Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Quinone methides and indole imine methides as intermediates in enantioselective catalysis

Abstract

As a consequence of their propensity towards aromatization, quinone methides (QMs) and indole imine methides (IIMs) are versatile intermediates in organic synthesis. Although QMs and IIMs have been known for many decades, their application in catalytic asymmetric synthesis, and particularly in organocatalysis, has been achieved only recently. Catalysts for the asymmetric transformations of QMs and IIMs include chiral Brønsted acids, Lewis acids and bases, as well as transition metal complexes. Although the sole activation of either the electrophile or the nucleophile is a viable approach for asymmetric control, dual activation of both reaction partners, particularly by a bifunctional catalyst, has proved to be highly effective in these reactions. In this Review, we discuss advances in this field with a focus on reaction pathways and activation modes, aiming to promote a systematic understanding of the chemistry of QMs and IIMs in asymmetric synthesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Resonance forms of representative QMs and IIMs and topological isomers and analogues of these structures.
Fig. 2: Asymmetric reactions of o-QMs involving transition metal and Lewis acid activation.
Fig. 3: Activation of o-QMs by Brønsted acids.
Fig. 4: Enantioselective reactions of o-QMs involving Lewis or Brønsted base activation.
Fig. 5: Asymmetric addition to p-QMs by means of nucleophile activation.
Fig. 6: Asymmetric transformations through primary activation of p-QMs.
Fig. 7: Asymmetric additions and annulations of IIMs.

Similar content being viewed by others

References

  1. Water, R. W. V. D. & Pettus, T. R. R. o-Quinone methides: intermediates underdeveloped and underutilized in organic synthesis. Tetrahedron 58, 5367–5405 (2002).

    Article  Google Scholar 

  2. Rokita, S. E. Quinone Methides (Wiley, 2009).

    Book  Google Scholar 

  3. Willis, N. J. & Bray, C. D. ortho-Quinone methides in natural product synthesis. Chem. Eur. J. 18, 9160–9173 (2012).

    Article  CAS  PubMed  Google Scholar 

  4. Gnaim, S. & Shabat, D. Quinone-methide species, a gateway to functional molecular systems: from self-immolative dendrimers to long-wavelength fluorescent dyes. Acc. Chem. Res. 47, 2970–2984 (2014).

    Article  CAS  PubMed  Google Scholar 

  5. Caruana, L., Fochi, M. & Bernardi, L. The emergence of quinone methides in asymmetric organocatalysis. Molecules 20, 11733–11764 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Amouri, H. & Bras, J. L. Taming reactive phenol tautomers and o-quinone methides with transition metals: a structure–reactivity relationship. Acc. Chem. Res. 35, 501–510 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Pathak, T. P. & Sigman, M. S. Applications of ortho-quinone methide intermediates in catalysis and asymmetric synthesis. J. Org. Chem. 76, 9210–9215 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bai, W.-J. et al. The domestication of ortho-quinone methides. Acc. Chem. Res. 47, 3655–3664 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jaworski, A. A. & Scheidt, K. A. Emerging roles of in situ generated quinone methides in metal-free catalysis. J. Org. Chem. 81, 10145–10153 (2016).

    Article  CAS  PubMed  Google Scholar 

  10. Wang, Z. & Sun, J. Recent advances in catalytic asymmetric reactions of o-quinone methides. Synthesis 47, 3629–3644 (2015).

    Article  Google Scholar 

  11. Li, W., Xu, X., Zhang, P. & Li, P. Recent advances in the catalytic enantioselective reactions of para-quinone methides. Chem. Asian J. 13, 2350–2359 (2018).

    Article  CAS  PubMed  Google Scholar 

  12. Lima, C. G. S. et al. para‐Quinone methides as acceptors in 1,6‐nucleophilic conjugate addition reactions for the synthesis of structurally diverse molecules. Eur. J. Org. Chem. 2650–2692 (2020).

  13. Kikuchi, J. & Terada, M. Enantioconvergent substitution reactions of racemic electrophiles by organocatalysis. Chem. Eur. J. 10215–10225 (2021).

  14. Ma, Y.-H., He, X.-Y., Yang, Q.-Q., Boucherif, A. & Xuan, J. Recent advances in organocatalytic asymmetric cycloaddition reactions through ortho-quinone methide scaffolds. Asian J. Org. Chem. 10, 1233–1250 (2021).

    Article  CAS  Google Scholar 

  15. Wang, L., Chen, Y. & Xiao, J. Alkylideneindoleninium ions and alkylideneindolenines: key intermediates for the asymmetric synthesis of 3-indolyl derivatives. Asian J. Org. Chem. 3, 1036–1052 (2014).

    Article  CAS  Google Scholar 

  16. Dalpozzo, R. Strategies for the asymmetric functionalization of indoles: an update. Chem. Soc. Rev. 44, 742–778 (2015).

    Article  CAS  PubMed  Google Scholar 

  17. Mei, G.-J. & Shi, F. Indolylmethanols as reactants in catalytic asymmetric reactions. J. Org. Chem. 82, 7695–7707 (2017).

    Article  CAS  PubMed  Google Scholar 

  18. Petrini, M. New perspectives in the indole ring functionalization using 2‐indolylmethanols. Adv. Synth. Catal. 362, 1214–1232 (2020).

    Article  CAS  Google Scholar 

  19. Zhang, Y.-C., Jiang, F. & Shi, F. Organocatalytic asymmetric synthesis of indole-based chiral heterocycles: strategies, reactions, and outreach. Acc. Chem. Res. 53, 425–446 (2020).

    Article  CAS  PubMed  Google Scholar 

  20. Zhang, Y. & Sigman, M. S. Palladium(II)-catalyzed enantioselective aerobic dialkoxylation of 2-propenyl phenols: a pronounced effect of copper additives on enantioselectivity. J. Am. Chen. Soc. 129, 3076–3077 (2007).

    Article  CAS  Google Scholar 

  21. Jensen, K. H., Webb, J. D. & Sigman, M. S. Advancing the mechanistic understanding of an enantioselective palladium-catalyzed alkene difunctionalization reaction. J. Am. Chem. Soc. 132, 17471–17482 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang, C. & Tunge, J. A. Asymmetric cycloadditions of palladium-polarized aza-o-xylylenes. J. Am. Chem. Soc. 130, 8118–8119 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Li, M.-M. et al. Sequential visible-light photoactivation and palladium catalysis enabling enantioselective [4+2] cycloadditions. J. Am. Chem. Soc. 139, 14707–14713 (2017).

    Article  CAS  PubMed  Google Scholar 

  24. Gçricke, F. & Schneider, C. Palladium-catalyzed enantioselective addition of chiral metal enolates to in situ generated ortho-quinone methides. Angew. Chem. Int. Ed. 57, 14736–14741 (2018).

    Article  Google Scholar 

  25. An, X.-T. et al. Asymmetric catalytic [4+5] annulation of ortho-quinone methides with vinylethylene carbonates and its extension to stereoselective tandem rearrangement. Chem. Eur. J. 26, 3803–3809 (2020).

    Article  CAS  PubMed  Google Scholar 

  26. Huang, Y. & Hayashi, T. Asymmetric synthesis of triarylmethanes by rhodium-catalyzed enantioselective arylation of diarylmethylamines with arylboroxines. J. Am. Chem. Soc. 137, 7556–7559 (2015).

    Article  CAS  PubMed  Google Scholar 

  27. Alamsetti, S. K., Spanka, M. & Schneider, C. Synergistic rhodium/phosphoric acid catalysis for the enantioselective addition of oxonium ylides to ortho-quinone methides. Angew. Chem. Int. Ed. 55, 2392–2396 (2016).

    Article  CAS  Google Scholar 

  28. Suneja, A., Loui, H. J. & Schneider, C. Cooperative catalysis for the highly diastereo- and enantioselective [4+3]-cycloannulation of ortho-quinone methides and carbonyl ylides. Angew. Chem. Int. Ed. 59, 5536–5540 (2020).

    Article  CAS  Google Scholar 

  29. Wang, L. et al. Chiral Fe(II) complex catalyzed enantioselective [1,3] O-to-C rearrangement of alkyl vinyl ethers and synthesis of chromanols and beyond. Chem. Sci. 11, 10101–10106 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Luan, Y. & Schaus, S. E. Enantioselective addition of boronates to o-quinone methides catalyzed by chiral biphenols. J. Am. Chem. Soc. 134, 19965–19968 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pandit, R. P., Kim, S. T. & Ryu, D. H. Asymmetric synthesis of enantioenriched 2-aryl-2,3-dihydrobenzofurans by a Lewis acid catalyzed cyclopropanation/intramolecular rearrangement sequence. Angew. Chem. Int. Ed. 58, 13427–13432 (2019).

    Article  CAS  Google Scholar 

  32. Wilcke, D., Herdtweck, E. & Bach, T. Enantioselective Brønsted acid catalysis in the Friedel–Crafts reaction of indoles with secondary ortho-hydroxybenzylic alcohols. Synlett 9, 1235–1238 (2011).

    Google Scholar 

  33. Rueping, M., Uria, U., Lin, M.-Y. & Atodiresei, I. Chiral organic contact ion pairs in metal-free catalytic asymmetric allylic substitutions. J. Am. Chem. Soc. 133, 3732–3735 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. El-Sepelgy, O., Haseloff, S., Alamsetti, S. K. & Schneider, C. Brønsted acid catalyzed, conjugate addition of β-bicarbonyls to in situ generated ortho-quinone methides—enantioselective synthesis of 4-aryl-4H-chromenes. Angew. Chem. Int. Ed. 53, 7923–7927 (2014).

    Article  CAS  Google Scholar 

  35. Hsiao, C.-C., Liao, H.-H. & Rueping, M. Enantio- and diastereoselective access to distant stereocenters embedded within tetrahydroxanthenes: utilizing ortho-quinone methides as reactive intermediates in asymmetric Brønsted acid catalysis. Angew. Chem. Int. Ed. 53, 13258–13263 (2014).

    Article  CAS  Google Scholar 

  36. Zhao, W., Wang, Z., Chu, B. & Sun, J. Enantioselective formation of all-carbon quaternary stereocenters from indoles and tertiary alcohols bearing a directing group. Angew. Chem. Int. Ed. 54, 1910–1913 (2015).

    Article  CAS  Google Scholar 

  37. Wang, Z. et al. Organocatalytic asymmetric synthesis of 1,1-diarylethanes by transfer hydrogenation. J. Am. Chem. Soc. 137, 383–389 (2015).

    Article  CAS  PubMed  Google Scholar 

  38. Liao, H.-H., Chatupheeraphat, A., Hsiao, C.-C., AtodireseI, I. & Rueping, M. Asymmetric Brønsted acid catalyzed synthesis of triarylmethanes—construction of communesin and spiroindoline scaffolds. Angew. Chem. Int. Ed. 54, 15540–15544 (2015).

    Article  CAS  Google Scholar 

  39. Li, G. et al. Enantioselective organocatalytic transfer hydrogenation of 1,2-dihydroquinoline through formation of aza-o-xylylene. Org. Lett. 17, 4125–4127 (2015).

    Article  CAS  PubMed  Google Scholar 

  40. Zhao, J.-J., Sun, S.-B., He, S.-H., Wu, Q. & Shi, F. Catalytic asymmetric inverse-electron-demand oxa-Diels–Alder reaction of in situ generated ortho-quinone methides with 3-methyl-2-vinylindoles. Angew. Chem. Int. Ed. 54, 5460–5464 (2015).

    Article  CAS  Google Scholar 

  41. Hsiao, C.-C., Raja, S., Liao, H.-H., Atodiresei, I. & Rueping, M. ortho-Quinone methides as reactive intermediates in asymmetric Brønsted acid catalyzed cycloadditions with unactivated alkenes by exclusive activation of the electrophile. Angew. Chem. Int. Ed. 54, 5762–5765 (2015).

    Article  CAS  Google Scholar 

  42. Xie, Y. & List, B. Catalytic asymmetric intramolecular [4+2] cycloaddition of in situ generated ortho-quinone methides. Angew. Chem. Int. Ed. 56, 4936–4940 (2017).

    Article  CAS  Google Scholar 

  43. Tsui, G. C., Liu, L. & List, B. The organocatalytic asymmetric Prins cyclization. Angew. Chem. Int. Ed. 54, 7703–7706 (2015).

    Article  CAS  Google Scholar 

  44. Zhu, Z. et al. Modular design of chiral conjugate-base-stabilized carboxylic acids: catalytic enantioselective [4 + 2] cycloadditions of acetals. J. Am. Chem. Soc. 142, 15252–15258 (2020).

    Article  CAS  PubMed  Google Scholar 

  45. Sun, M. et al. Catalytic asymmetric [4+3] cyclizations of in situ generated ortho-quinone methides with 2-indolylmethanols. Angew. Chem. Int. Ed. 58, 8703–8708 (2019).

    Article  CAS  Google Scholar 

  46. Kretzschmar, M., Hodik, T. & Schneider, C. Brønsted acid catalyzed addition of enamides to ortho-quinone methide imines—an efficient and highly enantioselective synthesis of chiral tetrahydroacridines. Angew. Chem. Int. Ed. 55, 9788–9792 (2016).

    Article  CAS  Google Scholar 

  47. Kretzschmar, M., Hofmann, F., Moock, D. & Schneider, C. Intramolecular aza-Diels–Alder reactions of ortho-quinone methide imines: rapid, catalytic, and enantioselective assembly of benzannulated quinolizidines. Angew. Chem. Int. Ed. 57, 4774–4778 (2018).

    Article  CAS  Google Scholar 

  48. Zhang, L. et al. Design and atroposelective construction of IAN analogues by organocatalytic asymmetric heteroannulation of alkynes. Angew. Chem. Int. Ed. 59, 23077–23082 (2020).

    Article  CAS  Google Scholar 

  49. Yu, Y., Li, J., Jiang, L., Zhang, J.-R. & Zu, L. Catalytic enantioselective aza-pinacol rearrangement. Angew. Chem. Int. Ed. 56, 9217–9221 (2017).

    Article  CAS  Google Scholar 

  50. Gade, A. B. et al. Catalytic enantioselective 1,3-alkyl shift in alkyl aryl ethers: efficient synthesis of optically active 3,3′-diaryloxindoles. Angew. Chem. Int. Ed. 57, 5735–5739 (2018).

    Article  CAS  Google Scholar 

  51. Alden-Danforth, E., Scerba, M. T. & Lectka, T. Asymmetric cycloadditions of o-quinone methides employing chiral ammonium fluoride precatalysts. Org. Lett. 21, 4951–4953 (2008).

    Article  Google Scholar 

  52. Lv, H., You, L. & Ye, S. Enantioselective synthesis of dihydrocoumarins via N-heterocyclic carbene-catalyzed cycloaddition of ketenes and o-quinone methides. Adv. Synth. Catal. 351, 2822–2826 (2009).

    Article  CAS  Google Scholar 

  53. Lv, H., Jia, W.-Q., Sun, L.-H. & Ye, S. N-Heterocyclic carbene catalyzed [4+3] annulation of enals and o-quinone methides: highly enantioselective synthesis of benzo-ε-lactones. Angew. Chem. Int. Ed. 52, 8607–8610 (2013).

    Article  CAS  Google Scholar 

  54. Izquierdo, J., Orue, A. & Scheidt, K. A. A dual Lewis base activation strategy for enantioselective carbene catalyzed annulations. J. Am. Chem. Soc. 135, 10634–10637 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lee, A. et al. Enantioselective annulations for dihydroquinolones by in situ generation of azolium enolates. J. Am. Chem. Soc. 136, 10589–10592 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wang, L. et al. Asymmetric synthesis of spirobenzazepinones with atroposelectivity and spiro-1,2-diazepinones by NHC-catalyzed [3 + 4] annulation reactions. Angew. Chem. Int. Ed. 55, 11110–11114 (2016).

    Article  CAS  Google Scholar 

  57. Chen, P. et al. Enantioselective reactions of 2-sulfonylalkyl phenols with allenic esters: dynamic kinetic resolution and [4+2] cycloaddition involving ortho-quinone methide intermediates. Angew. Chem. Int. Ed. 56, 3689–3693 (2017).

    Article  CAS  Google Scholar 

  58. Wang, Z., Wang, T., Yao, W. & Lu, Y. Phosphine-catalyzed enantioselective [4+2] annulation of o-quinone methides with allene ketones. Org. Lett. 19, 4126–4129 (2017).

    Article  CAS  PubMed  Google Scholar 

  59. Zhu, Y., Zhang, L. & Luo, S. Asymmetric retro-Claisen reaction by chiral primary amine catalysis. J. Am. Chem. Soc. 138, 3978–3981 (2016).

    Article  CAS  PubMed  Google Scholar 

  60. Liang, Y. et al. Enantioselective construction of axially chiral amino sulfide vinyl arenes by chiral sulfide-catalyzed electrophilic carbothiolation of alkynes. Angew. Chem. Int. Ed. 59, 4959–4964 (2020).

    Article  CAS  Google Scholar 

  61. Guo, W. et al. Formal asymmetric catalytic thiolation with a bifunctional catalyst at a water–oil interface: synthesis of benzyl thiols. Angew. Chem. Int. Ed. 54, 4522–4526 (2015).

    Article  CAS  Google Scholar 

  62. Wu, B., Yu, Z., Gao, X., Lan, Y. & Zhou, Y.-G. Regioselective α-addition of deconjugated butenolides: enantioselective synthesis of dihydrocoumarins. Angew. Chem. Int. Ed. 56, 4006–4010 (2017).

    Article  CAS  Google Scholar 

  63. Xu, D. et al. Diversity-oriented enantioselective construction of atropisomeric heterobiaryls and N-aryl indoles via vinylidene ortho-quinone methides. CCS Chem. 3, 2680–2691 (2021).

    Google Scholar 

  64. Yang, F., Zhou, X., Wei, Y., Wang, L. & Jiang, J. Hydroquinine-catalyzed asymmetric 1,4-hydrophosphination of in situ generated aza-o-quinone methides with H-phosphine oxides. Org. Chem. Front. 8, 5064–5070 (2021).

    Article  CAS  Google Scholar 

  65. Tan, Y. et al. Enantioselective construction of vicinal diaxial styrenes and multiaxis system via organocatalysis. J. Am. Chem. Soc. 140, 16893–16898 (2018).

    Article  CAS  PubMed  Google Scholar 

  66. Peng, L. et al. Organocatalytic asymmetric annulation of ortho-alkynylanilines: synthesis of axially chiral naphthyl-C2-indoles. Angew. Chem. Int. Ed. 58, 17199–17204 (2019).

    Article  CAS  Google Scholar 

  67. Chu, W.-D. et al. Asymmetric catalytic 1,6-conjugate addition/aromatization of para-quinone methides: enantioselective introduction of functionalized diarylmethine stereogenic centers. Angew. Chem. Int. Ed. 52, 9229–9233 (2013).

    Article  CAS  Google Scholar 

  68. Caruana, L., Kniep, F., Johansen, T. K., Poulsen, P. H. & Jørgensen, K. A. A new organocatalytic concept for asymmetric α-alkylation of aldehydes. J. Am. Chem. Soc. 136, 15929–15932 (2014).

    Article  CAS  PubMed  Google Scholar 

  69. Li, S. et al. Phosphine-catalyzed asymmetric intermolecular cross-vinylogous Rauhut−Currier reactions of vinyl ketones with para-quinone methides. ACS Catal. 7, 2805–2809 (2017).

    Article  CAS  Google Scholar 

  70. Zhang, X.-Z. et al. Enantioselective synthesis of functionalized 4-aryl hydrocoumarins and 4-aryl hydroquinolin-2-ones via intramolecular vinylogous Rauhut−Currier reaction of para-quinone methides. Org. Lett. 19, 3207–3210 (2017).

    Article  CAS  PubMed  Google Scholar 

  71. Li, W. et al. NHC-catalyzed enantioselective [4+3] cycloaddition of ortho-hydroxyphenyl substituted para-quinone methides with isatin-derived enals. Adv. Synth. Catal. 360, 2460–2464 (2018).

    Article  CAS  Google Scholar 

  72. Wen, W. et al. Diastereodivergent chiral aldehyde catalysis for asymmetric 1,6-conjugated addition and Mannich reactions. Nat. Commun. 11, 5372 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Chang, X., Zhang, J., Zhang, Q. & Guo, C. Merging electrosynthesis and bifunctional squaramide catalysis in the asymmetric detrifluoroacetylative alkylation reactions. Angew. Chem. Int. Ed. 59, 18500–18504 (2020).

    Article  CAS  Google Scholar 

  74. Arokianathar, J. N. et al. Isothiourea-catalyzed enantioselective α-alkylation of esters via 1,6-conjugate addition to para-quinone methides. Molecules 26, 6333–18503 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Lou, Y. et al. Copper-catalyzed enantioselective 1,6-boration of para-quinone methides and efficient transformation of gem-diarylmethine boronates to triarylmethanes. Angew. Chem. Int. Ed. 54, 12134–12138 (2015).

    Article  CAS  Google Scholar 

  76. He, F.-S. et al. Direct asymmetric synthesis of β-bis-aryl-α-amino acid esters via enantioselective copper-catalyzed addition of p-quinone methides. ACS Catal. 6, 652–656 (2016).

    Article  CAS  Google Scholar 

  77. Pan, T. et al. CuH-catalyzed asymmetric 1,6-conjugate reduction of p-quinone methides: eantioselective synthesis of triarylmethanes and 1,1,2-triarylethanes. Org. Lett. 21, 6397–6402 (2019).

    Article  PubMed  Google Scholar 

  78. Ma, C., Huang, Y. & Zhao, Y. Stereoselective 1,6-conjugate addition/annulation of para-quinone methides with vinyl epoxides/cyclopropanes. ACS Catal. 6, 6408–6412 (2016).

    Article  CAS  Google Scholar 

  79. Liu, X., Zhao, C., Zhu, R. & Liu, L. Construction of vicinal quaternary carbon stereocenters through diastereo- and enantioselective oxidative 1,6-conjugate addition. Angew. Chem. Int. Ed. 60, 18499–18503 (2021).

    Article  CAS  Google Scholar 

  80. Wang, Z., Wong, Y. F. & Sun, J. Catalytic asymmetric 1,6-conjugate addition of para-quinone methides: formation of all-carbon quaternary stereocenters. Angew. Chem. Int. Ed. 54, 13711–13714 (2015).

    Article  CAS  Google Scholar 

  81. Li, X. et al. Catalytic enantioselective synthesis of chiral tetraarylmethanes. Nat. Catal. 3, 1010–1019 (2020).

    Article  CAS  Google Scholar 

  82. Chen, M. & Sun, J. Catalytic asymmetric N-alkylation of indoles and carbazoles through 1,6-conjugate addition of aza-para-quinone methides. Angew. Chem. Int. Ed. 56, 4583–4587 (2017).

    Article  CAS  Google Scholar 

  83. Chen, M. & Sun, J. How understanding the role of an additive can lead to an improved synthetic protocol without an additive: organocatalytic synthesis of chiral diarylmethyl alkynes. Angew. Chem. Int. Ed. 56, 11966–11970 (2017).

    Article  CAS  Google Scholar 

  84. Qian, D., Wu, L., Lin, Z. & Sun, J. Organocatalytic synthesis of chiral tetrasubstituted allenes from racemic propargylic alcohols. Nat. Commun. 8, 567 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Dong, N., Zhang, Z.-P., Xue, X.-S., Li, X. & Cheng, J.-P. Phosphoric acid catalyzed asymmetric 1,6-conjugate addition of thioacetic acid to para-quinone methides. Angew. Chem. Int. Ed. 55, 1460–1464 (2016).

    Article  CAS  Google Scholar 

  86. Wang, Z., Zhu, Y., Pan, X., Wang, G. & Liu, L. Synthesis of chiral triarylmethanes bearing all‐carbon quaternary stereocenters: catalytic asymmetric oxidative cross‐coupling of 2,2‐diarylacetonitriles and (hetero)arenes. Angew. Chem. Int. Ed. 59, 3053–3057 (2020).

    Article  CAS  Google Scholar 

  87. Smith, M. J. et al. Asymmetric synthesis of griffipavixanthone employing a chiral phosphoric acid-catalyzed cycloaddition. J. Am. Chem. Soc. 141, 148–153 (2019).

    Article  CAS  PubMed  Google Scholar 

  88. Zhao, K. et al. Organocatalytic domino oxa-Michael/1,6-addition reactions: asymmetric synthesis of chromans bearing oxindole scaffolds. Angew. Chem. Int. Ed. 55, 12104–12108 (2016).

    Article  CAS  Google Scholar 

  89. Deng, Y.-H. et al. Bifunctional tertiary amine-squaramide catalyzed asymmetric catalytic 1,6-conjugate addition/aromatization of para-quinone methides with oxindoles. Chem. Commun. 52, 4183–4186 (2016).

    Article  CAS  Google Scholar 

  90. Rueping, M., Nachtsheim, B. J., Moreth, S. A. & Bolte, M. Asymmetric Brønsted acid catalysis: enantioselective nucleophilic substitutions and 1,4-additions. Angew. Chem. Int. Ed. 47, 593–596 (2008).

    Article  CAS  Google Scholar 

  91. Sun, F.-L., Zeng, M., Gu, Q. & You, S.-L. Enantioselective synthesis of fluorene derivatives by chiral phosphoric acid catalyzed tandem double Friedel–Crafts reaction. Chem. Eur. J. 15, 8709–8712 (2009).

    Article  CAS  PubMed  Google Scholar 

  92. Guo, Q.-X. et al. Highly enantioselective alkylation reaction of enamides by Brønsted-acid catalysis. Org. Lett. 11, 4620–4623 (2009).

    Article  CAS  PubMed  Google Scholar 

  93. Song, L., Guo, Q.-X., Li, X.-C., Tian, J. & Peng, Y.-G. The direct asymmetric α alkylation of ketones by Brønsted acid catalysis. Angew. Chem. Int. Ed. 51, 1899–1902 (2012).

    Article  CAS  Google Scholar 

  94. Shaikh, R. R., Mazzanti, A., Petrini, M., Bartoli, G. & Melchiorre, P. Proline-catalyzed asymmetric formal α-alkylation of aldehydes via vinylogous iminium ion intermediates generated from arylsulfonyl indoles. Angew. Chem. Int. Ed. 47, 8707–8710 (2008).

    Article  CAS  Google Scholar 

  95. Jing, L. et al. Highly enantioselective Michael addition of malononitrile to vinylogous imine intermediates generated in situ from arylsulfonyl indoles. Chem. Eur. J. 16, 10955–10958 (2010).

    Article  CAS  PubMed  Google Scholar 

  96. Wang, C.-S. et al. Axially chiral aryl-alkene-indole framework: a nascent member of the atropisomeric family and its catalytic asymmetric construction. Chin. J. Chem. 38, 543–552 (2020).

    Article  CAS  Google Scholar 

  97. Qi, S., Liu, C.-Y., Ding, J.-Y. & Han, F.-S. Chiral phosphoramide-catalyzed enantioselective synthesis of 2,3′-diindolylarylmethanes from indol-2-yl carbinols and indoles. Chem. Commun. 50, 8605–8608 (2014).

    Article  CAS  Google Scholar 

  98. Loui, H. J., Suneja, A. & Schneider, C. Cooperative Rh/chiral phosphoric acid catalysis toward the highly stereoselective [3 + 3]-cycloannulation of carbonyl ylides and indolyl-2-methides. Org. Lett. 23, 2578–2583 (2021).

    Article  PubMed  Google Scholar 

  99. Zhang, H.-H. et al. Design and enantioselective construction of axially chiral naphthyl-indole skeletons. Angew. Chem. Int. Ed. 56, 116–121 (2017).

    Article  CAS  Google Scholar 

  100. Li, X., Duan, M., Yu, P., Houk, K. N. & Sun, J. Organocatalytic enantioselective dearomatization of thiophenes by 1,10-conjugate addition of indole imine methides. Nat. Commun. 12, 4881 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Li, X. & Sun, J. Organocatalytic enantioselective synthesis of chiral allenes: remote asymmetric 1,8-addition of indole imine methides. Angew. Chem. Int. Ed. 59, 17049–17054 (2020).

    Article  CAS  Google Scholar 

  102. Bera, K. & Schneider, C. Brønsted acid catalyzed [3 + 2]-cycloaddition of cyclic enamides with in situ generated 2-methide-2H-indoles: enantioselective synthesis of indolo[1,2-a]indoles. Org. Lett. 18, 5660–5663 (2016).

    Article  CAS  PubMed  Google Scholar 

  103. Li, T.-Z. et al. Regio- and enantioselective [3 + 3] cycloaddition of nitrones with 2-indolylmethanols enabled by cooperative organocatalysis. Angew. Chem. Int. Ed. 60, 2355–2363 (2021).

    Article  CAS  Google Scholar 

  104. Yue, C., Fang, X., Cao, Y. & Antilla, J. C. Chiral phosphoric acid catalyzed asymmetric synthesis of heterotriarylmethanes from racemic indolyl alcohols. Angew. Chem. Int. Ed. 57, 11004–11008 (2018).

    Article  CAS  Google Scholar 

  105. Wang, H.-Q. et al. Application of 7-indolylmethanols in catalytic asymmetric arylations with tryptamines: enantioselective synthesis of 7-indolylmethanes. Adv. Synth. Catal. 360, 1850–1860 (2018).

    Article  CAS  Google Scholar 

  106. Chen, Z., Wang, L., Qian, Y. & Lin, X. Chiral phosphoric acid catalyzed enantioselective [4+3]-cyclization reaction of indol-4-ylmethanols and quinone esters. Synlett 32, 1231–1235 (2020).

    Google Scholar 

  107. Eitzinger, A., Winter, M., Schörgenhumer, J. & Waser, M. Quaternary β2,2-amino acid derivatives by asymmetric addition of isoxazolidin-5-ones to para-quinone methides. Chem. Commun. 56, 579–582 (2020).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support was provided by the National Natural Science Foundation of China (91956114 and 22071210), the Research Grants Council of Hong Kong (16303420 and 16309321) and the Innovation and Technology Commission (ITC-CNERC14SC01).

Author information

Authors and Affiliations

Authors

Contributions

X.L., Z.L. and J.S. wrote the manuscript.

Corresponding author

Correspondence to Jianwei Sun.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks the anonymous reviewers for their contribution to the peer review of this work. Primary Handling Editor: Ali Stoddart, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Li, Z. & Sun, J. Quinone methides and indole imine methides as intermediates in enantioselective catalysis. Nat. Synth 1, 426–438 (2022). https://doi.org/10.1038/s44160-022-00072-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-022-00072-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing