Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Samarium iodide-mediated C–C bond formation in the total synthesis of natural products

Abstract

Since its introduction by Kagan more than 40 years ago, samarium(ii) iodide (SmI2; Kagan’s reagent) has found copious applications in organic synthesis. Its inherent strong reducing ability, together with external additives, enable tunable reactivity and endow SmI2 with powerful reactivity and impressive chemoselectivity. As a result, SmI2 has been broadly applied in a wide range of useful transformations, especially those involving C–C bond formation, in which both radical and ionic pathways could be selectively accessible. In the total synthesis of natural products, the versatility of SmI2 renders it more appealing than other single-electron reductants, particularly when used in key steps at the late stages of synthetic routes. Moreover, its ability to reach previously unattainable C–C bond disconnections accelerates the development of new synthetic strategies. In this Review, we highlight selected examples of SmI2-mediated C–C bond formation in the total synthesis of natural products reported from 2014 to 2021.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: C–C bond formation between ketyl radicals and unactivated alkenes in total synthesis.
Fig. 2: Total synthesis of (−)-arcutinine, aplykurodinone-1 and jiadifenolide using ketyl radical–alkene coupling as key steps.
Fig. 3: Applications of SmI2-mediated 1,4-addition of ketyl radicals from aldehydes in the synthesis of (−)-haliclonin A, plumisclerin A and (+)-astellatol.
Fig. 4: Intramolecular carbonyl-activated alkene coupling to access natural products.
Fig. 5: Formation of crucial C–C bonds by carbonyl-activated alkene reductive coupling.
Fig. 6: SmI2-mediated pinacol-type coupling in the total synthesis of (−)-actinophyllic acid, manginoid A, Taxol and Kopsia alkaloids.
Fig. 7: The formation of C–C bonds via alkyl radicals.
Fig. 8: Total synthesis of natural products using imine-type intermediates and ionic processes.

Similar content being viewed by others

References

  1. Namy, J. L., Girard, P. & Kagan, H. B. New preparation of some divalent lanthanide iodides and their usefulness in organic-synthesis. Nouv. J. Chim. 1, 5–7 (1977).

    CAS  Google Scholar 

  2. Girard, P., Namy, J. L. & Kagan, H. B. Divalent lanthanide derivatives in organic synthesis. 1. Mild preparation of samarium iodide and ytterbium iodide and their use as reducing or coupling agents. J. Am. Chem. Soc. 102, 2693–2698 (1980).

    Article  CAS  Google Scholar 

  3. Shabangi, M. & Flowers, R. A. II Electrochemical investigation of the reducing power of SmI2 in THF and the effect of HMPA cosolvent. Tetrahedron Lett. 38, 1137–1140 (1997).

    Article  CAS  Google Scholar 

  4. Flowers, R. A. II Mechanistic studies on the roles of cosolvents and additives in samarium(II)-based reductions. Synlett 10, 1427–1439 (2008).

    Article  CAS  Google Scholar 

  5. Shabangi, M., Sealy, J. M., Fuchs, J. R. & Flowers, R. II The effect of cosolvent on the reducing power of SmI2 in tetrahydrofuran. Tetrahedron Lett. 39, 4429–4432 (1998).

    Article  CAS  Google Scholar 

  6. Szostak, M., Fazakerley, N. J., Parmar, D. & Procter, D. J. Cross-coupling reactions using samarium(II) iodide. Chem. Rev. 114, 5959–6039 (2014).

    Article  CAS  PubMed  Google Scholar 

  7. Edmonds, D. J., Johnston, D. & Procter, D. J. Samarium(II)-iodide-mediated cyclizations in natural product synthesis. Chem. Rev. 104, 3371–3403 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Nicolaou, K. C., Ellery, S. P. & Chen, J. S. Samarium diiodide mediated reactions in total synthesis. Angew. Chem. Int. Ed. 48, 7140–7165 (2009).

    Article  CAS  Google Scholar 

  9. Li, Z., Nakashige, M. & Chain, W. J. A brief synthesis of (−)-englerin A. J. Am. Chem. Soc. 133, 6553–6556 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. Zi, W., Yu, S. & Ma, D. A convergent route to the Galbulimima alkaloids (−)-GB 13 and (+)-GB 16. Angew. Chem. Int. Ed. 49, 5887–5890 (2010).

    Article  CAS  Google Scholar 

  11. Wei, Y., Zhao, D. & Ma, D. Total synthesis of the indole alkaloid (±)- and (+)-methyl N-decarbomethoxychanofruticosinate. Angew. Chem. Int. Ed. 52, 12988–12991 (2013).

    Article  CAS  Google Scholar 

  12. Guo, S., Liu, J. & Ma, D. Total synthesis of leucosceptroids A and B. Angew. Chem. Int. Ed. 54, 1298–1301 (2015).

    Article  CAS  Google Scholar 

  13. Ni, D., Wei, Y. & Ma, D. Thiourea-catalyzed asymmetric Michael addition of carbazolones to 2-chloroacrylonitrile: total synthesis of 5,22-dioxokopsane, kopsinidine C, and demethoxycarbonylkopsin. Angew. Chem. Int. Ed. 57, 10207–10211 (2018).

    Article  CAS  Google Scholar 

  14. Nagaraju, K., Ni, D. & Ma, D. Total synthesis of kopsinitarine E. Angew. Chem. Int. Ed. 59, 22039–22042 (2020).

    Article  CAS  Google Scholar 

  15. Gao, Y. & Ma, D. In pursuit of synthetic efficiency: convergent approaches. Acc. Chem. Res. 54, 569–582 (2021).

    Article  CAS  PubMed  Google Scholar 

  16. Procter, D. J. et al. Recent advances in the chemistry of ketyl radicals. Chem. Soc. Rev. 50, 5349–5365 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Molander, G. A. & Kenny, C. Stereocontrolled intramolecular ketone-olefin reductive coupling reactions promoted by samarium diiodide. Tetrahedron Lett. 28, 4367–4370 (1987).

    Article  CAS  Google Scholar 

  18. Molander, G. A. & Kenny, C. Intramolecular reductive coupling reactions promoted by samarium diiodide. J. Am. Chem. Soc. 111, 8236–8246 (1989).

    Article  CAS  Google Scholar 

  19. Zhu, L., Luo, J. & Hong, R. Total synthesis of (±)-cafestol: a late-stage construction of the furan ring inspired by a biosynthesis strategy. Org. Lett. 16, 2162–2165 (2014).

    Article  CAS  PubMed  Google Scholar 

  20. Gong, J. et al. Total synthesis of atropurpuran. Nat. Commun. 7, 12183 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nie, W. et al. Enantioselective total synthesis of (−)-arcutinine. J. Am. Chem. Soc. 141, 9712–9718 (2019).

    Article  CAS  PubMed  Google Scholar 

  22. Liu, G. et al. Total synthesis of aplykurodinone-1. Org. Lett. 16, 4380–4383 (2014).

    Article  CAS  PubMed  Google Scholar 

  23. Fukuzawa, S., Nakanishi, A., Fujinami, T. & Sakai, S. Reductive coupling of ketones or aldehydes with electron-deficient alkenes promoted by samarium diiodide J. Chem. Soc. Chem. Commun. 624–625 (1986).

  24. Fukuzawa, S., Nakanishi, A., Fujinami, T. & Sakai, S. Samarium(II) diiodide induced reductive coupling of α,β-unsaturated esters with carbonyl compounds leading to a facile synthesis of γ-lactone. J. Chem. Soc. Perkin Trans. 1. 1669–1675 (1988).

  25. Otsubo, K., Inanaga, J. & Yamaguchi, M. SmI2-induced reductive cross-coupling of carbonyl compounds with α,β-unsaturated esters. Tetrahedron Lett. 27, 5763–5764 (1986).

    Article  CAS  Google Scholar 

  26. Paterson, I., Xuan, M. & Dalby, S. M. Total synthesis of jiadifenolide. Angew. Chem. Int. Ed. 53, 7286–7289 (2014).

    Article  CAS  Google Scholar 

  27. Zhang, Y. et al. Protecting-group-free total synthesis of (−)-jiadifenolide: development of a [4 + 1] annulation toward multisubstituted tetrahydrofurans. Org. Lett. 17, 5480–5483 (2015).

    Article  PubMed  CAS  Google Scholar 

  28. Prasad, E. & Flowers, R. A. Mechanistic impact of water addition to SmI2: consequences in the ground and transition state. J. Am. Chem. Soc. 127, 18093–18099 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Chopade, P. R., Prasad, E. & Flowers, R. A. The role of proton donors in SmI2-mediated ketone reduction: new mechanistic insights. J. Am. Chem. Soc. 126, 44–45 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Szostak, M., Spain, M. & Procter, D. J. Ketyl-type radicals from cyclic and acyclic esters are stabilized by SmI2(H2O)n: the role of SmI2(H2O)n in post-electron transfer steps. J. Am. Chem. Soc. 136, 8459–8466 (2014).

    Article  CAS  PubMed  Google Scholar 

  31. Parmar, D. et al. Reductive cyclization cascades of lactones using SmI2–H2O. J. Am. Chem. Soc. 133, 2418–2420 (2011).

    Article  CAS  PubMed  Google Scholar 

  32. Guo, L. et al. Organocatalytic, asymmetric total synthesis of (−)-haliclonin A. Angew. Chem. Int. Ed. 55, 4064–4068 (2016).

    Article  CAS  Google Scholar 

  33. Harb, H. Y. & Procter, D. J. SmI2-mediated carbonyl–alkene couplings for the synthesis of small carbocyclic rings. Synlett 23, 6–20 (2012).

    CAS  Google Scholar 

  34. Baker, T. M. et al. Synthesis and reactions of the pestalotiopsin skeleton. Angew. Chem. Int. Ed. 47, 5631–5633 (2008).

    Article  CAS  Google Scholar 

  35. Chen, J. et al. Synthesis of tricyclo[4,3,1,01,5]decane core of plumisclerin A using Pauson–Khand annulation and SmI2-mediated radical cyclization. Org. Lett. 17, 3379–3381 (2015).

    Article  CAS  PubMed  Google Scholar 

  36. Gao, M. et al. Enantioselective total synthesis of (+)-plumisclerin A. Angew. Chem. Int. Ed. 57, 13313–13318 (2018).

    Article  CAS  Google Scholar 

  37. Zhao, N. et al. Total synthesis of astellatol. Angew. Chem. Int. Ed. 57, 3386–3390 (2018).

    Article  CAS  Google Scholar 

  38. Su, F. et al. Total synthesis of maoecrystal P: application of a strained bicyclic synthon. Angew. Chem. Int. Ed. 57, 760–764 (2018).

    Article  CAS  Google Scholar 

  39. Farney, E. P., Feng, S. S., Schäfers, F. & Reisman, S. E. Total synthesis of (+)-pleuromutilin. J. Am. Chem. Soc. 140, 1267–1270 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Springer, D. M. et al. Cyclopentanone ring-cleaved pleuromutilin derivatives. Eur. J. Med. Chem. 42, 109–113 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Turlik, A., Chen, Y., Scruse, A. C. & Newhouse, T. R. Convergent total synthesis of principinol D, a rearranged kaurane diterpenoid. J. Am. Chem. Soc. 141, 8088–8092 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Classen, M. J. et al. Enantioselective total synthesis of (+)-euphorikanin A. J. Am. Chem. Soc. 143, 8261–8265 (2021).

    Article  CAS  PubMed  Google Scholar 

  43. Leung, J. C. et al. Total synthesis of (±)-phomoidride D. Angew. Chem. Int. Ed. 57, 1991–1994 (2018).

    Article  CAS  Google Scholar 

  44. Fukaya, K. et al. Synthesis of paclitaxel. 1. Synthesis of the ABC ring of paclitaxel by SmI2‐mediated cyclization. Org. Lett. 17, 2570–2573 (2015).

    Article  CAS  PubMed  Google Scholar 

  45. Deng, J., Ning, Y., Tian, H. & Gui, J. Divergent synthesis of antiviral diterpenes wickerols A and B. J. Am. Chem. Soc. 142, 4690–4695 (2020).

    Article  CAS  PubMed  Google Scholar 

  46. Nicolaou, K. C., Zhang, H., Ortiz, A. & Dagneau, P. Total synthesis of the originally assigned structure of vannusal B. Angew. Chem. Int. Ed. 47, 8605–8610 (2008).

    Article  CAS  Google Scholar 

  47. Breitler, S. & Carreira, E. M. Total synthesis of (+)-crotogoudin. Angew. Chem. Int. Ed. 52, 11168–11171 (2013).

    Article  CAS  Google Scholar 

  48. Namy, J. L., Souppe, J. & Kagan, H. B. Efficient formation of pinacols from aldehydes or ketones mediated by samarium diiodide. Tetrahedron Lett. 24, 765–766 (1983).

    Article  CAS  Google Scholar 

  49. Souppe, J., Danon, L., Namy, J. L. & Kagan, H. B. Some organic reactions promoted by samarium diiodide. J. Organomet. Chem. 250, 227–236 (1983).

    Article  CAS  Google Scholar 

  50. Cai, L., Zhang, K. & Kwon, O. Catalytic asymmetric total synthesis of (−)-actinophyllic acid. J. Am. Chem. Soc. 138, 3298–3301 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhang, Y.-A. et al. Total synthesis of the meroterpenoid manginoid A as fueled by a challenging pinacol coupling and bicycle-forming etherification. Angew. Chem. Int. Ed. 60, 11127–11132 (2021).

    Article  CAS  Google Scholar 

  52. Hu, Y. et al. Asymmetric total synthesis of Taxol. J. Am. Chem. Soc. 143, 17862–17870 (2021).

    Article  CAS  PubMed  Google Scholar 

  53. Pan, S. et al. Total synthesis of diterpenoid steenkrotin A. Angew. Chem. Int. Ed. 54, 6905–6908 (2015).

    Article  CAS  Google Scholar 

  54. Pan, S. et al. Enantioselective total synthesis of (+)-steenkrotin A and determination of its absolute configuration. Chem. Eur. J. 22, 959–970 (2016).

    Article  CAS  PubMed  Google Scholar 

  55. Salom-Roig, X. J., Dénès, F. & Renaud, P. Radical cyclization of haloacetals: the Ueno–Stork reaction. Synthesis 12, 1903–1928 (2004).

    Google Scholar 

  56. Arai, S., Nakajima, M. & Nishida, A. A concise and versatile synthesis of alkaloids from Kopsia tenuis: total synthesis of (±)-lundurine A and B. Angew. Chem. Int. Ed. 53, 5569–5572 (2014).

    Article  CAS  Google Scholar 

  57. Fuchs, J. R. et al. The effect of lithium bromide and lithium chloride on the reactivity of SmI2 in THF. Tetrahedron Lett. 38, 8157–8158 (1997).

    Article  CAS  Google Scholar 

  58. Szostak, M., Spain, M. & Procter, D. J. Preparation of samarium(II) iodide: quantitative evaluation of the effect of water, oxygen, and peroxide content, preparative methods, and the activation of samarium metal. J. Org. Chem. 77, 3049–3059 (2012).

    Article  CAS  PubMed  Google Scholar 

  59. Miller, R. S. et al. Reactions of SmI2 with alkyl halides and ketones: inner-sphere vs outer-sphere electron transfer in reactions of Sm(II) reductants. J. Am. Chem. Soc. 122, 7718–7722 (2000).

    Article  CAS  Google Scholar 

  60. Sono, M. et al. First direct evidence of radical intermediates in samarium diiodide induced cyclization by ESR spectra. Org. Lett. 13, 5720–5723 (2011).

    Article  CAS  PubMed  Google Scholar 

  61. Zhang, Q. et al. Stereoselective total synthesis of hetisine-type C20-diterpenoid alkaloids: spirasine IV and XI. Angew. Chem. Int. Ed. 57, 937–941 (2018).

    Article  CAS  Google Scholar 

  62. Li, X. et al. Synthesis of atisine, ajaconine, denudatine, and hetidine diterpenoid alkaloids by a bioinspired approach. Angew. Chem. Int. Ed. 55, 15667–15671 (2016).

    Article  CAS  Google Scholar 

  63. Han, G. et al. Exploratory synthetic studies of the α-methoxylation of amides via cuprous ion-promoted decomposition of o-diazobenzamides. J. Org. Chem. 61, 9483–9493 (1996).

    Article  CAS  Google Scholar 

  64. White, J. M., Tunoori, A. R. & Georg, G. I. A novel and expeditious reduction of tertiary amides to aldehydes using Cp2Zr(H)Cl. J. Am. Chem. Soc. 122, 11995–11996 (2000).

    Article  CAS  Google Scholar 

  65. Sasano, Y. et al. Highly chemoselective aerobic oxidation of amino alcohols into amino carbonyl compounds. Angew. Chem. Int. Ed. 53, 3236–3240 (2014).

    Article  CAS  Google Scholar 

  66. Zeng, X. & Boger, D. L. Total synthesis of (−)-strempeliopine. J. Am. Chem. Soc. 143, 12412–12417 (2021).

    Article  CAS  PubMed  Google Scholar 

  67. Wilkie, G. D. et al. Intramolecular Diels–Alder and tandem intramolecular Diels–Alder/1,3-dipolar cycloaddition reactions of 1,3,4-oxadiazoles. J. Am. Chem. Soc. 124, 11292–11294 (2002).

    Article  CAS  PubMed  Google Scholar 

  68. Elliott, G. I. et al. Intramolecular Diels–Alder/1,3-dipolar cycloaddition cascade of 1,3,4-oxadiazoles. J. Am. Chem. Soc. 128, 10589–10595 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Xiang, Y.-G. et al. One-pot cross-coupling of N-acyl N,O-acetals with α,β-unsaturated compounds. Chem. Commun. 7045–7047 (2009).

  70. Liu, X.-K. et al. One-pot reductive coupling of N-acylcarbamates with activated alkenes: application to the asymmetric synthesis of pyrrolo[1,2-a]azepin-5-one ring system and (−)-xenovenine. Org. Biomol. Chem. 10, 1275–1284 (2012).

    Article  CAS  PubMed  Google Scholar 

  71. Hu, K.-Z. et al. SmI2-mediated intermolecular coupling of γ-lactam N-α-radicals with activated alkenes: asymmetric synthesis of 11-hydroxylated analogues of the lead compounds CP-734432 and PF-04475270. J. Org. Chem. 78, 1790–1801 (2013).

    Article  CAS  PubMed  Google Scholar 

  72. Zi, W., Zuo, Z. & Ma, D. Intramolecular dearomative oxidative coupling of indoles: a unified strategy for the total synthesis of indoline alkaloids. Acc. Chem. Res. 48, 702–711 (2015).

    Article  CAS  PubMed  Google Scholar 

  73. Just-Baringo, X. & Procter, D. J. Sm(II)-mediated electron transfer to carboxylic acid derivatives: development of complexity-generating cascades. Acc. Chem. Res. 48, 1263–1275 (2015).

    Article  CAS  PubMed  Google Scholar 

  74. Huang, H.-M. & Procter, D. J. Radical–radical cyclization cascades of barbiturates triggered by electron-transfer reduction of amide-type carbonyls. J. Am. Chem. Soc. 138, 7770–7775 (2016).

    Article  CAS  PubMed  Google Scholar 

  75. Huang, H.-M. & Procter, D. J. Dearomatizing radical cyclizations and cyclization cascades triggered by electron-transfer reduction of amide-type carbonyls. J. Am. Chem. Soc. 139, 1661–1667 (2017).

    Article  CAS  PubMed  Google Scholar 

  76. Huang, H.-M. & Procter, D. J. Radical heterocyclization and heterocyclization cascades triggered by electron transfer to amide‐type carbonyl compounds. Angew. Chem. Int. Ed. 56, 14262–14266 (2017).

    Article  CAS  Google Scholar 

  77. Huang, H.-M., McDouall, J. J. W. & Procter, D. J. SmI2-catalysed cyclization cascades by radical relay. Nat. Catal. 2, 211–218 (2019).

    Article  CAS  Google Scholar 

  78. Agasti, S., Beattie, N. A., McDouall, J. J. W. & Procter, D. J. SmI2-catalyzed intermolecular coupling of cyclopropyl ketones and alkynes: a link between ketone conformation and reactivity. J. Am. Chem. Soc. 143, 3655–3661 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kern, N., Plesniak, M. P., McDouall, J. J. W. & Procter, D. J. Enantioselective cyclizations and cyclization cascades of samarium ketyl radicals. Nat. Chem. 9, 1198–1204 (2017).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Financial support of this research from the Chinese Academy of Sciences (supported by the Strategic Priority Research Program, grant XDB20020200 and QYZDJ-SSW-SLH029) and the National Natural Science Foundation of China (grants 21132008, 21831009 and 21991110) is acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

Y.G. and D.M. contributed to discussions and wrote the manuscript.

Corresponding author

Correspondence to Dawei Ma.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Scott Snyder and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Alison Stoddart, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Y., Ma, D. Samarium iodide-mediated C–C bond formation in the total synthesis of natural products. Nat. Synth 1, 275–288 (2022). https://doi.org/10.1038/s44160-022-00046-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-022-00046-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing