Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The role of organic ligand shell structures in colloidal nanocrystal synthesis

Abstract

Organic ligands are essential in the growth of monodisperse colloidal inorganic nanocrystals and can be leveraged to create a wide variety of shapes and sizes. Inorganic nanocrystals coated with surfactant-like organic molecules have a vast range of properties that arise from the combination of the individual components. In this Review, we discuss the role that the tails of the organic ligands play in the synthesis and properties of colloidal nanocrystals, particularly the collective effects of the organic ligands on the surface. Ligand–ligand interactions influence the thermodynamic and kinetic properties of the nanocrystals, as well as alter their colloidal stability. These interactions should inform the conceptualization of new nanocrystal syntheses as they influence the surface energy of the colloid, and these interactions should play a role in subsequent assembly strategies to prepare nanocrystal superlattices, which are driven by interparticle interactions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: TEM images of cadmium selenide nanorods synthesized with phosphonic acid capping ligands of varying length.
Fig. 2: Impact of organic ligand length on the assembly of nanocrystal superlattices.
Fig. 3: Examples of structures formed from anisotropic nanocrystals.
Fig. 4: Experimental and Ising model simulated results of the titration between oleic acid and the stearate (C18)-, palmitate (C16)- and myristate (C14)-capped indium phosphide quantum dots.
Fig. 5: Measurements of order in the ligand shell from NMR spectroscopy and sum frequency generation spectra.
Fig. 6: Powder X-ray diffraction spectra of indium phosphide quantum dots with the organic ligand peak at 20° 2θ.

Similar content being viewed by others

References

  1. Boles, M. A., Ling, D., Hyeon, T. & Talapin, D. V. The surface science of nanocrystals. Nat. Mater. 15, 141–153 (2016).

    Article  CAS  PubMed  Google Scholar 

  2. Hanifi, D. A. et al. Redefining near-unity luminescence in quantum dots with photothermal threshold quantum yield. Science 363, 1199–1202 (2019).

    Article  CAS  PubMed  Google Scholar 

  3. Kim, Y. et al. Bright and uniform green light emitting InP/ZnSe/ZnS quantum dots for wide color gamut displays. ACS Appl. Nano Mater. 2, 1496–1504 (2019).

    Article  CAS  Google Scholar 

  4. Won, Y.-H. et al. Highly efficient and stable InP/ZnSe/ZnS quantum dot light-emitting diodes. Nature 575, 634–638 (2019).

    Article  CAS  PubMed  Google Scholar 

  5. Swarnkar, A. et al. Quantum dot-induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics. Science 354, 92–95 (2016).

    Article  CAS  PubMed  Google Scholar 

  6. Yang, W. S. et al. Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. Science 356, 1376–1379 (2017).

    Article  CAS  PubMed  Google Scholar 

  7. Efros, A. L. & Nesbitt, D. J. Origin and control of blinking in quantum dots. Nat. Nanotechnol. 11, 661–671 (2016).

    Article  CAS  PubMed  Google Scholar 

  8. Yuan, G., Gomez, D. E., Kirkwood, N., Boldt, K. & Mulvaney, P. Two mechanisms determine quantum dot blinking. ACS Nano 12, 3397–3405 (2018).

    Article  CAS  PubMed  Google Scholar 

  9. Fan, Z. & Grünwald, M. Orientational order in self-assembled nanocrystal superlattices. J. Am. Chem. Soc. 141, 1980–1988 (2019).

    Article  CAS  PubMed  Google Scholar 

  10. Ondry, J. C., Philbin, J. P., Lostica, M., Rabani, E. & Alivisatos, A. P. Colloidal synthesis path to 2D crystalline quantum dot superlattices. ACS Nano 15, 2251–2262 (2020).

    Article  PubMed  Google Scholar 

  11. De Nolf, K. et al. Binding and packing in two-component colloidal quantum dot ligand shells: linear versus branched carboxylates. J. Am. Chem. Soc. 139, 3456–3464 (2017).

    Article  PubMed  Google Scholar 

  12. Pang, Z., Zhang, J., Cao, W., Kong, X. & Peng, X. Partitioning surface ligands on nanocrystals for maximal solubility. Nat. Commun. 10, 2454 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Luther, J. M. et al. Structural, optical, and electrical properties of self-assembled films of PbSe nanocrystals treated with 1,2-ethanedithiol. ACS Nano 2, 271–280 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Anderson, N. C., Hendricks, M. P., Choi, J. J. & Owen, J. S. Ligand exchange and the stoichiometry of metal chalcogenide nanocrystals: spectroscopic observation of facile metal–carboxylate displacement and binding. J. Am. Chem. Soc. 135, 18536–18548 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kirkwood, N. et al. Finding and fixing traps in II–VI and III–V colloidal quantum dots: the importance of Z-type ligand passivation. J. Am. Chem. Soc. 140, 15712–15723 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nenon, D. P. et al. Design principles for trap-free CsPbX3 nanocrystals: enumerating and eliminating surface halide vacancies with softer Lewis bases. J. Am. Chem. Soc. 140, 17760–17772 (2018).

    Article  CAS  PubMed  Google Scholar 

  17. Calvin, J. J. et al. Thermodynamic investigation of increased luminescence in indium phosphide quantum dots by treatment with metal halide salts. J. Am. Chem. Soc. 142, 18897–18906 (2020).

    Article  CAS  PubMed  Google Scholar 

  18. Nagaoka, Y. et al. Superstructures generated from truncated tetrahedral quantum dots. Nature 561, 378–382 (2018).

    Article  CAS  PubMed  Google Scholar 

  19. Lee, H. et al. Ligands as a universal molecular toolkit in synthesis and assembly of semiconductor nanocrystals. Chem. Sci. 11, 2318–2329 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kim, T.-G. et al. Trap passivation in indium-based quantum dots through surface fluorination: mechanism and applications. ACS Nano 12, 11529–11540 (2018).

    Article  CAS  PubMed  Google Scholar 

  21. Weiss, E. A. Organic molecules as tools to control the growth, surface structure, and redox activity of colloidal quantum dots. Acc. Chem. Res. 46, 2607–2615 (2013).

    Article  CAS  PubMed  Google Scholar 

  22. Zhang, J. et al. Identification of facet-dependent coordination structures of carboxylate ligands on CdSe nanocrystals. J. Am. Chem. Soc. 141, 15675–15683 (2019).

    Article  CAS  PubMed  Google Scholar 

  23. Hughes, K. E., Stein, J. L., Friedfeld, M. R., Cossairt, B. M. & Gamelin, D. R. Effects of surface chemistry on the photophysics of colloidal InP nanocrystals. ACS Nano 13, 14198–14207 (2019).

    Article  CAS  PubMed  Google Scholar 

  24. Stein, J. L. et al. Probing surface defects of InP quantum dots using phosphorus Kα and Kβ x-ray emission spectroscopy. Chem. Mater. 30, 6377–6388 (2018).

    Article  CAS  Google Scholar 

  25. Wu, M. et al. Solution NMR analysis of ligand environment in quaternary ammonium-terminated self-assembled monolayers on gold nanoparticles: the effect of surface curvature and ligand structure. J. Am. Chem. Soc. 141, 4316–4327 (2019).

    Article  CAS  PubMed  Google Scholar 

  26. Zhang, B. et al. Alkyl phosphonic acids deliver CsPbBr3 nanocrystals with high photoluminescence quantum yield and truncated octahedron shape. Chem. Mater. 31, 9140–9147 (2019).

    Article  CAS  Google Scholar 

  27. Elimelech, O., Aviv, O., Oded, M. & Banin, U. A tale of tails—thermodynamics of CdSe nanocrystal surface ligand exchange. Nano Lett. 20, 6396–6403 (2020).

    Article  CAS  PubMed  Google Scholar 

  28. Gee, M. Y., Shen, Y. & Greytak, A. B. Isothermal titration calorimetry resolves sequential ligand exchange and association reactions in treatment of oleate-capped CdSe quantum dots with alkylphosphonic acid. J. Phys. Chem. C 124, 23964–23975 (2020).

    Article  CAS  Google Scholar 

  29. Hauwiller, M. R. et al. Tracking the effects of ligands on oxidative etching of gold nanorods in graphene liquid cell electron microscopy. ACS Nano 14, 10239–10250 (2020).

    Article  CAS  PubMed  Google Scholar 

  30. Lv, L., Li, J., Wang, Y., Shu, Y. & Peng, X. Monodisperse CdSe quantum dots encased in six (100) facets via ligand-controlled nucleation and growth. J. Am. Chem. Soc. 142, 19926–19935 (2020).

    Article  CAS  PubMed  Google Scholar 

  31. Calvin, J. J., O’Brien, E. A., Sedlak, A. B., Balan, A. D. & Alivisatos, A. P. Thermodynamics of composition dependent ligand exchange on the surfaces of colloidal indium phosphide quantum dots. ACS Nano 15, 1407–1420 (2021).

    Article  CAS  PubMed  Google Scholar 

  32. Calvin, J. J., Kaufman, T. M., Sedlak, A. B., Crook, M. F. & Alivisatos, A. P. Observation of ordered organic capping ligands on semiconducting quantum dots via powder X-ray diffraction. Nat. Commun. 12, 2663 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Liz-Marzán, L. M., Kagan, C. R. & Millstone, J. E. Reproducibility in nanocrystal synthesis? Watch out for impurities! ACS Nano 14, 6359–6361 (2020).

    Article  PubMed  Google Scholar 

  34. Pan, A. et al. Insight into the ligand-mediated synthesis of colloidal CsPbBr3 perovskite nanocrystals: the role of organic acid, base, and cesium precursors. ACS Nano 10, 7943–7954 (2016).

    Article  CAS  PubMed  Google Scholar 

  35. Zhuang, Z., Lu, X., Peng, Q. & Li, Y. A facile ‘dispersion–decomposition’ route to metal sulfide nanocrystals. Chem. Eur. J. 17, 10445–10452 (2011).

    Article  CAS  PubMed  Google Scholar 

  36. Liu, L. et al. Shape control of CdSe nanocrystals with zinc blende structure. J. Am. Chem. Soc. 131, 16423–16429 (2009).

    Article  CAS  PubMed  Google Scholar 

  37. Li, Z. & Peng, X. Size/shape-controlled synthesis of colloidal CdSe quantum disks: ligand and temperature effects. J. Am. Chem. Soc. 133, 6578–6586 (2011).

    Article  CAS  PubMed  Google Scholar 

  38. Ahmadi, T. S., Wang, Z. L., Green, T. C., Henglein, A. & El-Sayed, M. A. Shape-controlled synthesis of colloidal platinum nanoparticles. Science 272, 1924–1925 (1996).

    Article  CAS  PubMed  Google Scholar 

  39. Paula, S., Sues, W., Tuchtenhagen, J. & Blume, A. Thermodynamics of micelle formation as a function of temperature: a high sensitivity titration calorimetry study. J. Phys. Chem. 99, 11742–11751 (1995).

    Article  CAS  Google Scholar 

  40. Golub, T. P. & de Keizer, A. Calorimetric study on the temperature dependence of the formation of mixed ionic/nonionic micelles. Langmuir 20, 9506–9512 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Fathi, H., Kelly, J. P., Vasquez, V. R. & Graeve, O. A. Ionic concentration effects on reverse micelle size and stability: implications for the synthesis of nanoparticles. Langmuir 28, 9267–9274 (2012).

    Article  CAS  PubMed  Google Scholar 

  42. Balan, A. D. et al. Unsaturated ligands seed an order to disorder transition in mixed ligand shells of CdSe/CdS quantum dots. ACS Nano 13, 13784–13796 (2019).

    Article  CAS  PubMed  Google Scholar 

  43. Wuister, S. F., de Mello Donegá, C. & Meijerink, A. Luminescence temperature antiquenching of water-soluble CdTe quantum dots: role of the solvent. J. Am. Chem. Soc. 126, 10397–10402 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Wuister, S. F., Van Houselt, A., de Mello Donegá, C., Vanmaekelbergh, D. & Meijerink, A. Temperature antiquenching of the luminescence from capped CdSe quantum dots. Angew. Chem. Int. Ed. 43, 3029–3033 (2004).

    Article  CAS  Google Scholar 

  45. Zenkevich, E., Stupak, A., Göhler, C., Krasselt, C. & von Borczyskowski, C. Tuning electronic states of a CdSe/ZnS quantum dot by only one functional dye molecule. ACS Nano 9, 2886–2903 (2015).

    Article  CAS  PubMed  Google Scholar 

  46. Antanovich, A. et al. A strain-induced exciton transition energy shift in CdSe nanoplatelets: the impact of an organic ligand shell. Nanoscale 9, 18042–18053 (2017).

    Article  CAS  PubMed  Google Scholar 

  47. Albani, D. et al. Ligand ordering determines the catalytic response of hybrid palladium nanoparticles in hydrogenation. Catal. Sci. Technol. 6, 1621–1631 (2016).

    Article  CAS  Google Scholar 

  48. Yang, W. et al. Surface-ligand ‘liquid’ to ‘crystalline’ phase transition modulates the solar H2 production quantum efficiency of CdS nanorod/mediator/hydrogenase assemblies. ACS Appl. Mater. Interfaces 12, 35614–35625 (2020).

    Article  CAS  PubMed  Google Scholar 

  49. Wang, W., Banerjee, S., Jia, S., Steigerwald, M. L. & Herman, I. P. Ligand control of growth, morphology, and capping structure of colloidal CdSe nanorods. Chem. Mater. 19, 2573–2580 (2007).

    Article  CAS  Google Scholar 

  50. De Nolf, K. et al. Controlling the size of hot injection made nanocrystals by manipulating the diffusion coefficient of the solute. J. Am. Chem. Soc. 137, 2495–2505 (2015).

    Article  PubMed  Google Scholar 

  51. Cho, J. et al. Influence of ligand shell ordering on dimensional confinement of cesium lead bromide (CsPbBr3) perovskite nanoplatelets. J. Mater. Chem. C 5, 8810–8818 (2017).

    Article  CAS  Google Scholar 

  52. Ouyang, J. et al. Photoluminescent colloidal CdS nanocrystals with high quality via noninjection one-pot synthesis in 1-octadecene. J. Phys. Chem. C 113, 7579–7593 (2009).

    Article  CAS  Google Scholar 

  53. Flamee, S. et al. Fast, high yield, and high solid loading synthesis of metal selenide nanocrystals. Chem. Mater. 25, 2476–2483 (2013).

    Article  CAS  Google Scholar 

  54. Pradhan, N., Reifsnyder, D., Xie, R., Aldana, J. & Peng, X. Surface ligand dynamics in growth of nanocrystals. J. Am. Chem. Soc. 129, 9500–9509 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Yu, W. W., Wang, Y. A. & Peng, X. Formation and stability of size-, shape-, and structure-controlled CdTe nanocrystals: ligand effects on monomers and nanocrystals. Chem. Mater. 15, 4300–4308 (2003).

    Article  CAS  Google Scholar 

  56. Scher, E. C., Manna, L. & Alivisatos, A. P. Shape control and applications of nanocrystals. Phil. Trans. R. Soc. Lond. A 361, 241–257 (2003).

    Article  CAS  Google Scholar 

  57. Dahl, J. C., Wang, X., Huang, X., Chan, E. M. & Alivisatos, A. P. Elucidating the weakly reversible Cs–Pb–Br perovskite nanocrystal reaction network with high-throughput maps and transformations. J. Am. Chem. Soc. 142, 11915–11926 (2020).

    Article  CAS  PubMed  Google Scholar 

  58. Huang, J., Kovalenko, M. V. & Talapin, D. V. Alkyl chains of surface ligands affect polytypism of CdSe nanocrystals and play an important role in the synthesis of anisotropic nanoheterostructures. J. Am. Chem. Soc. 132, 15866–15868 (2010).

    Article  CAS  PubMed  Google Scholar 

  59. Wu, F. et al. Fine-tuning the crystal structure of CdSe quantum dots by varying the dynamic characteristics of primary alkylamine ligands. CrystEngComm 20, 4492–4498 (2018).

    Article  CAS  Google Scholar 

  60. Yang, Y. et al. Entropic ligands for nanocrystals: from unexpected solution properties to outstanding processability. Nano Lett. 16, 2133–2138 (2016).

    Article  CAS  PubMed  Google Scholar 

  61. Liu, X., Yu, M., Kim, H., Mameli, M. & Stellacci, F. Determination of monolayer-protected gold nanoparticle ligand–shell morphology using NMR. Nat. Commun. 3, 1182 (2012).

    Article  PubMed  Google Scholar 

  62. Boles, M. A. & Talapin, D. V. Many-body effects in nanocrystal superlattices: departure from sphere packing explains stability of binary phases. J. Am. Chem. Soc. 137, 4494–4502 (2015).

    Article  CAS  PubMed  Google Scholar 

  63. Quan, Z. et al. Energy landscape of self-assembled superlattices of PbSe nanocrystals. Proc. Natl Acad. Sci. USA 111, 9054–9057 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Weidman, M. C., Nguyen, Q., Smilgies, D.-M. & Tisdale, W. A. Impact of size dispersity, ligand coverage, and ligand length on the structure of PbS nanocrystal superlattices. Chem. Mater. 30, 807–816 (2018).

    Article  CAS  Google Scholar 

  65. Courty, A., Richardi, J., Albouy, P.-A. & Pileni, M.-P. How to control the crystalline structure of supracrystals of 5-nm silver nanocrystals. Chem. Mater. 23, 4186–4192 (2011).

    Article  CAS  Google Scholar 

  66. Ushakova, E. V. et al. Ligand-dependent morphology and optical properties of lead sulfide quantum dot superlattices. J. Phys. Chem. C 120, 25061–25067 (2016).

    Article  CAS  Google Scholar 

  67. Choi, J. J. et al. Controlling nanocrystal superlattice symmetry and shape-anisotropic interactions through variable ligand surface coverage. J. Am. Chem. Soc. 133, 3131–3138 (2011).

    Article  CAS  PubMed  Google Scholar 

  68. Lau, C. Y. et al. Enhanced ordering in gold nanoparticles self-assembly through excess free ligands. Langmuir 27, 3355–3360 (2011).

    Article  CAS  PubMed  Google Scholar 

  69. Sidhaye, D. S. & Prasad, B. Melting characteristics of superlattices of alkanethiol-capped gold nanoparticles: The ‘excluded’ story of excess thiol. Chem. Mater. 22, 1680–1685 (2010).

    Article  CAS  Google Scholar 

  70. Kim, D., Bae, W. K., Kim, S.-H. & Lee, D. C. Depletion-mediated interfacial assembly of semiconductor nanorods. Nano Lett. 19, 963–970 (2019).

    Article  CAS  PubMed  Google Scholar 

  71. Gong, J. et al. Shape-dependent ordering of gold nanocrystals into large-scale superlattices. Nat. Commun. 8, 14038 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Boles, M. A. & Talapin, D. V. Self-assembly of tetrahedral CdSe nanocrystals: effective ‘patchiness’ via anisotropic steric interaction. J. Am. Chem. Soc. 136, 5868–5871 (2014).

    Article  CAS  PubMed  Google Scholar 

  73. Kim, A. et al. Tip-patched nanoprisms from formation of ligand islands. J. Am. Chem. Soc. 141, 11796–11800 (2019).

    Article  CAS  PubMed  Google Scholar 

  74. Jana, S., de Frutos, M., Davidson, P. & Abécassis, B. Ligand-induced twisting of nanoplatelets and their self-assembly into chiral ribbons. Sci. Adv. 3, e1701483 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Steigerwald, M. L. et al. Surface derivatization and isolation of semiconductor cluster molecules. J. Am. Chem. Soc. 110, 3046–3050 (1988).

    Article  CAS  Google Scholar 

  76. Ilgenfritz, G., Schneider, R., Grell, E., Lewitzki, E. & Ruf, H. Thermodynamic and kinetic study of the sphere-to-rod transition in nonionic micelles: aggregation and stress relaxation in C14E8 and C16E8/H2O systems. Langmuir 20, 1620–1630 (2004).

    Article  CAS  Google Scholar 

  77. Israelachvili, J. N. Intermolecular and Surface Forces (Academic, 2015).

  78. Jiang, J. et al. Synthesis and growth thermodynamic studies of CdS nanocrystals using isothermal titration calorimetry. Thermochim. Acta 503, 136–140 (2010).

    Article  Google Scholar 

  79. Khoshnood, A. & Firoozabadi, A. Polar solvents trigger formation of reverse micelles. Langmuir 31, 5982–5991 (2015).

    Article  CAS  PubMed  Google Scholar 

  80. Michor, E. L. & Berg, J. C. Temperature effects on micelle formation and particle charging with span surfactants in apolar media. Langmuir 31, 9602–9607 (2015).

    Article  CAS  PubMed  Google Scholar 

  81. Mukherjee, K., Moulik, S. & Mukherjee, D. Thermodynamics of micellization of Aerosol OT in polar and nonpolar solvents. A calorimetric study. Langmuir 9, 1727–1730 (1993).

    Article  CAS  Google Scholar 

  82. Hiemenz, P. C. & Rajagopalan, R. Principles of Colloid and Surface Chemistry, Revised and Expanded (CRC, 2016).

  83. Searle, M. S. & Williams, D. H. The cost of conformational order: entropy changes in molecular associations. J. Am. Chem. Soc. 114, 10690–10697 (1992).

    Article  CAS  Google Scholar 

  84. Fenter, P., Eisenberger, P. & Liang, K. Chain-length dependence of the structures and phases of CH3(CH2)n−1 SH self-assembled on Au(111). Phys. Rev. Lett. 70, 2447–2450 (1993).

    Article  CAS  PubMed  Google Scholar 

  85. Jharimune, S., Sathe, A. A. & Rioux, R. M. Thermochemical measurements of cation exchange in CdSe nanocrystals using isothermal titration calorimetry. Nano Lett. 18, 6795–6803 (2018).

    Article  CAS  PubMed  Google Scholar 

  86. Sandhyarani, N. et al. Monolayer-protected cluster superlattices: structural, spectroscopic, calorimetric, and conductivity studies. Chem. Mater. 12, 104–113 (2000).

    Article  CAS  Google Scholar 

  87. Lang, E. N. et al. Oleylamine impurities regulate temperature-dependent hierarchical assembly of ultranarrow gold nanowires on biotemplated interfaces. ACS Nano 15, 10275–10285 (2021).

    Article  PubMed  Google Scholar 

  88. Weir, M. P. et al. Ligand shell structure in lead sulfide–oleic acid colloidal quantum dots revealed by small-angle scattering. J. Phys. Chem. Lett. 10, 4713–4719 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Martinez, M. S., Nozik, A. J. & Beard, M. C. Size-dependent Janus-ligand shell formation on PbS quantum dots. J. Phys. Chem. C 125, 21729–21739 (2021).

    Article  CAS  Google Scholar 

  90. Frederick, M. T., Achtyl, J. L., Knowles, K. E., Weiss, E. A. & Geiger, F. M. Surface-amplified ligand disorder in CdSe quantum dots determined by electron and coherent vibrational spectroscopies. J. Am. Chem. Soc. 133, 7476–7481 (2011).

    Article  CAS  PubMed  Google Scholar 

  91. Meulenberg, R. W. & Strouse, G. F. Chain packing analysis of the passivating layer on nanocrystalline quantum dot surfaces. J. Phys. Chem. B 105, 7438–7445 (2001).

    Article  CAS  Google Scholar 

  92. Jackson, A. M., Myerson, J. W. & Stellacci, F. Spontaneous assembly of subnanometre-ordered domains in the ligand shell of monolayer-protected nanoparticles. Nat. Mater. 3, 330–336 (2004).

    Article  CAS  PubMed  Google Scholar 

  93. Kano, S., Tada, T. & Majima, Y. Nanoparticle characterization based on STM and STS. Chem. Soc. Rev. 44, 970–987 (2015).

    Article  CAS  PubMed  Google Scholar 

  94. Stirling, J. et al. Critical assessment of the evidence for striped nanoparticles. PLoS ONE 9, e108482 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Ong, Q. K. & Stellacci, F. Response to “Critical assessment of the evidence for striped nanoparticles”. PLoS ONE 10, e0135594 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Ong, Q., Luo, Z. & Stellacci, F. Characterization of ligand shell for mixed-ligand coated gold nanoparticles. Acc. Chem. Res. 50, 1911–1919 (2017).

    Article  CAS  PubMed  Google Scholar 

  97. Sandhyarani, N., Pradeep, T., Chakrabarti, J., Yousuf, M. & Sahu, H. Distinct liquid phase in metal-cluster superlattice solids. Phys. Rev. B 62, R739–R742 (2000).

    Article  CAS  Google Scholar 

  98. Gao, J., Kidon, L., Rabani, E. & Alivisatos, A. P. Ultrahigh hot carrier transient photocurrent in nanocrystal arrays by Auger recombination. Nano Lett. 19, 4804–4810 (2019).

    Article  CAS  PubMed  Google Scholar 

  99. Smith, D. K. & Korgel, B. A. The importance of the CTAB surfactant on the colloidal seed-mediated synthesis of gold nanorods. Langmuir 24, 644–649 (2008).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, under contract no. DE-AC02-05-CH11231 (Physical Chemistry of Inorganic Nanostructures Program (KC3103)). J.J.C. gratefully acknowledges the National Science Foundation Graduate Research Fellowship under Grant DGE 1752814. J.J.C. also acknowledges support by the Kavli NanoScience Institute, University of California, Berkeley through the Philomathia Graduate Student Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

J.J.C., A.S.B. and A.P.A. contributed to the discussions and wrote the manuscript.

Corresponding author

Correspondence to A. Paul Alivisatos.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Emily Weiss and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peter Seavill was the primary editor on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Calvin, J.J., Brewer, A.S. & Alivisatos, A.P. The role of organic ligand shell structures in colloidal nanocrystal synthesis. Nat Synth 1, 127–137 (2022). https://doi.org/10.1038/s44160-022-00025-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-022-00025-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing