS  PubMed  Google Scholar 

  117. Zhou, M. & Frenking, G. Transition-metal chemistry of the heavier alkaline earth atoms Ca, Sr, and Ba. Acc. Chem. Res. 54, 3071–3082 (2021).

    Article  CAS  PubMed  Google Scholar 

  118. Gilliard, R. J. et al. Isolation of cyclic(alkyl)(amino) carbene–bismuthinidene mediated by a beryllium(0) complex. Chem. Eur. J. 25, 4335–4339 (2019).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to the University of Virginia for support of the Gilliard Research Group’s projects on alkaline earth metal chemistry. A special thanks is also extended to Gilliard Group members past and present, collaborators and other main-group teams that continue to advance alkaline earth metal chemistry.

Author information

Authors and Affiliations

Authors

Contributions

L.A.F. and J.E.W. wrote the review; R.J.G. directed the preparation and revision of the review.

Corresponding author

Correspondence to Robert J. Gilliard Jr.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Conor Pranckevicius and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Alison Stoddart, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Freeman, L.A., Walley, J.E. & Gilliard, R.J. Synthesis and reactivity of low-oxidation-state alkaline earth metal complexes. Nat. Synth 1, 439–448 (2022). https://doi.org/10.1038/s44160-022-00077-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-022-00077-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing