Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

On-surface polyarylene synthesis by cycloaromatization of isopropyl substituents

Abstract

Immobilization of organic molecules on metal surfaces and their coupling via thermally induced C–C bond formation is an important technique in organic and polymer synthesis. Using this approach, insoluble and reactive carbon nanostructures can be synthesized and the reactions monitored in situ using scanning probe microscopy methods. The diversity of conceivable products, however, is limited by the number and variety of known on-surface reactions. Here, we introduce the on-surface synthesis of polyarylenes by intermolecular oxidative coupling of isopropyl substituents of arenes. This [3+3] dimerization reaction forms a new phenylene ring and can be regarded as a formal cycloaromatization. The synthetic value of this reaction is proved by the synthesis of polyarylenes and co-polyarylenes, which we demonstrate by synthesizing poly(2,7-pyrenylene-1,4-phenylene). Scanning tunnelling microscopy and non-contact atomic force microscopy studies, complemented by density functional theory calculations, offer mechanistic insight into the on-surface cycloaromatization reaction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: On-surface polyarylene synthesis.
Fig. 2: Formation of new phenylene rings by the homocoupling of diisopropyl-substituted terphenyl on Au(111) and Au(110) surfaces.
Fig. 3: Confirmation of chemical structures of 1–4.
Fig. 4: Theoretical investigation of the reaction mechanism.
Fig. 5: Formation of pyrenylene–phenylene copolymers.
Fig. 6: Design constraints on the [3+3] cycloaromatization reaction.

Similar content being viewed by others

Data availability

All the STM, nc-AFM and computational datasets shown in the paper and Supplementary Information are available from Materials Cloud at https://doi.org/10.24435/materialscloud:yy-sc (ref. 58).

Code availability

The CP2K software package is available at https://www.cp2k.org/ and the AiiDAlab software package can be downloaded at https://www.materialscloud.org/work/aiidalab.

References

  1. Qiu, Z., Hammer, B. A. G. & Müllen, K. Conjugated polymers – problems and promises. Prog. Polym. Sci. 100, 101179 (2020).

    Article  CAS  Google Scholar 

  2. Cheng, Y.-J., Yang, S.-H. & Hsu, C.-S. Synthesis of conjugated polymers for organic solar cell applications. Chem. Rev. 109, 5868–5923 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Kawano, S. et al. Blue-emitting poly(2,7-pyrenylene)s: synthesis and optical properties. Macromolecules 41, 7933–7937 (2008).

    Article  CAS  Google Scholar 

  4. Morin, P.-O., Bura, T. & Leclerc, M. Realizing the full potential of conjugated polymers: innovation in polymer synthesis. Mater. Horiz. 3, 11–20 (2016).

    Article  CAS  Google Scholar 

  5. Sakamoto, J., Rehahn, M., Wegner, G. & Schlüter, A. D. Suzuki polycondensation: polyarylenes à la carte. Macromol. Rapid Commun. 30, 653–687 (2009).

    Article  CAS  PubMed  Google Scholar 

  6. Yamamoto, T. Electrically conducting and thermally stable π-conjugated poly(arylene)s prepared by organometallic processes. Prog. Polym. Sci. 17, 1153–1205 (1992).

    Article  CAS  Google Scholar 

  7. Li, Y. et al. Energy level and molecular structure engineering of conjugated donor–acceptor copolymers for photovoltaic applications. Macromolecules 42, 4491–4499 (2009).

    Article  CAS  Google Scholar 

  8. Wu, P.-T., Kim, F. S., Champion, R. D. & Jenekhe, S. A. Conjugated donor–acceptor copolymer semiconductors. Synthesis, optical properties, electrochemistry, and field-effect carrier mobility of pyridopyrazine-based copolymers. Macromolecules 41, 7021–7028 (2008).

    Article  CAS  Google Scholar 

  9. Wu, J.-S., Cheng, S.-W., Cheng, Y.-J. & Hsu, C.-S. Donor–acceptor conjugated polymers based on multifused ladder-type arenes for organic solar cells. Chem. Soc. Rev. 44, 1113–1154 (2015).

    Article  CAS  PubMed  Google Scholar 

  10. Müllen, K. & Pisula, W. Donor–acceptor polymers. J. Am. Chem. Soc. 137, 9503–9505 (2015).

    Article  PubMed  CAS  Google Scholar 

  11. Suraru, S.-L., Lee, J. A. & Luscombe, C. K. C–H arylation in the synthesis of π-conjugated polymers. ACS Macro Lett. 5, 724–729 (2016).

    Article  CAS  Google Scholar 

  12. Pouliot, J.-R., Grenier, F., Blaskovits, J. T., Beaupré, S. & Leclerc, M. Direct (hetero)arylation polymerization: simplicity for conjugated polymer synthesis. Chem. Rev. 116, 14225–14274 (2016).

    Article  CAS  PubMed  Google Scholar 

  13. Leclerc, M., Brassard, S. & Beaupré, S. Direct (hetero)arylation polymerization: toward defect-free conjugated polymers. Polym. J. 52, 13–20 (2020).

    Article  CAS  Google Scholar 

  14. Blaskovits, J. T. & Leclerc, M. C–H activation as a shortcut to conjugated polymer synthesis. Macromol. Rapid Commun. 40, 1800512 (2019).

    Article  CAS  Google Scholar 

  15. Grill, L. et al. Nano-architectures by covalent assembly of molecular building blocks. Nat. Nanotechnol. 2, 687–691 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Grill, L. & Hecht, S. Covalent on-surface polymerization. Nat. Chem. 12, 115–130 (2020).

    Article  CAS  PubMed  Google Scholar 

  17. Clair, S. & de Oteyza, D. G. Controlling a chemical coupling reaction on a surface: tools and strategies for on-surface synthesis. Chem. Rev. 119, 4717–4776 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Shen, Q., Gao, H.-Y. & Fuchs, H. Frontiers of on-surface synthesis: from principles to applications. Nano Today 13, 77–96 (2017).

    Article  CAS  Google Scholar 

  19. Hla, S.-W., Bartels, L., Meyer, G. & Rieder, K.-H. Inducing all steps of a chemical reaction with the scanning tunneling microscope tip: towards single molecule engineering. Phys. Rev. Lett. 85, 2777–2780 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Mistry, A. et al. The synthesis and STM/AFM imaging of ‘olympicene’ benzo[cd]pyrenes. Chem. Eur. J. 21, 2011–2018 (2015).

    Article  CAS  PubMed  Google Scholar 

  21. Pavlicek, N. et al. On-surface generation and imaging of arynes by atomic force microscopy. Nat. Chem. 7, 623–628 (2015).

    Article  CAS  PubMed  Google Scholar 

  22. De Oteyza, D. G. et al. Direct imaging of covalent bond structure in single-molecule chemical reactions. Science 340, 1434–1437 (2013).

    Article  PubMed  CAS  Google Scholar 

  23. Schuler, B. et al. Reversible Bergman cyclization by atomic manipulation. Nat. Chem. 8, 220–224 (2016).

    Article  CAS  PubMed  Google Scholar 

  24. Zhong, D. et al. Linear alkane polymerization on a gold surface. Science 334, 213–216 (2011).

    Article  CAS  PubMed  Google Scholar 

  25. Volger, H. C. Oxidative dimerization of β-substituted α-olefins by palladium acetate. Recl. Trav. Chim. Pays Bas 86, 677–686 (1967).

    Article  CAS  Google Scholar 

  26. Chen, S. & Hu, A. Recent advances of the Bergman cyclization in polymer science. Sci. China Chem. 58, 1710–1723 (2015).

    Article  CAS  Google Scholar 

  27. Sun, Q. et al. On-surface formation of one-dimensional polyphenylene through Bergman cyclization. J. Am. Chem. Soc. 135, 8448–8451 (2013).

    Article  CAS  PubMed  Google Scholar 

  28. Merino-Díez, N. et al. Width-dependent band gap in armchair graphene nanoribbons reveals Fermi level pinning on Au(111). ACS Nano 11, 11661–11668 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Gross, L., Mohn, F., Moll, N., Liljeroth, P. & Meyer, G. The chemical structure of a molecule resolved by atomic force microscopy. Science 325, 1110–1114 (2009).

    Article  CAS  PubMed  Google Scholar 

  30. Gross, L. et al. Bond-order discrimination by atomic force microscopy. Science 337, 1326–1329 (2012).

    Article  CAS  PubMed  Google Scholar 

  31. Hapala, P. et al. Mapping the electrostatic force field of single molecules from high-resolution scanning probe images. Nat. Commun. 7, 11560 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Björk, J., Stafström, S. & Hanke, F. Zipping up: cooperativity drives the synthesis of graphene nanoribbons. J. Am. Chem. Soc. 133, 14884–14887 (2011).

    Article  PubMed  CAS  Google Scholar 

  33. Fan, Q. et al. Precise monoselective aromatic C–H bond activation by chemisorption of meta-aryne on a metal surface. J. Am. Chem. Soc. 140, 7526–7532 (2018).

    Article  CAS  PubMed  Google Scholar 

  34. Floris, A. et al. Driving forces for covalent assembly of porphyrins by selective C–H bond activation and intermolecular coupling on a copper surface. J. Am. Chem. Soc. 138, 5837–5847 (2016).

    Article  CAS  PubMed  Google Scholar 

  35. Flory, P. J. The mechanism of vinyl polymerizations. J. Am. Chem. Soc. 59, 241–253 (1937).

    Article  CAS  Google Scholar 

  36. Bjork, J. Thermodynamics of an electrocyclic ring-closure reaction on Au(111). J. Phys. Chem. C 120, 21716–21721 (2016).

    Article  CAS  Google Scholar 

  37. Pavliček, N. et al. Polyyne formation via skeletal rearrangement induced by atomic manipulation. Nat. Chem. 10, 853–858 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Senkovskiy, B. V. et al. Making graphene nanoribbons photoluminescent. Nano Lett. 17, 4029–4037 (2017).

    Article  CAS  PubMed  Google Scholar 

  39. Borin Barin, G. et al. Optimized graphene transfer: influence of polymethylmethacrylate (PMMA) layer concentration and baking time on graphene final performance. Carbon 84, 82–90 (2015).

    Article  CAS  Google Scholar 

  40. Xu, X. et al. On-surface synthesis of dibenzohexacenohexacene and dibenzopentaphenoheptaphene. Bull. Chem. Soc. Jpn 94, 997–999 (2021).

    Article  CAS  Google Scholar 

  41. Weiss, C. et al. Imaging Pauli repulsion in scanning tunneling microscopy. Phys. Rev. Lett. 105, 086103 (2010).

    Article  CAS  PubMed  Google Scholar 

  42. Kichin, G., Weiss, C., Wagner, C., Tautz, F. S. & Temirov, R. Single molecule and single atom sensors for atomic resolution imaging of chemically complex surfaces. J. Am. Chem. Soc. 133, 16847–16851 (2011).

    Article  CAS  PubMed  Google Scholar 

  43. Fan, Q. et al. On-surface pseudo-high-dilution synthesis of macrocycles: principle and mechanism. ACS Nano 11, 5070–5079 (2017).

    Article  CAS  PubMed  Google Scholar 

  44. Giessibl, F. J. Atomic resolution on Si(111)-(7×7) by noncontact atomic force microscopy with a force sensor based on a quartz tuning fork. Appl. Phys. Lett. 76, 1470–1472 (2000).

    Article  CAS  Google Scholar 

  45. Bartels, L. et al. Dynamics of electron-induced manipulation of individual CO molecules on Cu(111). Phys. Rev. Lett. 80, 2004–2007 (1998).

    Article  CAS  Google Scholar 

  46. Yakutovich, A. V. et al. AiiDAlab – an ecosystem for developing, executing, and sharing scientific workflows. Comput. Mater. Sci. 188, 110165 (2021).

    Article  CAS  Google Scholar 

  47. Pizzi, G., Cepellotti, A., Sabatini, R., Marzari, N. & Kozinsky, B. AiiDA: automated interactive infrastructure and database for computational science. Comput. Mater. Sci. 111, 218–230 (2016).

    Article  Google Scholar 

  48. Hutter, J., Iannuzzi, M., Schiffmann, F. & VandeVondele, J. CP2K: atomistic simulations of condensed matter systems. WIREs Comput. Mol. Sci. 4, 15–25 (2014).

    Article  CAS  Google Scholar 

  49. VandeVondele, J. & Hutter, J. Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases. J. Chem. Phys. 127, 114105 (2007).

    Article  PubMed  CAS  Google Scholar 

  50. Goedecker, S., Teter, M. & Hutter, J. Separable dual-space Gaussian pseudopotentials. Phys. Rev. B 54, 1703–1710 (1996).

    Article  CAS  Google Scholar 

  51. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  PubMed  Google Scholar 

  52. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J. Chem. Phys. 132, 154104 (2010).

    Article  PubMed  CAS  Google Scholar 

  53. Hanke, F. & Björk, J. Structure and local reactivity of the Au(111) surface reconstruction. Phys. Rev. B 87, 235422 (2013).

    Article  CAS  Google Scholar 

  54. Hapala, P. et al. Mechanism of high-resolution STM/AFM imaging with functionalized tips. Phys. Rev. B 90, 085421 (2014).

    Article  CAS  Google Scholar 

  55. Laio, A. & Parrinello, M. Escaping free-energy minima. Proc. Natl Acad. Sci. USA 99, 12562–12566 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Henkelman, G., Uberuaga, B. P. & Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000).

    Article  CAS  Google Scholar 

  57. E, W., Ren, W. & Vanden-Eijnden, E. String method for the study of rare events. Phys. Rev. B 66, 052301 (2002).

    Article  CAS  Google Scholar 

  58. Kinikar, A. et al. On-surface polyarylene synthesis by cycloaromatization of isopropyl substituents. Materials Cloud Archive https://doi.org/10.24435/materialscloud:yy-sc (2022).

  59. Cai, Z., She, L., Wu, L. & Zhong, D. On-surface synthesis of linear polyphenyl wires guided by surface steric effect. J. Phys. Chem. C 120, 6619–6624 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Swiss National Science Foundation (grant no. 200020_182015), the NCCR MARVEL funded by the Swiss National Science Foundation (grant no. 51NF40-182892), the Johannes Gutenberg-Universität Mainz (JGU) through Gutenberg Forschungskolleg Fellowship (GFK) and the Max Planck Society. J.I.U. acknowledges the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie (grant agreement no. 886314). E.J., Y.G. and Z.Q. would like to acknowledge support from the Alexander von Humboldt Foundation. K.M. thanks the Gutenberg Research College for a scholarship. Computational support from the Swiss Supercomputing Center (CSCS) under project ID s904 is gratefully acknowledged. A.K., M.D.G., J.I.U., P.R. and R.F. thank L. Rotach (Empa, Dübendorf) for technical support.

Author information

Authors and Affiliations

Authors

Contributions

A.K., K.M., P.R. and R.F. conceived the project. Z.Q., Y.G., E.J. and X.-Y.W. synthesized and characterized the precursor molecules under the supervision of A.N. and K.M. The on-surface synthesis and the STM/nc-AFM measurements were performed by A.K., M.D.G. and J.I.U. under the supervision of P.R. and R.F. The DFT nc-AFM simulations were carried out by K.E., and C.P. did the DFT constrained geometry replica chain and NEB calculations. A.K. and K.M. wrote the manuscript with input from all authors.

Corresponding authors

Correspondence to Klaus Müllen, Carlo A. Pignedoli or Roman Fasel.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Leonhard Grill, Leo Gross and Sabine Maier for their contribution to the peer review of this work. Peter Seavill was the primary editor on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–31.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kinikar, A., Di Giovannantonio, M., Urgel, J.I. et al. On-surface polyarylene synthesis by cycloaromatization of isopropyl substituents. Nat. Synth 1, 289–296 (2022). https://doi.org/10.1038/s44160-022-00032-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-022-00032-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing