Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Uniquely human intelligence arose from expanded information capacity

Abstract

Most theories of how human cognition is unique propose specific representational capacities or biases, often thought to arise through evolutionary change. In this Perspective, we argue that the evidence that supports these domain-specific theories is confounded by general information-processing differences. We argue that human uniqueness arises through genetic quantitative increases in the global capacity to process information and share it among systems such as memory, attention and learning. This change explains regularities across numerous subdomains of cognition, behavioural comparisons between species and phenomena in child development. This strict evolutionary continuity theory of human intelligence is consistent with comparative evidence about neural evolution and computational constraints of memory on the ability to represent rules, patterns and abstract generalizations. We show how these differences in the degree of information processing capacity yield differences in kind for human cognition relative to other animals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Burkart, J. M., Schubiger, M. N. & van Schaik, C. P. The evolution of general intelligence. Behav. Brain Sci. 40, e195 (2017).

    Article  PubMed  Google Scholar 

  2. Cosmides, L. & Tooby, J. in The New Cognitive Neurosciences 2nd edn (Gazzaniga, M. S.) 1259–1270 (MIT Press, 2000).

  3. Dehaene, S., Al Roumi, F., Lakretz, Y., Planton, S. & Sablé-Meyer, M. Symbols and mental programs: a hypothesis about human singularity. Trends Cogn. Sci. 26, 751–766 (2022).

    Article  PubMed  Google Scholar 

  4. Pinker, S. On language. J. Cogn. Neurosci. 6, 92–98 (1994).

    Article  PubMed  Google Scholar 

  5. Pinker, S. in Understanding Moral Sentiments (eds Putnam, H. et al.) 59–80 (Routledge, 2017).

  6. Pinker, S. & Jackendoff, R. The faculty of language: what’s special about it? Cognition 95, 201–236 (2005).

    Article  PubMed  Google Scholar 

  7. Povinelli, D. J., Bering, J. M. & Giambrone, S. Toward a science of other minds: escaping the argument by analogy. Cogn. Sci. 24, 509–541 (2000).

    Article  Google Scholar 

  8. Wellman, H. M. Theory of mind: the state of the art. Eur. J. Dev. Psychol. 15, 728–755 (2018).

    Article  Google Scholar 

  9. Deacon, T. W. The Symbolic Species: The Co-Evolution of Language and the Brain No. 202 (W. W. Norton, 1998).

  10. Deaner, R. O., Van Schaik, C. P. & Johnson, V. Do some taxa have better domain-general cognition than others? A meta-analysis of nonhuman primate studies. Evol. Psychol. 4, https://doi.org/10.1177/147470490600400114 (2006).

  11. Greenfield, P. M. Language, tools and brain: the ontogeny and phylogeny of hierarchically organized sequential behavior. Behav. Brain Sci. 14, 531–551 (1991).

    Article  Google Scholar 

  12. Henrich, J. The Secret of Our Success (Princeton Univ. Press, 2015).

  13. Heyes, C. Cognitive Gadgets: The Cultural Evolution of Thinking (Harvard Univ. Press, 2018).

  14. Passingham, R. E. & Wise, S. P. The Neurobiology of the Prefrontal Cortex: Anatomy, Evolution, and the origin of Insight (Oxford Univ. Press, 2012).

  15. Premack, D. Is language the key to human intelligence? Science 303, 318–320 (2004).

    Article  PubMed  Google Scholar 

  16. Premack, D. Why humans are unique: three theories. Perspect. Psychol. Sci. 5, 22–32 (2010).

    Article  PubMed  Google Scholar 

  17. Reader, S. M., Hager, Y. & Laland, K. N. The evolution of primate general and cultural intelligence. Philos. Trans. R. Soc. Lond. B Biol. Sci. 366, 1017–1027 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Laland, K. & Seed, A. Understanding human cognitive uniqueness. Annu. Rev. Psychol. 72, 689–716 (2021).

    Article  PubMed  Google Scholar 

  19. Tomasello, M. The ultra‐social animal. Eur. J. Soc. Psychol. 44, 187–194 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Laland, K. N. Darwin’s Unfinished Symphony: How Culture Made the Human Mind (Princeton Univ. Press, 2017).

  21. Richerson, P. J. & Boyd, R. Not by Genes Alone: How Culture Transformed Human Evolution (Univ. of Chicago Press, 2018).

  22. Sterelny, K. The Evolved Apprentice (MIT Press, 2012).

  23. Turner, C. R. & Walmsley, L. D. Preparedness in cultural learning. Synthese 199, 81–100 (2021).

    Article  Google Scholar 

  24. Laland, K. N. & Brown, G. R. Sense and Nonsense: Evolutionary Perspectives on Human Behaviour (Oxford Univ. Press, 2011).

  25. Laland, K. N. & Reader, S. M. in Innovation in Cultural Systems: Contributions from Evolutionary Anthropology (eds O’Brien, M. J. & Shennan, S. J.) 37–51 (2010).

  26. Lefebvre, L., Whittle, P., Lascaris, E. & Finkelstein, A. Feeding innovations and forebrain size in birds. Anim. Behav. 53, 549–560 (1997).

    Article  Google Scholar 

  27. MacLean, E. L. Unraveling the evolution of uniquely human cognition. Proc. Natl Acad. Sci. USA 113, 6348–6354 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Moll, H. & Tomasello, M. Cooperation and human cognition: the Vygotskian intelligence hypothesis. Philos Trans R. Soc. Lond. B Biol. Sci. 362, 639–648 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Reader, S. M. & Laland, K. N. Social intelligence, innovation, and enhanced brain size in primates. Proc. Natl Acad. Sci. USA 99, 4436–4441 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Sol, D., Bacher, S., Reader, S. M. & Lefebvre, L. Brain size predicts the success of mammal species introduced into novel environments. Am. Nat. 172, S63–S71 (2008).

    Article  PubMed  Google Scholar 

  31. Tomasello, M. A Natural History of Human Thinking (Harvard Univ. Press, 2018).

  32. Tomasello, M., Kruger, A. C. & Ratner, H. H. Cultural learning. Behav. Brain Sci. 16, 495–511 (1993).

    Article  Google Scholar 

  33. Van Schaik, C. P. & Burkart, J. M. Social learning and evolution: the cultural intelligence hypothesis. Philos. Trans. R. Soc. Lond. B, Biol. Sci. 366, 1008–1016 (2011).

    Article  PubMed  Google Scholar 

  34. Shannon, C. E. A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948).

    Article  Google Scholar 

  35. Stone, J. V. Information Theory: A Tutorial Introduction (Sebtel, 2015).

  36. Wilson, E. O. Sociobiology: The New Synthesis (Harvard Univ. Press, 2000).

  37. Lumsden, C. J. & Wilson, E. O. Précis of genes, mind, and culture. Behav. Brain Sci. 5, 1–7 (1982).

    Article  Google Scholar 

  38. Barkow, J. H., Cosmides, L. & Tooby, J. (eds) The Adapted Mind: Evolutionary Psychology and the Generation of Culture (Oxford Univ. Press, 1995).

  39. Pinker, S. & Bloom, P. Natural language and natural selection. Behav. Brain Sci. 13, 707–727 (1990).

    Article  Google Scholar 

  40. Chomsky, N. Persistent topics in linguistic theory. Diogenes 13, 13–20 (1965).

    Article  Google Scholar 

  41. Garcia, J., Kimeldorf, D. & Koelling, R. Conditioned aversion to saccharin resulting from exposure to gamma radiation. Science 122, 157–158 (1955).

    Article  PubMed  Google Scholar 

  42. Ermer, E., Cosmides, L. & Tooby, J. in The Evolution of Mind: Fundamental Questions and Controversies (eds Gangestad, S. W. & Simpson, J. A.) 153–160 (2007).

  43. Sperber, D. in Language, Brain and Cognitive Development: Essays in Honor of Jacques Mehler Vol. 7 (ed. Dupoux, E.) 47–57 (MIT Press, 2001).

  44. Scholl, B. J. & Leslie, A. M. Modularity, development and ‘theory of mind’. Mind Lang. 14, 131–153 (1999).

    Article  Google Scholar 

  45. Leslie, A. M., Friedman, O. & German, T. P. Core mechanisms in ‘theory of mind’. Trends Cogn. Sci. 8, 528–533 (2004).

    Article  PubMed  Google Scholar 

  46. Meltzoff, A. N. & Williamson, R. A. in Imitation: Social, Cognitive, and Theoretical Perspectives (ed. Zelazo, P. D.) 651–682 (Oxford Academic, 2013).

  47. Tomasello, M., Carpenter, M., Call, J., Behne, T. & Moll, H. Understanding and sharing intentions: the origins of cultural cognition. Behav. Brain Sci. 28, 675–735 (2005).

    Article  PubMed  Google Scholar 

  48. Rule, J. S., Tenenbaum, J. B. & Piantadosi, S. T. The child as hacker. Trends Cogn. Sci. 24, 900–915 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Sablé-Meyer et al. Sensitivity to geometric shape regularity in humans and baboons: a putative signature of human singularity. Proc. Natl Acad. Sci. USA 118, e2023123118 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Premack, D. The codes of man and beasts. Behav. Brain Sci. 6, 125–137 (1983).

    Article  Google Scholar 

  51. Hauser, M. D., Chomsky, N. & Fitch, W. T. The faculty of language: what is it, who has it, and how did it evolve? Science 298, 1569–1579 (2002).

    Article  PubMed  Google Scholar 

  52. Penn, D. C., Holyoak, K. J. & Povinelli, D. J. Darwin’s mistake: explaining the discontinuity between human and nonhuman minds. Behav. Brain Sci. 31, 109–130 (2008).

    Article  PubMed  Google Scholar 

  53. Chomsky, N. The Minimalist Program (MIT Press, 1995).

  54. Fisher, S. E. & Marcus, G. F. The eloquent ape: genes, brains and the evolution of language. Nat. Rev. Genet. 7, 9–20 (2006).

    Article  PubMed  Google Scholar 

  55. Berwick, R. C. & Chomsky, N. Why Only Us: Language and Evolution (MIT Press, 2016).

  56. Herrmann, E., Call, J., Hernández-Lloreda, M. V., Hare, B. & Tomasello, M. Humans have evolved specialized skills of social cognition: the cultural intelligence hypothesis. Science 317, 1360–1366 (2007).

    Article  PubMed  Google Scholar 

  57. Hodos, W. in The Neurosciences: Second Study Program (ed. Schmidt, F. O.) 26–39 (Rockefeller Univ. Press, 1970).

  58. Jerison, H. J. Animal intelligence as encephalization. Philos. Trans. R. Soc. B 308, 21–35 (1985).

  59. Passingham, R. E. Visual discrimination learning after selective prefrontal ablations in monkeys (Macaca mulatta). Neuropsychologia 10, 27-39 (1972). 

  60. Passingham, R. Understanding the Prefrontal Cortex: Selective Advantage, Connectivity, and Neural Operations (Oxford Univ. Press, 2021).

  61. Bolhuis, J. J., Brown, G. R., Richardson, R. C. & Laland, K. N. Darwin in mind: new opportunities for evolutionary psychology. PLoS Biol. 9, e1001109 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Christiansen, M. H. & Chater, N. Creating Language: Integrating Evolution, Acquisition, and Processing (MIT Press, 2016).

  63. Sol, D. Revisiting the cognitive buffer hypothesis for the evolution of large brains. Biol. Lett. 5, 130–133 (2009).

    Article  PubMed  Google Scholar 

  64. Carey, S., Zaitchik, D. & Bascandziev, I. Theories of development: in dialog with Jean Piaget. Dev. Rev. 38, 36–54 (2015).

    Article  Google Scholar 

  65. Christie, S. & Gentner, D. Language helps children succeed on a classic analogy task. Cogn. Sci. 38, 383–397 (2014).

    Article  PubMed  Google Scholar 

  66. Halford, G. S., Wilson, W. H. & Phillips, S. Processing capacity defined by relational complexity: implications for comparative, developmental, and cognitive psychology. Behav. Brain Sci. 21, 803–831 (1998).

    Article  PubMed  Google Scholar 

  67. Stone, J. V. Principles of Neural Information Theory (Sebtel, 2018).

  68. Sterling, P. & Laughlin, S. Principles of Neural Design (MIT Press, 2015).

  69. Humphrey, N. K. The Social Function of Intellect (Cambridge Univ. Press, 1976).

  70. Byrne, R. W. & Whiten, A. Machiavellian Intelligence: Social Expertise and the Evolution of Intellect in Monkeys, Apes, and Humans (Oxford Univ. Press, 1988).

  71. Harris, P. L. in Handbook of Child Psychology: Cognition, Perception, and Language (eds D. Kuhn, R. S. Siegler, W. Damon & R. M. Lerner) 811–858 (Wiley, 2006).

  72. Boyd, J. H. Have we found the Holy Grail? Theory of mind as a unifying construct. J. Relig. Health 47, 366–385 (2008).

    Article  PubMed  Google Scholar 

  73. Byrne, R. W. & Bates, L. A. Sociality, evolution and cognition. Curr. Biol. 17, R714–R723 (2007).

    Article  PubMed  Google Scholar 

  74. Horschler, D. J., MacLean, E. L. & Santos, L. R. Do non-human primates really represent others’ beliefs? Trends Cogn. Sci. 24, 594–605 (2020).

    Article  PubMed  Google Scholar 

  75. Lyons, D. E. & Santos, L. R. Ecology, domain specificity, and the origins of theory of mind: is competition the catalyst? Philos. Compass 1, 481–492 (2006).

    Article  Google Scholar 

  76. Lewis, L. & Krupenye, C. Theory of mind in nonhuman primates. Behav. Brain Rev. 21, 101–114 (2021).

    Google Scholar 

  77. Heyes, C. Animal mindreading: what’s the problem? Psychon. Bull. Rev. 22, 313–327 (2015).

    Article  PubMed  Google Scholar 

  78. Hare, B., Call, J. & Tomasello, M. Do chimpanzees know what conspecifics know? Anim. Behav. 61, 139–151 (2001).

    Article  PubMed  Google Scholar 

  79. Hare, B., Call, J. & Tomasello, M. Chimpanzees deceive a human competitor by hiding. Cognition 101, 495–514 (2006).

    Article  PubMed  Google Scholar 

  80. Kano, F. & Call, J. Cross-species variation in gaze following and conspecific preference among great apes, human infants and adults. Anim. Behav. 91, 137–150 (2014).

    Article  Google Scholar 

  81. MacLean, E. L. & Hare, B. Bonobos and chimpanzees infer the target of another’s attention. Anim. Behav. 83, 345–353 (2012).

    Article  Google Scholar 

  82. Horner, V., Whiten, A., Flynn, E. & De Waal, F. B. Faithful replication of foraging techniques along cultural transmission chains by chimpanzees and children. Proc. Natl Acad. Sci. USA 103, 13878–13883 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  83. van de Waal, E., Claidière, N. & Whiten, A. Wild vervet monkeys copy alternative methods for opening an artificial fruit. Anim. Cogn. 18, 617–627 (2015).

    Article  PubMed  Google Scholar 

  84. Tomasello, M., Call, J. & Hare, B. Five primate species follow the visual gaze of conspecifics. Anim. Behav. 55, 1063–1069 (1998).

    Article  PubMed  Google Scholar 

  85. Okamoto-Barth, S. & Tomonaga, M. in Cognitive Development in Chimpanzees 155–171 (Springer Tokyo, 2006).

  86. Carpenter, M. & Call, J. in Agency and Joint Attention (ed. Metcalfe, J. & Terrace, H. S.) 49–61 (2013).

  87. Musgrave, S. et al. Teaching varies with task complexity in wild chimpanzees. Proc. Natl Acad. Sci. USA 117, 969–976 (2020).

    Article  PubMed  Google Scholar 

  88. Whiten, A. Social learning: peering deeper into ape culture. Curr. Biol. 29, R845–R847 (2019).

    Article  PubMed  Google Scholar 

  89. Drayton, L. A. & Santos, L. R. Capuchins’ (Cebus apella) sensitivity to others’ goal-directed actions in a helping context. Anim. Cogn. 17, 689–700 (2014).

    Article  PubMed  Google Scholar 

  90. Warneken, F., Chen, F. & Tomasello, M. Cooperative activities in young children and chimpanzees. Child Dev. 77, 640–663 (2006).

    Article  PubMed  Google Scholar 

  91. Melis, A. P., Hare, B. & Tomasello, M. Engineering cooperation in chimpanzees: tolerance constraints on cooperation. Anim. Behav. 72, 275–286 (2006).

    Article  Google Scholar 

  92. Bard, K. A., Bakeman, R., Boysen, S. T. & Leavens, D. A. Emotional engagements predict and enhance social cognition in young chimpanzees. Dev. Sci. 17, 682–696 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Gergely, G. & Csibra, G. Teleological reasoning in infancy: the naıve theory of rational action. Trends Cogn. Sci. 7, 287–292 (2003).

    Article  PubMed  Google Scholar 

  94. Dean, L. G., Kendal, R. L., Schapiro, S. J., Thierry, B. & Laland, K. N. Identification of the social and cognitive processes underlying human cumulative culture. Science 335, 1114–1118 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Hamann, K., Warneken, F., Greenberg, J. R. & Tomasello, M. Collaboration encourages equal sharing in children but not in chimpanzees. Nature 476, 328–331 (2011).

    Article  PubMed  Google Scholar 

  96. Heyes, C. False belief in infancy: a fresh look. Dev. Sci. 17, 647–659 (2014).

    Article  PubMed  Google Scholar 

  97. Phillips, J. et al. Knowledge before belief. Behav. Brain Sci. 44, e140 (2021).

    Article  Google Scholar 

  98. Rakoczy, H. Foundations of theory of mind and its development in early childhood. Nat. Rev. Psychol. 1, 223–235 (2022).

    Article  Google Scholar 

  99. Penn, D. C. & Povinelli, D. On the lack of evidence that non-human animals possess anything remotely resembling a ‘theory of mind’. Philos. Trans. R. Soc. Lond. B Biol. Sci. 362, 731–744 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Halford, G. S., Wilson, W. H. & Phillips, S. Relational knowledge: the foundation of higher cognition. Trends Cogn. Sci. 14, 497–505 (2010).

    Article  PubMed  Google Scholar 

  101. Heyes, C., Chater, N. & Dwyer, D. M. Sinking in: the peripheral Baldwinisation of human cognition. Trends Cogn. Sci. 24, 884–899 (2020).

    Article  PubMed  Google Scholar 

  102. Penn, D. C., Holyoak, K. J., Povinelli, D. J. & Vaesen, K. So, are we the massively lucky species? Behav. Brain Sci. 35, 236 (2012).

    Article  PubMed  Google Scholar 

  103. Thompson, R. K. & Oden, D. L. Categorical perception and conceptual judgments by nonhuman primates: the paleological monkey and the analogical ape. Cogn. Sci. 24, 363–396 (2000).

    Article  Google Scholar 

  104. Wasserman, E. A., Castro, L. & Fagot, J. in APA Handbook of Comparative Psychology (eds. Call, J. et al.) 359–384 (American Psychological Association, 2017).

  105. Flemming, T. M., Beran, M. J. & Washburn, D. A. Disconnect in concept learning by rhesus monkeys (Macaca mulatta): judgment of relations and relations-between-relations. J. Exp. Psychol. Anim. B 33, 55 (2007).

    Article  Google Scholar 

  106. Kotovsky, L. & Gentner, D. Comparison and categorization in the development of relational similarity. Child Dev. 67, 2797–2822 (1996).

    Article  Google Scholar 

  107. Rattermann, M. J. & Gentner, D. More evidence for a relational shift in the development of analogy: children’s performance on a causal-mapping task. Cogn. Dev. 13, 453–478 (1998).

    Article  Google Scholar 

  108. Gillan, D. J., Premack, D. & Woodruff, G. Reasoning in the chimpanzee: I. Analogical reasoning. J. Exp. Psychol. Anim. B 7, 1 (1981).

    Article  Google Scholar 

  109. Thompson, R. K., Oden, D. L. & Boysen, S. T. Language-naive chimpanzees (Pan troglodytes) judge relations between relations in a conceptual matching-to-sample task. J. Exp. Psychol. Anim. B 23, 31 (1997).

    Article  Google Scholar 

  110. Oden, D. L., Thompson, R. K. & Premack, D. in The Analogical Mind: Perspectives from Cognitive Science (eds Gentner, D. et al.) 471–491 (2001).

  111. Christie, S., Gentner, D., Call, J. & Haun, D. B. M. Sensitivity to relational similarity and object similarity in apes and children. Curr. Biol. 26, 531–535 (2016).

    Article  PubMed  Google Scholar 

  112. Kennedy, E. H. & Fragaszy, D. M. Analogical reasoning in a capuchin monkey (Cebus apella). J. Comp. Psychol. 122, 167 (2008).

    Article  PubMed  Google Scholar 

  113. Smirnova, A., Zorina, Z., Obozova, T. & Wasserman, E. Crows spontaneously exhibit analogical reasoning. Curr. Biol. 25, 256–260 (2015).

    Article  PubMed  Google Scholar 

  114. Visalberghi, E., Sabbatini, G., Taylor, A. H. & Hunt, G. R. in APA Handbook of Comparative Psychology: Perception, Learning, and Cognition (Call, J., Burghardt, G. M., Pepperberg, I. M., Snowdon, C. T. & Zentall, T.) 673–701 (American Psychological Association, 2017).

  115. Fujita, K., Kuroshima, H. & Asai, S. How do tufted capuchin monkeys (Cebus apella) understand causality involved in tool use? J. Exp. Psychol. Anim. B 29, 233 (2003).

    Article  Google Scholar 

  116. Fragaszy, D., Izar, P., Visalberghi, E., Ottoni, E. B. & Oliveira, M. Wild capuchin monkeys use anvils and stone pounding tools. Am. J. Primatol. 64, 359–366 (2004).

    Article  PubMed  Google Scholar 

  117. Beck, S. R., Apperly, I. A., Chappell, J., Guthrie, C. & Cutting, N. Making tools isn’t child’s play. Cognition 119, 301–306 (2011).

    Article  PubMed  Google Scholar 

  118. Emery, N. J. & Clayton, N. S. Tool use and physical cognition in birds and mammals. Curr. Opin. Neurobiol. 19, 27–33 (2009).

    Article  PubMed  Google Scholar 

  119. Kabadayi, C. & Osvath, M. Ravens parallel great apes in flexible planning for tool-use and bartering. Science 357, 202–204 (2017).

    Article  PubMed  Google Scholar 

  120. Gallot, Q. & Gruber, T. Spontaneous use and modification of a feather as a tool in a captive common raven. Ethology 125, 755–758 (2019).

    Article  Google Scholar 

  121. Ruiz, A. M. & Santos, L. R. in Tool Use in Animals (eds Sanz, C. M., Call, J. & Boesch, C.) 119–133 (Cambridge Univ. Press, 2013).

  122. Povinelli, D. J. Folk Physics for Apes (Oxford Univ. Press, 2000).

  123. Sanz, C. M. & Morgan, D. B. Chimpanzee tool technology in the Goualougo Triangle, Republic of Congo. J. Hum. Evol. 52, 420–433 (2007).

    Article  PubMed  Google Scholar 

  124. Visalberghi, E. & Limongelli, L. Lack of comprehension of cause–effect relations in tool-using capuchin monkeys (Cebus apella). J. Comp. Psychol. 108, 15–22 (1994).

    Article  PubMed  Google Scholar 

  125. Seed, A. M., Tebbich, S., Emery, N. J. & Clayton, N. S. Investigating physical cognition in rooks, Corvus frugilegus. Curr. Biol. 16, 697–701 (2006).

    Article  PubMed  Google Scholar 

  126. Seed, A., Hanus, D. & Call, J. in Tool Use and Causal Cognition (eds McCormack, T. et al.) 89–110 (Oxford Scholarship Online, 2011).

  127. Want, S. C. & Harris, P. L. Learning from other people’s mistakes: causal understanding in learning to use a tool. Child Dev. 72, 431–443 (2001).

    Article  PubMed  Google Scholar 

  128. Corballis, M. C. The Recursive Mind (Princeton Univ. Press, 2011).

  129. Karlsson, F. Constraints on multiple center-embedding of clauses. J. Linguist. 43, 365–392 (2007).

    Article  Google Scholar 

  130. Gibson, E. & Thomas, J. Memory limitations and structural forgetting: the perception of complex ungrammatical sentences as grammatical. Lang. Cogn. Proc. 14, 225 (1999).

    Article  Google Scholar 

  131. Everett, D. Cultural constraints on grammar and cognition in Pirahã: another look at the design features of human language. Curr. Anthropol. 46, 621–646 (2005).

    Article  Google Scholar 

  132. Futrell, R., Stearns, L., Everett, D. L., Piantadosi, S. T. & Gibson, E. A corpus investigation of syntactic embedding in Pirahã. PLoS ONE 11, e0145289 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Pullum, G. K. in Current Controversies in Philosophy of Cognitive Science (eds. Lerner, A. J. et al.) 29–45 (Routledge, 2020).

  134. Frank, S. L., Bod, R. & Christiansen, M. H. How hierarchical is language use? Proc. Biol. Sci. 279, 4522–4531 (2012).

    PubMed  PubMed Central  Google Scholar 

  135. Frank, S. L. & Bod, R. Insensitivity of the human sentence-processing system to hierarchical structure. Psychol. Sci. 22, 829–834 (2011).

    Article  PubMed  Google Scholar 

  136. Nevins, A., Pesetsky, D. & Rodrigues, C. Evidence and argumentation: a reply to Everett (2009). Language 85, 671–681 (2009).

    Article  Google Scholar 

  137. Nevins, A., Pesetsky, D. & Rodrigues, C. Pirahã exceptionality: a reassessment. Language 85, 355–404 (2009).

    Article  Google Scholar 

  138. Everett, D. L. Cultural constraints on grammar in Pirahã: a reply to Nevins, Pesetsky, and Rodrigues. semantics.uchicago.edu, https://semantics.uchicago.edu/kennedy/classes/s07/myths/everett07.pdf (2007).

  139. Everett, D. L. The shrinking Chomskyan corner: a final reply to Nevins, Pesetsky, and Rodrigues. LingBuzz eprints 994 (2013).

  140. Bolhuis, J. J., Tattersall, I., Chomsky, N. & Berwick, R. C. How could language have evolved? PLoS Biol. 12, e1001934 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Martins, P. T. & Boeckx, C. Language evolution and complexity considerations: the no half-merge fallacy. PLoS Biol. 17, e3000389 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  142. De Boer, B., Thompson, B., Ravignani, A. & Boeckx, C. Evolutionary dynamics do not motivate a single-mutant theory of human language. Sci. Rep. 10, 1–9 (2020).

    Google Scholar 

  143. Hockett, C. F. The origin of speech. Sci. Am. 203, 88–97 (1960).

    Article  Google Scholar 

  144. Tomasello, M. Origins of Human Communication (MIT Press, 2010).

  145. Gibson, E. et al. How efficiency shapes human language. Trends Cogn. Sci. 23, 389–407 (2019).

    Article  PubMed  Google Scholar 

  146. Piantadosi, S. T., Tily, H. & Gibson, E. The communicative function of ambiguity in language. Cognition 122, 280–291 (2012).

    Article  PubMed  Google Scholar 

  147. Kemp, C., Xu, Y. & Regier, T. Semantic typology and efficient communication. Ann. Rev. Linguist. 4, 109–128 (2018).

    Article  Google Scholar 

  148. Kemp, C. & Regier, T. Kinship categories across languages reflect general communicative principles. Science 336, 1049–1054 (2012).

    Article  PubMed  Google Scholar 

  149. Mollica, F. et al. The forms and meanings of grammatical markers support efficient communication. Proc. Natl Acad. Sci. USA 118, e2025993118 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Futrell, R. & Hahn, M. Information theory as a bridge between language function and language form. Front. Commun. 7, https://doi.org/10.3389/fcomm.2022.657725 (2022).

  151. Dąbrowska, E. What exactly is universal grammar, and has anyone seen it? Front Psychol 6, 852 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Scholz, B. C. & Pullum, G. K. in Contemporary Debates in Cognitive Science (ed. Stainton, R.) 59–80 (2006).

  153. Pullum, G. K. Theorizing about the syntax of human language: a radical alternative to generative formalisms. Cadernos de Linguística 1, 1–33 (2020).

    Article  Google Scholar 

  154. Tomasello, M. Language is not an instinct. Cogn. Dev. 10, 131–156 (1995).

    Article  Google Scholar 

  155. Evans, N. & Levinson, S. C. The myth of language universals: language diversity and its importance for cognitive science. Behav. Brain Sci. 32, 429–448 (2009).

    Article  PubMed  Google Scholar 

  156. Fitch, W. T. Toward a computational framework for cognitive biology: unifying approaches from cognitive neuroscience and comparative cognition. Phys. Life Rev. 11, 329–364 (2014).

    Article  PubMed  Google Scholar 

  157. Conway, C. M. & Christiansen, M. H. Sequential learning in non-human primates. Trends Cogn. Sci. 5, 539–546 (2001).

    Article  PubMed  Google Scholar 

  158. Ferrigno, S., Cheyette, S. J., Piantadosi, S. T. & Cantlon, J. F. Recursive sequence generation in monkeys, children, US adults, and native Amazonians. Sci. Adv. 6, eaaz1002 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Liao, D. A., Brecht, K. F., Johnston, M. & Nieder, A. Recursive sequence generation in crows. Sci. Adv. 8, eabq3356 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Corballis, M. C. Language evolution: a changing perspective. Trends Cogn. Sci. 21, 229–236 (2017).

    Article  PubMed  Google Scholar 

  161. Kaminski, J., Call, J. & Fischer, J. Word learning in a domestic dog: evidence for “fast mapping”. Science 304, 1682–1683 (2004).

    Article  PubMed  Google Scholar 

  162. Orlov, T., Yakovlev, V., Hochstein, S. & Zohary, E. Macaque monkeys categorize images by their ordinal number. Nature 404, 77–80 (2000).

    Article  PubMed  Google Scholar 

  163. Savage-Rumbaugh, E. S., Shanker, S. & Taylor, T. J. Apes, Language, and the Human Mind (Oxford Univ. Press, 1998).

  164. Savage-Rumbaugh, E. S. et al. Language comprehension in ape and child. Monogr. Soc. Res. Child. 58, 1-222i-252 (1993).

    Article  Google Scholar 

  165. Terrace, H. S., Son, L. K. & Brannon, E. M. Serial expertise of rhesus macaques. Psychol. Sci. 14, 66–73 (2003).

    Article  PubMed  Google Scholar 

  166. Chemla, E., Dautriche, I., Buccola, B. & Fagot, J. Constraints on the lexicons of human languages have cognitive roots present in baboons (Papio papio). Proc. Natl Acad. Sci. USA 116, 14926–14930 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Dautriche, I., Buccola, B., Berthet, M., Fagot, J. & Chemla, E. Evidence for compositionality in baboons (Papio papio) through the test case of negation. Sci. Rep. 12, 1–12 (2022).

    Article  Google Scholar 

  168. Newport, E. L. Maturational constraints on language learning. Cogn. Sci. 14, 11–28 (1990).

    Article  Google Scholar 

  169. Terrace, H. S. Why Chimpanzees Can’t Learn Language and only Humans Can (Columbia Univ. Press, 2019).

  170. Hurford, J. R. Human uniqueness, learned symbols and recursive thought. Eur. Rev. 12, 551–565 (2004).

    Article  Google Scholar 

  171. Culicover, P. W. & Jackendoff, R. Simpler Syntax (Oxford Univ. Press, 2005).

  172. Goldberg, A. E. Construction Grammar: A Construction Grammar Approach to Argument Structure (Univ. of Chicago Press, 1995).

  173. Mollica, F. & Piantadosi, S. T. Humans store about 1.5 megabytes of information during language acquisition. R. Soc. Open Sci. 6, 181393 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Spelke, E. S. in Language in Mind: Advances in the Study of Language and Thought (eds. Gentner, D. & Goldin-Meadow, S.) 277–311 (MIT Press, 2003).

  175. Premack, D. Human and animal cognition: continuity and discontinuity. Proc. Natl Acad. Sci. USA 104, 13861–13867 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  176. Collins, A. M. & Quillian, M. R. Retrieval time from semantic memory. J. Verb. Learn Verb. Behav. 8, 240–247 (1969).

    Article  Google Scholar 

  177. Isbilen, E. S. & Christiansen, M. H. Chunk‐based memory constraints on the cultural evolution of language. Top Cogn. Sci. 12, 713–726 (2020).

    Article  PubMed  Google Scholar 

  178. Levinson, S. C. Space in Language and Cognition: Explorations in Cognitive Diversity Vol. 5 (Cambridge Univ. Press, 2003).

  179. Bitterman, M. E. The comparative analysis of learning: are the laws of learning the same in all animals? Science 188, 699–709 (1975).

    Article  PubMed  Google Scholar 

  180. Bryer, M. A. et al. The evolution of quantitative sensitivity. Philos. Trans. R. Soc. Lond B Biol. Sci. 377, 20200529 (2022).

    Article  PubMed  Google Scholar 

  181. Harlow, H. F. The formation of learning sets. Psychol. Rev. 56, 51–65 (1949).

    Article  PubMed  Google Scholar 

  182. Rumbaugh, D. M. & Pate, J. L. in Behavioral Evolution and Integrative Levels: The T. C. Schneirla Conferences Series (eds Greenboch, G. & Tobach, E.) 221–241 (Psychology Press, 2014).

  183. Byrne, R. W. Primate cognition: comparing problems and skills. Am. J. Primatol. 37, 127–141 (1995).

    Article  PubMed  Google Scholar 

  184. MacLean, E. L. et al. The evolution of self-control. Proc. Natl Acad. Sci. USA, 111, E2140–E2148 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  185. Shettleworth, S. J. Modularity, comparative cognition and human uniqueness. Philos. Trans. R. Soc. Lond. B, Biol. Sci. 367, 2794–2802 (2012).

    Article  PubMed  Google Scholar 

  186. Warren, J. M. Reversal learning and the formation of learning sets by cats and rhesus monkeys. J. Comp. Physiol. Pscyh. 61, 421 (1966).

    Article  Google Scholar 

  187. Strong, P. N. & Hedges, M. Comparative studies in simple oddity learning: I. Cats, raccoons, monkeys, and chimpanzees. Psychon. Sci. 5, 13–14 (1966).

    Article  Google Scholar 

  188. Strong, P. N. Comparative studies in oddity learning: III. Apparatus transfer in chimpanzees and children. Psychon. Sci. 7, 43–43 (1967).

    Article  Google Scholar 

  189. Overman, W., Bachevalier, J., Miller, M. & Moore, K. Children’s performance on “animal tests” of oddity: implications for cognitive processes required for tests of oddity and delayed nonmatch to sample. J. Exp. Child Psychol. 62, 223–242 (1996).

    Article  PubMed  Google Scholar 

  190. Shultz, S. & Dunbar, R. I. M. Species differences in executive function correlate with hippocampus volume and neocortex ratio across nonhuman primates. J Comp. Psychol. 124, 252 (2010).

    Article  PubMed  Google Scholar 

  191. Miles, R. C. Discrimination-learning sets. Behav. Nonhuman Primates 1, 51–95 (1965).

    Article  Google Scholar 

  192. Fobes, J. L. & King, J. E. in Primate Behavior (eds. Fobes, J. L. & King, J. E) 327–360 (Academic Press, 1982).

  193. Pope, S. M. et al. Optional-switch cognitive flexibility in primates: chimpanzees’ (Pan troglodytes) intermediate susceptibility to cognitive set. J. Comp. Psychol. 134, 98 (2020).

    Article  PubMed  Google Scholar 

  194. Roberts, A. C., Robbins, T. W. & Everitt, B. J. The effects of intradimensional and extradimensional shifts on visual discrimination learning in humans and non-human primates. Q. J. Exp. Psychol. B 40, 321–341 (1988).

    PubMed  Google Scholar 

  195. Gossette, R. L. & Slonim, P. Spatial SDR performances across three species of New World monkeys. Psychon. Sci. 14, 222–223 (1969).

    Article  Google Scholar 

  196. Rumbaugh, D. M. in Primate Behavior: Developments in Field and Laboratory Research Vol. 1 (ed. Rosenblum, L. A.) 1–70 (Academic Press, 1970).

  197. Landauer, T. K. How much do people remember? Some estimates of the quantity of learned information in long‐term memory. Cogn. Sci. 10, 477–493 (1986).

    Google Scholar 

  198. De Beni, R. & Cornoldi, C. Effects of the mnemotechnique of loci in the memorization of concrete words. Acta Psychologica 60, 11–24 (1985).

    Article  Google Scholar 

  199. Legge, E. L., Madan, C. R., Ng, E. T. & Caplan, J. B. Building a memory palace in minutes: equivalent memory performance using virtual versus conventional environments with the method of loci. Acta Psychol. 141, 380–390 (2012).

    Article  Google Scholar 

  200. Brady, T. F., Konkle, T., Alvarez, G. A. & Oliva, A. Visual long-term memory has a massive storage capacity for object details. Proc. Natl Acad. Sci. USA 105, 14325–14329 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  201. Fagot, J. & Cook, R. G. Evidence for large long-term memory capacities in baboons and pigeons and its implications for learning and the evolution of cognition. Proc. Natl Acad. Sci. USA 103, 17564–17567 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  202. Gibson, B., Wasserman, E. & Luck, S. J. Qualitative similarities in the visual short-term memory of pigeons and people. Psychon. Bull. Rev. 18, 979–984 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  203. Diamond, A. Developmental time course in human infants and infant monkeys, and the neural bases of higher cognitive functions. Ann. N. Y. Acad. Sci. 608, 637–676 (1990).

    Article  PubMed  Google Scholar 

  204. Hauser, M. D. Perseveration, inhibition and the prefrontal cortex: a new look. Curr. Opin. Neurobiol. 9, 214–222 (1999).

    Article  PubMed  Google Scholar 

  205. Washburn, D. A. Stroop-like effects for monkeys and humans: processing speed or strength of association? Psychol. Sci. 5, 375–379 (1994).

    Article  PubMed  Google Scholar 

  206. Richland, L. E. & Burchinal, M. R. Early executive function predicts reasoning development. Psychol. Sci. 24, 87–92 (2013).

    Article  PubMed  Google Scholar 

  207. Brady, R. J. & Hampton, R. R. Nonverbal working memory for novel images in rhesus monkeys. Curr. Biol. 28, 3903–3910 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  208. Catchpole, C. K. & Slater, P. J. Bird Song: Biological Themes and Variations (Cambridge Univ. Press, 2003).

  209. Terrace, H. S. The phylogeny and ontogeny of serial memory: list learning by pigeons and monkeys. Psychol. Sci. 4, 162–169 (1993).

    Article  Google Scholar 

  210. Ghirlanda, S., Lind, J. & Enquist, M. Memory for stimulus sequences: a divide between humans and other animals? R. Soc. Open Sci. 4, 161011 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  211. Izumi, A. Effect of temporal separation on tone-sequence discrimination in monkeys. Hear. Res. 175, 75–81 (2003).

    Article  PubMed  Google Scholar 

  212. Fagot, J. & De Lillo, C. A comparative study of working memory: immediate serial spatial recall in baboons (Papio papio) and humans. Neuropsychologia 49, 3870–3880 (2011).

    Article  PubMed  Google Scholar 

  213. Malassis, R., Dehaene, S. & Fagot, J. Baboons (Papio papio) process a context-free but not a context-sensitive grammar. Sci. Rep. 10, 1–12 (2020).

    Article  Google Scholar 

  214. Devkar, D. T., Wright, A. A. & Ma, W. J. The same type of visual working memory limitations in humans and monkeys. J. Vis. 15, 13–13 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  215. Lind, J., Enquist, M. & Ghirlanda, S. Animal memory: a review of delayed matching-to-sample data. Behav. Process. 117, 52–58 (2015).

    Article  Google Scholar 

  216. Wright, A. A., Santiago, H. C., Sands, S. R., Kendrick, D. R. & Cook, R. G. Memory processing of serial lists by pigeons, monkeys, and people. Science 229, 287–289 (1985).

    Article  PubMed  Google Scholar 

  217. Inoue, S. & Matsuzawa, T. Working memory of numerals in chimpanzees. Curr. Biol. 17, R1004–R1005 (2007).

    Article  PubMed  Google Scholar 

  218. Washburn, D. A., Gulledge, J. P., James, F. & Rumbaugh, D. M. A species difference in visuospatial working memory: does language link “what” with “where”? Int. J. Comp. Psychol. 20 https://doi.org/10.46867/ijcp.2007.20.01.02 (2007).

  219. Greenfield, P. M. Language, tools, and brain revisited. Behav. Brain Sci. 21, 159–163 (1998).

    Article  Google Scholar 

  220. Spelke, E. S. & Kinzler, K. D. Core knowledge. Dev. Sci. 10, 89–96 (2007).

    Article  PubMed  Google Scholar 

  221. Aslin, R. N., Saffran, J. R. & Newport, E. L. in The Emergence of Language (ed. MacWhinney, B.) 359–380 (Psychology Press, 1999).

  222. Aslin, R. N., Saffran, J. R. & Newport, E. L. Computation of conditional probability statistics by 8-month-old infants. Psychol. Sci. 9, 321–324 (1998).

    Article  Google Scholar 

  223. Saffran, J. R., Aslin, R. N. & Newport, E. L. Statistical learning by 8-month-old infants. Science 274, 1926–1928 (1996).

    Article  PubMed  Google Scholar 

  224. Terrace, H. S. The simultaneous chain: a new approach to serial learning. Trends Cogn. Sci. 9, 202–210 (2005).

    Article  PubMed  Google Scholar 

  225. Cantlon, J. F. & Brannon, E. M. Shared system for ordering small and large numbers in monkeys and humans. Psychol. Sci. 17, 401–406 (2006).

    Article  PubMed  Google Scholar 

  226. Vallortigara, G. Core knowledge of object, number, and geometry: a comparative and neural approach. Cogn. Neuropsychol. 29, 213–236 (2012).

    Article  PubMed  Google Scholar 

  227. Ferrigno, S., Hughes, K. D. & Cantlon, J. F. Precocious quantitative cognition in monkeys. Psychon. Bull. Rev. 23, 141–147 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  228. Smith, J. D. et al. Implicit and explicit categorization: a tale of four species. Neurosci. Biobehav. Rev. 36, 2355–2369 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  229. Tomasello, M., Hare, B. & Fogleman, T. The ontogeny of gaze following in chimpanzees, Pan troglodytes, and rhesus macaques, Macaca mulatta. Anim. Behav. 61, 335–343 (2001).

    Article  Google Scholar 

  230. Kuhl, P. K. & Miller, J. D. Speech perception by the chinchilla: identification functions for synthetic VOT stimuli. J. Acoust. Soc. Am. 63, 905–917 (1978).

    Article  PubMed  Google Scholar 

  231. Piaget, J. & Inhelder, B. The Psychology of the Child (Basic Books, 1969).

  232. Xu, F. & Kushnir, T. Infants are rational constructivist learners. Curr. Direc. Psychol. Sci. 22, 28–32 (2013).

    Article  Google Scholar 

  233. Kail, R. Speed of information processing: developmental change and links to intelligence. J. School Psychol. 38, 51–61 (2000).

    Article  Google Scholar 

  234. Zelazo, P. D. et al. The development of executive function in early childhood. Monogr. Soc. Res. Child Dev. 63, i-151 (2003).

    Google Scholar 

  235. Frye, D., Zelazo, P. D., Brooks, P. J. & Samuels, M. C. Inference and action in early causal reasoning. Dev. Psychol. 32, 120 (1996).

    Article  Google Scholar 

  236. Corballis, M. C. Recursion, language, and starlings. Cogn. Sci. 31, 697–704 (2007).

    Article  PubMed  Google Scholar 

  237. Rey, A., Perruchet, P. & Fagot, J. Centre-embedded structures are a by-product of associative learning and working memory constraints: evidence from baboons (Papio Papio). Cognition 123, 180–184 (2012).

    Article  PubMed  Google Scholar 

  238. Le Corre, M. & Carey, S. One, two, three, four, nothing more: how numerals are mapped onto core knowledge of number in the acquisition of the counting principles. Cognition 105, 395–438 (2007).

    Article  PubMed  Google Scholar 

  239. Terrace, H. S., Petitto, L. A., Sanders, R. J. & Bever, T. G. Can an ape create a sentence? Science 206, 891–902 (1979).

    Article  PubMed  Google Scholar 

  240. Pepperberg, I. M. Animal language studies: what happened? Psychon. Bull. Rev. 24, 181–185 (2017).

    Article  PubMed  Google Scholar 

  241. Rice, M. L. et al. Mean length of utterance levels in 6-month intervals for children 3 to 9 years with and without language impairments. J. Speech Lang. Hear. Res. 53, 333–349 (2010).

    Article  PubMed  Google Scholar 

  242. Lillard, A. Developing a cultural theory of mind: the CIAO approach. Curr. Dir. Psychol. Sci. 8, 57–61 (1999).

    Article  Google Scholar 

  243. Sabbagh, M. A., Xu, F., Carlson, S. M., Moses, L. J. & Lee, K. The development of executive functioning and theory of mind: a comparison of Chinese and US preschoolers. Psychol. Sci. 17, 74–81 (2006).

    Article  PubMed  Google Scholar 

  244. Devine, R. T. & Hughes, C. Relations between false belief understanding and executive function in early childhood: a meta-analysis. Child Dev. 85, 1777–1794 (2014).

    Article  PubMed  Google Scholar 

  245. Andrews, G., Halford, G. S., Bunch, K. M., Bowden, D. & Jones, T. Theory of mind and relational complexity. Child Dev. 74, 1476–1499 (2003).

    Article  PubMed  Google Scholar 

  246. Stearns, R. E., Hartmanis, J. & Lewis, P. M. in 6th Annu. Symp. Switching Circuit Theory and Logical Design 179–190 (IEEE, 1965).

  247. Hopcroft, J. E. & Ullman, J. D. Some results on tape-bounded Turing machines. JACM 16, 168–177 (1969).

    Article  Google Scholar 

  248. Chomsky, N. Syntactic Structures (Mouton, 1957).

  249. Gentner, T. Q., Fenn, K. M., Margoliash, D. & Nusbaum, H. C. Recursive syntactic pattern learning by songbirds. Nature 440, 1204–1207 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  250. Fitch, W. T. & Hauser, M. D. Computational constraints on syntactic processing in a nonhuman primate. Science 303, 377–380 (2004).

    Article  PubMed  Google Scholar 

  251. Perruchet, P. & Rey, A. Does the mastery of center-embedded linguistic structures distinguish humans from nonhuman primates? Psychon. Bull. Rev. 12, 307–313 (2005).

    Article  PubMed  Google Scholar 

  252. Dedhe, A. M., Piantadosi, S. T. & Cantlon, J. F. Cognitive mechanisms underlying recursive pattern processing in human adults. Cogn. Sci. 47, e13273 (2023).

    Article  PubMed  Google Scholar 

  253. Reich, P. A. The finiteness of natural language. Language 45, 831–843 (1969).

    Article  Google Scholar 

  254. Pullum, G. K. & Gazdar, G. Natural languages and context-free languages. Linguist. Philos. 4, 471–504 (1982).

    Article  Google Scholar 

  255. Jäger, G. & Rogers, J. Formal language theory: refining the Chomsky hierarchy. Philos. Trans. R. Soc. Lond. B, Biol. Sci. 367, 1956–1970 (2012).

    Article  PubMed  Google Scholar 

  256. Higginbotham, J. in The Formal Complexity of Natural Language (ed. Savitch, W. J.) 335–348 (Springer Netherlands, 1984).

  257. Shieber, S. M. in The Formal Complexity of Natural Language (ed. Savitch, W. J.) 320–334 (Springer Netherlands, 1985).

  258. Savitch, W. J., Bach, E., Marsh, W. E. & Safran-Naveh, G. (eds) The Formal Complexity of Natural Language Vol. 33 (Springer Science & Business Media, 2012).

  259. Papadimitriou, C. H. Computational Complexity (Pearson, 1993).

  260. Bommasani, R. et al. On the opportunities and risks of foundation models. Preprint at arXiv https://doi.org/10.48550/arXiv.2108.07258 (2021).

  261. Srivastava, A. et al. Beyond the imitation game: quantifying and extrapolating the capabilities of language models. Preprint at arXiv https://doi.org/10.48550/arXiv.2206.04615 (2022).

  262. Ganguli, D. et al. Predictability and surprise in large generative models. In ACM Conf. on Fairness, Accountability, and Transparency 1747–1764 (ACM, 2022).

  263. Kaplan, J. et al. Scaling laws for neural language models. Preprint at arXiv https://doi.org/10.48550/arXiv.2001.08361 (2020).

  264. Zhang, C., Bengio, S., Hardt, M., Recht, B. & Vinyals, O. Understanding deep learning requires rethinking generalization. Preprint at arXiv https://doi.org/10.48550/arXiv.1611.03530 (2017).

  265. Zhang, C., Bengio, S., Hardt, M., Recht, B. & Vinyals, O. Understanding deep learning (still) requires rethinking generalization. Commun. ACM 64, 107–115 (2021).

    Article  Google Scholar 

  266. Bubeck, S. et al. Sparks of artificial general intelligence: early experiments with gpt-4. Preprint at arXiv https://doi.org/10.48550/arXiv.2303.12712 (2023).

  267. Mahowald, K. et al. Dissociating language and thought in large language models: a cognitive perspective. Preprint at arXiv https://doi.org/10.48550/arXiv.2301.06627 (2023).

  268. Sutton, H. The bitter lesson. Incomplete Ideas http://www.incompleteideas.net/IncIdeas/BitterLesson.html (2019).

  269. Laland, K. N., Kendal, J. R. & Brown, G. R. The niche construction perspective: implications for evolution and human behaviour. J. Evol. Psychol. 5, 51–66 (2007).

    Article  Google Scholar 

  270. Clarke, E. & Heyes, C. The swashbuckling anthropologist: Henrich on the secret of our success. Biol. Philos. 32, 289–305 (2017).

    Article  Google Scholar 

  271. Lefebvre, L., Reader, S. M. & Sol, D. Brains, innovations and evolution in birds and primates. Brain Behav. Evol. 63, 233 (2004).

    Article  PubMed  Google Scholar 

  272. Ong, W. J. & Hartley, J. Orality and Literacy (Routledge, 2013).

  273. Tinbergen, N. On aims and methods of ethology. Z. Tierpsychol. 20, 410–433 (1963).

    Article  Google Scholar 

  274. Krubitzer, L. In search of a unifying theory of complex brain evolution. Ann. N. Y. Acad. Sci. 1156, 44–67 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  275. Preuss, T. M. & Wise, S. P. Evolution of prefrontal cortex. Neuropsychopharmacology 47, 3–19 (2022).

    Article  PubMed  Google Scholar 

  276. Smaers, J. B., Gómez-Robles, A., Parks, A. N. & Sherwood, C. C. Exceptional evolutionary expansion of prefrontal cortex in great apes and humans. Curr. Biol. 27, 714–720 (2017).

    Article  PubMed  Google Scholar 

  277. Herculano-Houzel, S. The Human Advantage: A New Understanding of How Our Brain Became Remarkable (MIT Press, 2016).

  278. Van Essen, D. C. et al. Cerebral cortical folding, parcellation, and connectivity in humans, nonhuman primates, and mice. Proc. Natl Acad. Sci. USA 116, 26173–26180 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  279. Herculano-Houzel, S. Numbers of neurons as biological correlates of cognitive capability. Curr. Opin. Behav. Sci. 16, 1–7 (2017).

    Article  Google Scholar 

  280. Rakic, P. Pre-and post-developmental neurogenesis in primates. Clin. Neurosci. Res. 2, 29–39 (2002).

    Article  Google Scholar 

  281. Rakic, P. A small step for the cell, a giant leap for mankind: a hypothesis of neocortical expansion during evolution. Trends Neurosci. 18, 383–388 (1995).

    Article  PubMed  Google Scholar 

  282. Charvet, C. J. & Finlay, B. L. Evo-devo and the primate isocortex: the central organizing role of intrinsic gradients of neurogenesis. Brain Behav. Evol. 84, 81–92 (2014).

    Article  PubMed  Google Scholar 

  283. Clancy, B., Darlington, R. B. & Finlay, B. L. Translating developmental time across mammalian species. NeuroScience 105, 7–17 (2001).

    Article  PubMed  Google Scholar 

  284. Takahashi, T., Nowakowski, R. S. & Caviness, V. S. Jr The mathematics of neocortical neuronogenesis. Dev. Neurosci. 19, 17–22 (1997).

    Article  PubMed  Google Scholar 

  285. Zembrzycki, A. et al. Genetic mechanisms control the linear scaling between related cortical primary and higher order sensory areas. eLife 4, e11416 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  286. Marchetto, M. C. et al. Species specific maturation profiles of human, chimpanzee and bonobo neural cells. eLife 8, e37527 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  287. Cahalane, D. J., Charvet, C. J. & Finlay, B. L. Modeling local and cross-species neuron number variations in the cerebral cortex as arising from a common mechanism. Proc. Natl Acad. Sci. USA 111, 17642–17647 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  288. Nieder, A. Inside the corvid brain—probing the physiology of cognition in crows. Curr. Opin. Behav. Sci. 16, 8–14 (2017).

    Article  Google Scholar 

  289. Güntürkün, O., Ströckens, F., Scarf, D. & Colombo, M. Apes, feathered apes, and pigeons: differences and similarities. Curr. Opin. Behav. Sci. 16, 35–40 (2017).

    Article  Google Scholar 

  290. Güntürkün, O., von Eugen, K., Packheiser, J. & Pusch, R. Avian pallial circuits and cognition: a comparison to mammals. Curr. Opin. Neurobiol. 71, 29–36 (2021).

    Article  PubMed  Google Scholar 

  291. Cowan, N. The magical mystery four: how is working memory capacity limited, and why? Curr. Dir. Psychol. Sci. 19, 51–57 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  292. Waltz, J. A., Lau, A., Grewal, S. K. & Holyoak, K. J. The role of working memory in analogical mapping. Mem. Cogn. 28, 1205–1212 (2000).

    Article  Google Scholar 

  293. Krems, J. A. & Wilkes, J. Why are conversations limited to about four people? A theoretical exploration of the conversation size constraint. Evol. Hum. Behav. 40, 140–147 (2019).

    Article  Google Scholar 

  294. Chater, N. & Oaksford, M. Ten years of the rational analysis of cognition. Trends Cogn. Sci. 3, 57–65 (1999).

    Article  PubMed  Google Scholar 

  295. Geisler, W. S. Ideal observer analysis. Vis. Neurosci. 10, 12 (2003).

    Google Scholar 

  296. Sims, C. R. Rate–distortion theory and human perception. Cognition 152, 181–198 (2016).

    Article  PubMed  Google Scholar 

  297. Gershman, S. J. Origin of perseveration in the trade-off between reward and complexity. Cognition 204, 104394 (2020).

    Article  PubMed  Google Scholar 

  298. Bhui, R., Lai, L. & Gershman, S. J. Resource-rational decision making. Curr. Opin. Behav. Sci. 41, 15–21 (2021).

    Article  Google Scholar 

  299. Polanía, R., Woodford, M. & Ruff, C. C. Efficient coding of subjective value. Nat. Neurosci. 22, 134–142 (2019).

    Article  PubMed  Google Scholar 

  300. Sims, C. R. Efficient coding explains the universal law of generalization in human perception. Science 360, 652–656 (2018).

    Article  PubMed  Google Scholar 

  301. Hahn, M., Futrell, R., Levy, R. & Gibson, E. A resource-rational model of human processing of recursive linguistic structure. Proc. Natl Acad. Sci. USA 119, e2122602119 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  302. Cheyette, S. J. & Piantadosi, S. T. A unified account of numerosity perception. Nat. Hum. Behav. 4, 1265–1272 (2020).

    Article  PubMed  Google Scholar 

  303. Yang, Y. & Piantadosi, S. T. One model for the learning of language. Proc. Natl Acad. Sci. USA 119, e2021865119 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  304. Planton, S. et al. A theory of memory for binary sequences: evidence for a mental compression algorithm in humans. PLoS Comput. Biol. 17, e1008598 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  305. Grünwald, P. D. The Minimum Description Length Principle (MIT Press, 2007).

  306. Hutter, M. Universal Artificial Intelligence: Sequential Decisions Based on Algorithmic Probability (Springer Science & Business Media, 2004).

  307. Solomonoff, R. J. A formal theory of inductive inference. Part I. Inform. Control. 7, 1–22 (1964).

    Article  Google Scholar 

  308. Piantadosi, S. T., Tenenbaum, J. B., & Goodman, N. D. Bootstrapping in a language of thought: a formal model of numerical concept learning. Cognition 123, 199–217 (2012).

    Article  PubMed  Google Scholar 

  309. Hick, W. E. On the rate of gain of information. Q. J. Exp. Psychol. 4, 11–26 (1952).

    Article  Google Scholar 

  310. Miller, G. Human memory and the storage of information. IRE Trans. Inform. Theor 2, 129–137 (1956).

    Article  Google Scholar 

  311. Posner, M. I. & Rossman, E. Effect of size and location of informational transforms upon short-term retention. J. Exp. Psychol. 70, 496 (1965).

    Article  PubMed  Google Scholar 

  312. Shannon, C. E. Prediction and entropy of printed English. Bell Syst. Tech. J. 30, 50–64 (1951).

    Article  Google Scholar 

  313. Reber, A. S. Transfer of syntactic structure in synthetic languages. J. Exp. Psychol. 81, 115 (1969).

    Article  Google Scholar 

  314. Macmillan, N. A. & Creelman, C. D. Detection Theory: A User’s Guide (Psychology Press, 2004).

  315. Chittka, L., Skorupski, P. & Raine, N. E. Speed–accuracy tradeoffs in animal decision making. Trends Ecol. Evol. 24, 400–407 (2009).

    Article  PubMed  Google Scholar 

  316. Baddeley, A. The magical number seven: still magic after all these years? Psychol. Rev. 101, 353–356 (1994).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank H. Clatterbuck for substantive comments and conceptual feedback on this manuscript, and C. Kaicher for help with scholarship, editing and formatting the article. This work was supported by the National Institute of Health (NIH) (grant number R01HD107840) and National Science Foundation (NSF) (grant numbers DRL2201843 and DRL2026416).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Jessica F. Cantlon or Steven T. Piantadosi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Psychology thanks Stella Christie and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cantlon, J.F., Piantadosi, S.T. Uniquely human intelligence arose from expanded information capacity. Nat Rev Psychol 3, 275–293 (2024). https://doi.org/10.1038/s44159-024-00283-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44159-024-00283-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing