Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Reactivity of oximes for diverse methodologies and synthetic applications

Abstract

Oximes are valuable synthetic building blocks with reactivity modes that enable their use in diverse methodologies, from cycloadditions to bioconjugation. Their reactivity towards photocatalysis and transition metals makes them ideal starting materials for N-containing heterocycles, amino alcohols and amines. Developments in oxime reactivity since 2016 have enabled transformations such as the addition of iminyl radicals to alkenes to generate functionalized imines, and [2 + 2]-cycloadditions to access azetidines. The unique properties imparted by the oxime N–O bond have also been used to integrate dynamic chemistries into materials. In this Review, we discuss the innovative use of this powerful functional group, with a focus on N–O bond fragmentation and cycloadditions, along with applications including dynamic materials, energetic materials and biocatalytic oxime reductions. We conclude by highlighting methodologies based on oxime starting materials, along with the challenges of using oximes for diverse applications, and offer insight into future directions in these areas.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of oxime scaffolds.
Fig. 2: General mechanisms for N–O bond fragmentation.
Fig. 3: Generation of iminyl radicals via transition metal catalysis.
Fig. 4: Photomediated N–O bond fragmentation transformations.
Fig. 5: Photomediated cycloaddition reactions of oximes.
Fig. 6: Nitrone and amide synthesis via oximes.
Fig. 7: Oxime that contain polymers and chiral reductions of oximes.
Fig. 8: New and future directions for the development of oxime reactivity.

Similar content being viewed by others

References

  1. Mirjafary, Z., Abdoli, M., Saeidian, H., Boroon, S. & Kakanejadifard, A. Oxime ethers as versatile precursors in organic synthesis: a review. RSC Adv. 5, 79361–79384 (2015).

    Article  CAS  Google Scholar 

  2. Roger, R. & Neilson, D. G. The chemistry of imidates. Chem. Rev. 61, 179–211 (2002).

    Article  Google Scholar 

  3. Kaur, K. & Srivastava, S. Beckmann rearrangement catalysis: a review of recent advances. New J. Chem. 44, 18530–18572 (2020).

    Article  CAS  Google Scholar 

  4. Ãbele, E. & Lukevics, E. Recent advances in the chemistry of oximes. New J. Org. Synth. 32, 235–264 (2000).

    Google Scholar 

  5. Beckmann, E. Zur Kenntniss der isonitrosoverbindungen. Ber. Dtsch. Chem Ges. 19, 988–993 (1886).

    Article  Google Scholar 

  6. Richardson, A. D., Becker, M. R. & Schindler, C. S. Synthesis of azetidines by aza Paternò–Büchi reactions. Chem. Sci. 11, 7553–7561 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kandappa, S. K., Valloli, L. K., Ahuja, S., Parthiban, J. & Sivaguru, J. Taming the excited state reactivity of imines—from non-radiative decay to aza Paternò–Büchi reaction. Chem. Soc. Rev. 50, 1617–1641 (2021).

    Article  CAS  PubMed  Google Scholar 

  8. Becker, M. R., Wearing, E. R. & Schindler, C. S. Synthesis of azetidines via visible-light-mediated intermolecular [2 + 2] photocycloadditions. Nat. Chem. 12, 898–905 (2020).

    Article  CAS  PubMed  Google Scholar 

  9. Thakur, R., Jaiswal, Y. & Kumar, A. Imidates: an emerging synthon for N-heterocycles. Org. Biomol. Chem. 17, 9829–9843 (2019).

    Article  CAS  PubMed  Google Scholar 

  10. Xia, P.-J. et al. O-Perfluoropyridin-4-yl oximes: iminyl radical precursors for photo- or thermal-induced N–O cleavage in C(sp2)–C(sp3) bond formation. J. Org. Chem. 85, 3538–3547 (2020).

    Article  CAS  PubMed  Google Scholar 

  11. Xiao, F., Guo, Y. & Zeng, Y.-F. Recent developments in radical cross-coupling of redox-active cycloketone oximes. Adv. Synth. Catal. 363, 120–143 (2021).

    Article  CAS  Google Scholar 

  12. Davies, J., Morcillo, S. P., Douglas, J. J. & Leonori, D. Hydroxylamine derivatives as nitrogen-radical precursors in visible-light photochemistry. Chem. Eur. J. 24, 12154–12163 (2018).

    Article  CAS  PubMed  Google Scholar 

  13. Chen, C. et al. Recent advances in cyclization reactions of unsaturated oxime esters (ethers): synthesis of versatile functionalized nitrogen-containing scaffolds. Org. Chem. Front. 7, 1948–1969 (2020).

    Article  CAS  Google Scholar 

  14. Xiao, T., Huang, H., Anand, D. & Zhou, L. Iminyl-radical-triggered C–C bond cleavage of cycloketone oxime derivatives: generation of distal cyano-substituted alkyl radicals and their functionalization. Synthesis 52, 1585–1601 (2020).

    Article  CAS  Google Scholar 

  15. Xiao, W. & Wu, J. Recent advances for the photoinduced C–C bond cleavage of cycloketone oximes. Chinese Chem. Lett. 31, 3083–3094 (2020).

    Article  CAS  Google Scholar 

  16. Liu, L., Duan, X.-H. & Guo, L.-N. Recent advance in iminyl radical triggered C–H and C–C bond functionalization of oxime esters via 1,5-HAT and β-carbon scission. Synthesis 53, 70469 (2021).

    Google Scholar 

  17. Morcillo, S. P. Radical-promoted C−C bond cleavage: a deconstructive approach for selective functionalization. Angew. Chem. Int. Ed. 58, 14044–14054 (2019).

    Article  CAS  Google Scholar 

  18. Strieth-Kalthoff, F. & Glorius, F. Triplet energy transfer photocatalysis: unlocking the next level. Chem 6, 1888–1903 (2020).

    Article  CAS  Google Scholar 

  19. Boivin, J., Fouquet, E. & Zard, S. Z. A new and synthetically useful source of iminyl radicals. Tetrahedron Lett. 32, 4299–4302 (1991).

    Article  CAS  Google Scholar 

  20. Boivin, J., Fouquet, E. & Zard, S. Z. Iminyl radicals: part I. Generation and intramolecular capture by an olefin. Tetrahedron 50, 1745–1756 (1994).

    Article  CAS  Google Scholar 

  21. Shu, W. & Nevado, C. Visible-light-mediated remote aliphatic C−H functionalizations through a 1,5-hydrogen transfer cascade. Angew. Chem. Int. Ed. 56, 1881–1884 (2017).

    Article  CAS  Google Scholar 

  22. Li, J. et al. Visible light as a sole requirement for intramolecular C(sp3)–H imination. Org. Lett. 19, 1994–1997 (2017).

    Article  CAS  PubMed  Google Scholar 

  23. Stateman, L. M., Nakafuku, K. M. & Nagib, D. A. Remote C–H functionalization via selective hydrogen atom transfer. Synthesis 50, 1569–1586 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Glover, S., Hammond, G., Harman, D., Mills, J. & Rowbottom, C. Cyclization of alkoxyiminyl radicals onto olefins: formation of 2-alkoxy-Δ1-pyrrolines, 4,5-dihydrooxazoles and 5,6-dihydrol-4H-1,3-oxazines. Aust. J. Chem. 46, 1213–1228 (1993).

    Article  CAS  Google Scholar 

  25. Nakafuku, K. M. et al. Enantioselective radical C–H amination for the synthesis of β-amino alcohols. Nat. Chem. 12, 697–704 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Huisgen, R. 1,3-dipolar cycloadditions. Past and future. Angew. Chem. Int. Ed. 2, 565–598 (1963).

    Article  Google Scholar 

  27. Wearing, E. R., Blackmun, D. E., Becker, M. R. & Schindler, C. S. 1- and 2-Azetines via visible light-mediated [2 + 2]-cycloadditions of alkynes and oximes. J. Am. Chem. Soc. 143, 16235–16242 (2021).

    Article  CAS  PubMed  Google Scholar 

  28. Feuer, H. & Braunstein, D. M. Reduction of oximes, oxime ethers, and oxime esters with diborane Novel synthesis of amines. J. Org. Chem. 34, 1817–1821 (1969).

    Article  CAS  Google Scholar 

  29. Sakito, Y., Yoneyoshi, Y. & Suzukamo, G. Asymmetric reduction of oxime ethers. Distinction of anti and syn isomers leading to enantiomeric amines. Tetrahedron Lett. 29, 223–224 (1988).

    Article  CAS  Google Scholar 

  30. Krylov, I. B., Segida, O. O., Budnikov, A. S. & Terent’ev, A. O. Oxime-derived iminyl radicals in selective processes of hydrogen atom transfer and addition to carbon–carbon π-bonds. Adv. Synth. Catal. 363, 2502–2528 (2021).

    Article  CAS  Google Scholar 

  31. Latrache, M. & Hoffmann, N. Photochemical radical cyclization reactions with imines, hydrazones, oximes and related compounds. Chem. Soc. Rev. 50, 7418–7435 (2021).

    Article  CAS  PubMed  Google Scholar 

  32. Sadtler, K., Collins, J., Byrne, J. D. & Langer, R. Parallel evolution of polymer chemistry and immunology: integrating mechanistic biology with materials design. Adv. Drug Deliv. Rev. 156, 65–79 (2020).

    Article  CAS  PubMed  Google Scholar 

  33. Krylov, I. B., Paveliev, S. A., Budnikov, A. S., Terent’ev, A. O. & Zelinsky, N. D. Oxime radicals: generation, properties and application in organic synthesis. Beilstein J. Org. Chem. 16, 1234–1276 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Patra, T., Bellotti, P., Strieth-Kalthoff, F. & Glorius, F. Photosensitized intermolecular carboimination of alkenes through the persistent radical effect. Angew. Chem. Int. Ed. 59, 3172–3177 (2020).

    Article  CAS  Google Scholar 

  35. Patra, T., Das, M., Daniliuc, C. G. & Glorius, F. Metal-free photosensitized oxyimination of unactivated alkenes with bifunctional oxime carbonates. Nat. Catal. 4, 54–61 (2021).

    Article  CAS  Google Scholar 

  36. Patra, T., Mukherjee, S., Ma, J., Strieth-Kalthoff, F. & Glorius, F. Visible-light-photosensitized aryl and alkyl decarboxylative functionalization reactions. Angew. Chem. Int. Ed. 58, 10514–10520 (2019).

    Article  CAS  Google Scholar 

  37. Soni, V. K. et al. Reactivity tuning for radical–radical cross-coupling via selective photocatalytic energy transfer: access to amine building blocks. ACS Catal. 9, 10454–10463 (2019).

    Article  CAS  Google Scholar 

  38. Usami, K., Yamaguchi, E., Tada, N. & Itoh, A. Visible-light-mediated iminyl radical generation from benzyl oxime ether: synthesis of pyrroline via hydroimination cyclization. Org. Lett. 20, 5714–5717 (2018).

    Article  CAS  PubMed  Google Scholar 

  39. Jiang, H. & Studer, A. Chemistry with N-centered radicals generated by single-electron transfer-oxidation using photoredox catalysis. CCS Chem. 1, 38–49 (2019).

    Article  CAS  Google Scholar 

  40. Jackman, M. M., Cai, Y. & Castle, S. L. Recent advances in iminyl radical cyclizations. Synthesis 49, 1785–1795 (2017).

    Article  CAS  Google Scholar 

  41. Lei, J., Li, D. & Zhu, Q. n Free-Radical Synthesis and Functionalization of Heterocycles Vol. 54 (ed. Landais, Y.) 285–320 (Springer, 2018).

  42. Blake, J. A. et al. Thermolyses of O-phenyl oxime ethers. A new source of iminyl radicals and a new source of aryloxyl radicals. J. Org. Chem. 69, 3112–3120 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Singh, J. et al. Synthesis of functionalized pyrrolines via microwave-promoted iminyl radical cyclizations. Org. Lett. 23, 3970–3974 (2021).

    Article  CAS  PubMed  Google Scholar 

  44. Xue, Y. et al. Additive-free radical cascade reaction of oxime esters: synthesis of pyrroline-functionalized phenanthridines. J. Org. Chem. 85, 12284–12293 (2020).

    Article  CAS  PubMed  Google Scholar 

  45. Zhang, H. et al. β-Lactam synthesis via copper-catalyzed directed aminoalkylation of unactivated alkenes with cyclobutanone O-benzoyloximes. Org. Lett. 23, 3620–3625 (2021).

    Article  CAS  PubMed  Google Scholar 

  46. Tang, Y.-Q., Yang, J.-C., Wang, L., Fan, M. & Guo, L.-N. Ni-catalyzed redox-neutral ring-opening/radical addition/ring-closing cascade of cycloketone oxime esters and vinyl azides. Org. Lett. 21, 5178–5182 (2019).

    Article  CAS  PubMed  Google Scholar 

  47. Zhang, J.-J., Duan, X.-H., Wu, Y., Yang, J.-C. & Guo, L.-N. Transition-metal free C–C bond cleavage/borylation of cycloketone oxime esters. Chem. Sci. 10, 161–166 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Angelini, L., Sanz, L. M. & Leonori, D. Divergent nickel-catalysed ring-opening—functionalisation of cyclobutanone oximes with organozincs. Synlett 31, 37–40 (2019).

    Google Scholar 

  49. Yin, Z., Zhang, Z., Zhang, Y., Dixneuf, P. H. & Wu, X.-F. Carbonylation of tertiary carbon radicals: synthesis of lactams. Chem. Commun. 55, 4655–4658 (2019).

    Article  CAS  Google Scholar 

  50. Du, F. et al. Iron-catalyzed radical relay enabling the modular synthesis of fused pyridines from alkyne-tethered oximes and alkenes. Angew. Chem. Int. Ed. 59, 23755–23762 (2020).

    Article  CAS  Google Scholar 

  51. Zhang, Y. & Wu, X.-F. Iron-catalyzed carbonylative cyclization of γ,δ-unsaturated aromatic oxime esters with amines. Chem. Commun. 56, 14605–14608 (2020).

    Article  CAS  Google Scholar 

  52. Zhang, Y., Yin, Z., Wang, H. & Wu, X.-F. Iron-catalyzed carbonylative cyclization of γ,δ-unsaturated aromatic oxime esters to functionalized pyrrolines. Chem. Commun. 56, 7045–7048 (2020).

    Article  CAS  Google Scholar 

  53. Chen, C., Bao, Y., Zhao, J. & Zhu, B. Silver-promoted cascade radical cyclization of γ,δ-unsaturated oxime esters with P(O)H compounds: synthesis of phosphorylated pyrrolines. Chem. Commun. 55, 14697–14700 (2019).

    Article  CAS  Google Scholar 

  54. Yang, H.-B., Pathipati, S. R. & Selander, N. Nickel-catalyzed 1,2-aminoarylation of oxime ester-tethered alkenes with boronic acids. ACS Catal. 7, 8441–8445 (2017).

    Article  CAS  Google Scholar 

  55. Wei, W.-X. et al. Experimental and computational studies of palladium-catalyzed spirocyclization via a Narasaka–Heck/C(sp3 or sp2)–H activation cascade reaction. J. Am. Chem. Soc. 143, 7868–7875 (2021).

    Article  CAS  PubMed  Google Scholar 

  56. Zhu, Z. et al. Access to amidines and arylbenzimidazoles: zinc-promoted rearrangement of oxime acetates. Adv. Synth. Catal. 360, 2020–2031 (2018).

    Article  CAS  Google Scholar 

  57. Strieth-Kalthoff, F., James, M. J., Teders, M., Pitzer, L. & Glorius, F. Energy transfer catalysis mediated by visible light: principles, applications, directions. Chem. Soc. Rev. 47, 7190–7202 (2018).

    Article  CAS  PubMed  Google Scholar 

  58. Zhang, Z., Ngo, D. T. & Nagib, D. A. Regioselective radical amino-functionalizations of allyl alcohols via dual catalytic cross-coupling. ACS Catal. 11, 3473–3477 (2021).

    Article  CAS  PubMed  Google Scholar 

  59. Wang, P.-Z., He, B.-Q., Cheng, Y., Chen, J.-R. & Xiao, W.-J. Radical C–C bond cleavage/addition cascade of benzyl cycloketone oxime ethers enabled by photogenerated cyclic iminyl radicals. Org. Lett. 21, 6924–6929 (2019).

    Article  CAS  PubMed  Google Scholar 

  60. Tu, J.-L., Liu, J.-L., Tang, W., Su, M. & Liu, F. Radical aza-cyclization of α-imino-oxy acids for synthesis of alkene-containing N-heterocycles via dual cobaloxime and photoredox catalysis. Org. Lett. 22, 1222–1226 (2020).

    Article  CAS  PubMed  Google Scholar 

  61. Yan, X. et al. Iminyl-radical-mediated C–C cleavage/amination and alkene iminoamination enabled by visible-light-induced cerium catalysis. ACS Sustain. Chem. Eng. 9, 101–105 (2020).

    Article  Google Scholar 

  62. Yin, W. & Wang, X. Recent advances in iminyl radical-mediated catalytic cyclizations and ring-opening reactions. New J. Chem. 43, 3254–3264 (2019).

    Article  CAS  Google Scholar 

  63. Chen, J. et al. Photoinduced, copper-catalyzed radical cross-coupling of cycloketone oxime esters, alkenes, and terminal alkynes. Org. Lett. 21, 4359–4364 (2019).

    Article  CAS  PubMed  Google Scholar 

  64. Yu, X.-Y., Zhao, Q.-Q., Chen, J., Chen, J.-R. & Xiao, W.-J. Copper-catalyzed radical cross-coupling of redox-active oxime esters, styrenes, and boronic acids. Angew. Chem. Int. Ed. 57, 15505–15509 (2018).

    Article  CAS  Google Scholar 

  65. Lu, B., Cheng, Y., Chen, L.-Y., Chen, J.-R. & Xiao, W.-J. Photoinduced copper-catalyzed radical aminocarbonylation of cycloketone oxime esters. ACS Catal. 9, 8159–8164 (2019).

    Article  CAS  Google Scholar 

  66. Cheng, Y.-Y. et al. Visible light irradiation of acyl oxime esters and styrenes efficiently constructs β-carbonyl imides by a scission and four-component reassembly process. Org. Lett. 21, 8789–8794 (2019).

    Article  CAS  PubMed  Google Scholar 

  67. Fan, X., Lei, T., Chen, B., Tung, C.-H. & Wu, L.-Z. Photocatalytic C–C bond activation of oxime ester for acyl radical generation and application. Org. Lett. 21, 4153–4158 (2019).

    Article  CAS  PubMed  Google Scholar 

  68. Sampedro, D., Soldevilla, A., Campos, P. J., Ruiz, R. & Rodríguez, M. A. Regio- and stereochemistry of [2 + 2] photocycloadditions of imines to alkenes: a computational and experimental study. J. Org. Chem. 73, 8331–8336 (2008).

    Article  CAS  PubMed  Google Scholar 

  69. Kumagai, T., Shimizu, K., Kawamura, Y. & Mukai, T. Photochemistry of 3-aryl-2-isoxazoline. Tetrahedron 37, 3365–3376 (1981).

    Article  CAS  Google Scholar 

  70. Tsutomu, K., Yasuhiko, K. & Mukai, T. Photocycloaddition of 3-aryl-2-isoxazolines with five-membered heterocycles. Chem. Lett. 12, 1357–1360 (1983).

    Article  Google Scholar 

  71. Kawamura, Y., Kumagai, T. & Mukai, T. Photocycloaddition reaction of 3-aryl-2-isoxazolines with indene. Generation of [2 + 2] cycloadduct stereoisomers. Chem. Lett. 14, 1937–1940 (1985).

    Article  Google Scholar 

  72. Kumarasamy, E., Kandappa, S. K., Raghunathan, R., Jockusch, S. & Sivaguru, J. Realizing an aza Paternò–Büchi reaction. Angew. Chem. Int. Ed. 56, 7056–7061 (2017).

  73. Becker, M. R., Richardson, A. D. & Schindler, C. S. Functionalized azetidines via visible light-enabled aza Paternò–Büchi reactions. Nat. Commun. 10, 5095 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Zhu, M., Zhang, X., Zheng, C. & You, S.-L. Visible-light-induced dearomatization via [2 + 2] cycloaddition or 1,5-hydrogen atom transfer: divergent reaction pathways of transient diradicals. ACS Catal. 10, 12618–12626 (2020).

    Article  CAS  Google Scholar 

  75. Amador, A. G., Sherbrook, E. M. & Yoon, T. P. A redox auxiliary strategy for pyrrolidine synthesis via photocatalytic [3 + 2] cycloaddition. Asian J. Org. Chem. 8, 978–985 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Sandmeier, T. & Carreira, E. M. Enantio- and chemoselective intramolecular iridium-catalyzed O-allylation of oximes. Org. Lett. 23, 2643–2647 (2021).

    Article  PubMed  Google Scholar 

  77. Sandmeier, T. & Carreira, E. M. Enantioselective synthesis of cyclic nitrones by chemoselective intramolecular allylic alkylation of oximes. Angew. Chem. Int. Ed. 60, 9913–9918 (2021).

    Article  CAS  Google Scholar 

  78. Chen, J., Zhu, Y.-P., Li, J.-H. & Wang, Q.-A. External-oxidant-free amino-benzoyloxylation of unactivated alkenes of unsaturated ketoximes with O-benzoylhydroxylamines. Chem. Commun. 57, 5215–5218 (2021).

    Article  CAS  Google Scholar 

  79. Wang, Y.-H. & Breit, B. Chemo-, regio-, and enantioselective synthesis of allylic nitrones via rhodium-catalyzed addition of oximes to allenes. Chem. Commun. 55, 7619–7622 (2019).

    Article  Google Scholar 

  80. Zhao, G. et al. Efficient construction of energetic materials via nonmetallic catalytic carbon–carbon cleavage/oxime-release-coupling reactions. J. Am. Chem. Soc. 140, 3560–3563 (2018).

    Article  CAS  PubMed  Google Scholar 

  81. Tang, L., Wang, Z.-L., Wan, H.-L., He, Y.-H. & Guan, Z. Visible-light-induced Beckmann rearrangement by organic photoredox catalysis. Org. Lett. 22, 6182–6186 (2020).

    Article  CAS  PubMed  Google Scholar 

  82. Song, J. W. & Lim, H. N. Synthesis of carbamoyl fluorides via a selective fluorinative Beckmann fragmentation. Org. Lett. 23, 5394−5399 (2021).

  83. Truong, V. X. & Barner-Kowollik, C. Red-light driven photocatalytic oxime ligation for bioorthogonal hydrogel design. ACS Macro Lett. 10, 78–83 (2020).

    Article  Google Scholar 

  84. Liu, W.-X. et al. Oxime-based and catalyst-free dynamic covalent polyurethanes. J. Am. Chem. Soc. 139, 8678–8684 (2017).

    Article  CAS  PubMed  Google Scholar 

  85. Collins, J., Nadgorny, M., Xiao, Z. & Connal, L. A. Doubly dynamic self-healing materials based on oxime click chemistry and boronic acids. Macromol. Rapid Commun. 38, 1600760 (2017).

    Article  Google Scholar 

  86. Kendrick-Williams, L. L. & Harth, E. Second-generation nanosponges: nanonetworks in controlled dimensions via backbone ketoxime and alkoxyamine cross-links for controlled release. Macromolecules 51, 10160–10166 (2018).

    Article  CAS  Google Scholar 

  87. Velikogne, S., Breukelaar, W. B., Hamm, F., Glabonjat, R. A. & Kroutil, W. C=C-ene-reductases reduce the C=N bond of oximes. ACS Catal. 10, 13377–13382 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Correia-Cordeiro et al. One-pot transformation of ketoximes into optically active alcohols and amines by sequential action of laccases and ketoreductases or ω-transaminases. ChemCatChem 11, 1272–1277 (2019).

    Article  CAS  Google Scholar 

  89. Anandhan, R., Reddy, M. B. & Sasikumar, M. Development of novel triazole based dendrimer supported spiroborate chiral catalysts for the reduction of (E)-O-benzyl oxime: an enantioselective synthesis of (S)-dapoxetine. New J. Chem. 43, 15052–15056 (2019).

    Article  CAS  Google Scholar 

  90. Ning, L. et al. Synthesis of α-deuterated primary amines via reductive deuteration of oximes using D2O as a deuterium source. J. Org. Chem. 86, 2907–2916 (2021).

    Article  CAS  PubMed  Google Scholar 

  91. Mas-Roselló, J., Smejkal, T. & Cramer, N. Iridium-catalyzed acid-assisted asymmetric hydrogenation of oximes to hydroxylamines. Science 368, 1098–1102 (2020).

    Article  PubMed  Google Scholar 

  92. He, B.-Q. et al. Dual photoredox/palladium-catalyzed C–H acylation of 2-arylpyridines with oxime esters. Synlett 32, 373–377 (2021).

    Article  CAS  Google Scholar 

  93. Zhang, M. et al. Photocatalytic deoxygenative carboimination towards functionalized pyrrolines by using unstrained γ,δ-unsaturated oximes. Adv. Synth. Catal. 363, 2110–2116 (2021).

    Article  CAS  Google Scholar 

  94. Hu, X.-Q., Hou, Y.-X., Liu, Z.-K. & Gao, Y. Recent advances in phosphoranyl radical-mediated deoxygenative functionalisation. Org. Chem. Front. 7, 2319–2324 (2020).

    Article  CAS  Google Scholar 

  95. Savateev, A. et al. Potassium poly(heptazine imide): transition metal-free solid-state triplet sensitizer in cascade energy transfer and [3 + 2]-cycloadditions. Angew. Chem. Int. Ed. 59, 15061–15068 (2020).

    Article  CAS  Google Scholar 

  96. Yin, Z., Rabeah, J., Brückner, A. & Wu, X.-F. Vinylboron self-promoted carbonylative coupling with cyclobutanone oxime esters. Org. Lett. 21, 1766–1769 (2019).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Alfred P. Sloan Foundation, the David and Lucile Packard Foundation, the Camille and Henry Dreyfus Foundation, the National Science Foundation (NSF CHE-1654223) and NIH (R01-GM141340) for funding. K.A.R. and E.R.W. thank the National Science Foundation for predoctoral fellowships.

Author information

Authors and Affiliations

Authors

Contributions

K.A.R., E.R.W. and C.S.S. created the initial outline for the review. All further drafts and the final manuscript were written through contributions by all the authors. All the authors gave approval to the final version of the manuscript.

Corresponding author

Correspondence to C. S. Schindler.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Li-Na Guo and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Thomas West was the primary editor on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rykaczewski, K.A., Wearing, E.R., Blackmun, D.E. et al. Reactivity of oximes for diverse methodologies and synthetic applications. Nat Synth 1, 24–36 (2022). https://doi.org/10.1038/s44160-021-00007-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-021-00007-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing