Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Understanding behaviours in context using mobile sensing

Abstract

Mobile sensing refers to the collection of methods by which researchers derive measures of human behaviours and contexts from the onboard sensors and logs found in smartphones, wearables and smart home devices. By tracking real-world behaviours in their natural contexts automatically, unobtrusively, continuously and in detail over extended periods of time, mobile sensing can help researchers to realize the potential of ecological approaches to psychology. In this Review, we consider how mobile sensing presents new opportunities for understanding behaviours in context and review illustrative findings from mobile sensing studies in psychology in three areas of research: social behaviours in physical and digital contexts, mobility behaviours in spatial contexts, and activities in digital contexts. In doing so, we highlight themes in the existing research and demonstrate the capabilities of mobile sensing, while evaluating how far mobile sensing has come in delivering on the promise of ecological approaches. To guide future mobile sensing research in psychology, we conclude with a research agenda focused on conceptual and measurement issues, pursuing explanatory and predictive research, and overcoming technical and practical barriers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Sensing behaviours in context.

Similar content being viewed by others

References

  1. Barker, R. G. Explorations in ecological psychology. Am. Psychol. 20, 1–14 (1965).

    Article  PubMed  Google Scholar 

  2. Bronfenbrenner, U. in International Encyclopedia of Education vol. 3, 37–43 (Elsevier, 1994).

  3. Heft, H. Ecological Psychology in Context: James Gibson, Roger Barker, and the Legacy Of William James’s Radical Empiricism 1st edn (Psychology, 2001).

  4. Oishi, S. & Graham, J. Social ecology: lost and found in psychological science. Perspect. Psychol. Sci. 5, 356–377 (2010).

    Article  PubMed  Google Scholar 

  5. Baumeister, R. F., Vohs, K. D. & Funder, D. C. Psychology as the science of self-reports and finger movements: whatever happened to actual behavior? Perspect. Psychol. Sci. 2, 396–403 (2007).

    Article  PubMed  Google Scholar 

  6. Rozin, P. Social psychology and science: some lessons from Solomon Asch. Pers. Soc. Psychol. Rev. 5, 2–14 (2001).

    Article  Google Scholar 

  7. Furr, R. M. Personality psychology as a truly behavioural science. Eur. J. Pers. 23, 369–401 (2009).

    Article  Google Scholar 

  8. Bonetto, E., Guiller, T. & Adam-Trojan, A. Lost idea in psychology: observation as starting point for the scientific investigation of human behavior. Hum. Ethol. 38, 08–16 (2023).

    Article  Google Scholar 

  9. Meagher, B. R. Ecologizing social psychology: the physical environment as a necessary constituent of social processes. Pers. Soc. Psychol. Rev. 24, 3–23 (2020).

    Article  PubMed  Google Scholar 

  10. Mehl, M. R., Robbins, M. L. & Deters, F. G. Naturalistic observation of health-relevant social processes: the Electronically Activated Recorder methodology in psychosomatics. Psychosom. Med. 74, 410–417 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Sechrest, L. (ed.) Unobtrusive Measurement Today (Jossey-Bass, 1979).

  12. Webb, E. J., Campbell, D. T., Schwartz, R. D. & Sechrest, L. Unobtrusive Measures: Nonreactive Research in the Social Sciences (Rand McNally, 1966).

  13. Barker, R. G. & Wright, H. F. One Boy’s Day; A Specimen Record of Behavior (Harper, 1951).

  14. Craik, K. H. in Person–Environment Psychology: New Directions and Perspectives 2nd edn (eds. Walsh, W. B., Craik, K. H. & Price, R. H.) 233–266 (Lawrence Erlbaum Associates, 2000).

  15. Bolger, N., Davis, A. & Rafaeli, E. Diary methods: capturing life as it is lived. Annu. Rev. Psychol. 54, 579–616 (2003).

    Article  PubMed  Google Scholar 

  16. de Vries, L. P., Baselmans, B. M. L. & Bartels, M. Smartphone-based ecological momentary assessment of well-being: a systematic review and recommendations for future studies. J. Happiness Stud. 22, 2361–2408 (2021).

    Article  PubMed  Google Scholar 

  17. Jackson, J. J. et al. What do conscientious people do? Development and validation of the Behavioral Indicators of Conscientiousness (BIC). J. Res. Pers. 44, 501–511 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Iida, M., Shrout, P. E., Laurenceau, J.-P. & Bolger, N. in APA Handbook of Research Methods in Psychology, Vol 1: Foundations, Planning, Measures, and Psychometrics (ed. Cooper, H. M.) 277–305 (American Psychological Association, 2012).

  19. Kahneman, D., Krueger, A. B., Schkade, D. A., Schwarz, N. & Stone, A. A. A survey method for characterizing daily life experience: the day reconstruction method. Science 306, 1776–1780 (2004).

    Article  PubMed  Google Scholar 

  20. Mehl, M., Eid, M., Wrzus, C., Harari, G. M. & Ebner-Priemer, U. Mobile Sensing in Psychology: Methods and Applications (Guilford, 2023). This handbook for social and behavioural scientists brings together mobile sensing experts from multiple disciplines to describe key concepts and explain how to conduct mobile sensing studies and analyse mobile sensing data, and provides examples of applications across research areas in psychology.

  21. Hufford, M. R. in The Science of Real-Time Data Capture: Self-Reports in Health Research (eds. Stone, A., Shiffman, S., Atienza, A. & Nebeling, L.) 54–75 (Oxford Univ. Press, 2007).

  22. Barta, W. D., Tennen, H. & Litt, M. D. in Handbook of Research Methods for Studying Daily Life (eds. Mehl, M. R. & Conner, T. S.) 108–123 (Guilford, 2012).

  23. Funder, D. C. Naive and obvious questions. Perspect. Psychol. Sci. 4, 340–344 (2009).

    Article  PubMed  Google Scholar 

  24. Funder, D. C. Personality. Annu. Rev. Psychol. 52, 197–221 (2001).

    Article  PubMed  Google Scholar 

  25. Cooper, M. L. Editorial. J. Pers. Soc. Psychol. 110, 431–434 (2016).

    Article  PubMed  Google Scholar 

  26. Gerring, J. Mere description. Br. J. Polit. Sci. 42, 721–746 (2012).

    Article  Google Scholar 

  27. Munger, K., Guess, A. M. & Hargittai, E. Quantitative description of digital media: a modest proposal to disrupt academic publishing. J. Quant. Descr. Digit. Media https://doi.org/10.51685/jqd.2021.000 (2021).

  28. Mõttus, R. et al. Descriptive, predictive and explanatory personality research: different goals, different approaches, but a shared need to move beyond the big few traits. Eur. J. Pers. 34, 1175–1201 (2020).

    Article  Google Scholar 

  29. Harari, G. M. et al. Using smartphones to collect behavioral data in psychological science: opportunities, practical considerations, and challenges. Perspect. Psychol. Sci. 11, 838–854 (2016). This article provides a perspective on the promise of smartphone-based mobile sensing in psychology.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Miller, G. The smartphone psychology manifesto. Perspect. Psychol. Sci. 7, 221–237 (2012). This article presents a seminal and forward-thinking perspective on how smartphones could transform psychological research.

    Article  PubMed  Google Scholar 

  31. Lane, N. D. et al. A survey of mobile phone sensing. IEEE Commun. Mag. 48, 140–150 (2010).

    Article  Google Scholar 

  32. Schmid Mast, M., Gatica-Perez, D., Frauendorfer, D., Nguyen, L. & Choudhury, T. Social sensing for psychology: automated interpersonal behavior assessment. Curr. Dir. Psychol. Sci. 24, 154–160 (2015). This article provides a review of mobile sensing approaches for the assessment of interpersonal behaviour in psychological research.

    Article  Google Scholar 

  33. Nelson, B. W. & Allen, N. B. Extending the passive-sensing toolbox: using smart-home technology in psychological science. Perspect. Psychol. Sci. 13, 718–733 (2018). This article provides a perspective on the promise of smart home devices for psychological research.

    Article  PubMed  Google Scholar 

  34. Vaid, S. S., Abdullah, S., Thomaz, E. & Harari, G. M. in Measuring and Modeling Persons and Situations (eds Wood, D. et al.) 103–143 (Academic, 2021).

  35. Beierle, F. et al. Frequency and duration of daily smartphone usage in relation to personality traits. Digit. Psychol. 1, 20–28 (2020).

    Article  Google Scholar 

  36. Harari, G. M. A process-oriented approach to respecting privacy in the context of mobile phone tracking. Curr. Opin. Psychol. 31, 141–147 (2020).

    Article  PubMed  Google Scholar 

  37. Schoedel, R. et al. To challenge the morning lark and the night owl: using smartphone sensing data to investigate day–night behaviour patterns. Eur. J. Pers. 34, 733–752 (2020).

    Article  Google Scholar 

  38. Stachl, C. et al. Predicting personality from patterns of behavior collected with smartphones. Proc. Natl Acad. Sci. USA 117, 17680–17687 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Marrero, Z. N. K., Gosling, S. D., Pennebaker, J. W. & Harari, G. M. Evaluating voice samples as a potential source of information about personality. Acta Psychol. 230, 103740 (2022).

    Article  Google Scholar 

  40. Mohr, D. C., Zhang, M. & Schueller, S. M. Personal sensing: understanding mental health using ubiquitous sensors and machine learning. Annu. Rev. Clin. Psychol. 13, 23–47 (2017). This article provides a review of mobile sensing research and machine learning in clinical psychology.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Onnela, J.-P. & Rauch, S. L. Harnessing smartphone-based digital phenotyping to enhance behavioral and mental health. Neuropsychopharmacology 41, 1691–1696 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Robbins, M. L., López, A. M., Weihs, K. L. & Mehl, M. R. Cancer conversations in context: naturalistic observation of couples coping with breast cancer. J. Fam. Psychol. 28, 380–390 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  43. de Barbaro, K. Automated sensing of daily activity: a new lens into development. Dev. Psychobiol. 61, 444–464 (2019). This article reviews mobile sensing research in developmental psychology.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Fingerman, K. L., Birditt, K. S. & Umberson, D. J. Use of technologies for social connectedness and well-being and as a tool for research data collection in older adults. In Mobile Technology for Adaptive Aging: Proceedings of a Workshop (National Academies, 2020).

  45. York Cornwell, E. & Cagney, K. A. Aging in activity space: results from smartphone-based GPS-tracking of urban seniors. J. Gerontol. B Psychol. Sci. Soc. Sci. 72, 864–875 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  46. de Barbaro, K. & Fausey, C. M. Ten lessons about infants’ everyday experiences. Curr. Dir. Psychol. Sci. 31, 28–33 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  47. De Barbaro, K. et al. Infant crying predicts real-time fluctuations in maternal mental health in ecologically valid home settings. Dev. Psychol. 59, 733–744 (2023).

    Article  PubMed  Google Scholar 

  48. Dey, A. K. Understanding and using context. Pers. Ubiquitous Comput. 5, 4–7 (2001).

    Article  Google Scholar 

  49. Harari, G. M., Müller, S. R., Aung, M. S. & Rentfrow, P. J. Smartphone sensing methods for studying behavior in everyday life. Curr. Opin. Behav. Sci. 18, 83–90 (2017).

    Article  Google Scholar 

  50. Miller, G. The smartphone psychology manifesto. Perspect. Psychol. Sci. 7, 221–237 (2012).

    Article  PubMed  Google Scholar 

  51. Mehl, M. R. & Schoedel, R. in Handbook of Research Methods in Social and Personality Psychology (eds. Reis, H. T. et al.) (in the press).

  52. Kleiman, E. M., Glenn, C. R. & Liu, R. T. The use of advanced technology and statistical methods to predict and prevent suicide. Nat. Rev. Psychol. 2, 347–359 (2023).

    Article  PubMed  Google Scholar 

  53. Asghari, P., Rahmani, A. M. & Javadi, H. H. S. Internet of things applications: a systematic review. Comput. Netw. 148, 241–261 (2019).

    Article  Google Scholar 

  54. Macias, E., Suarez, A. & Lloret, J. Mobile sensing systems. Sensors 13, 17292–17321 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Mohr, D. C., Shilton, K. & Hotopf, M. Digital phenotyping, behavioral sensing, or personal sensing: names and transparency in the digital age. NPJ Digit. Med. 3, 45 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Low, C. A. Harnessing consumer smartphone and wearable sensors for clinical cancer research. NPJ Digit. Med. 3, 140 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Zarate, D., Stavropoulos, V., Ball, M., de Sena Collier, G. & Jacobson, N. C. Exploring the digital footprint of depression: a PRISMA systematic literature review of the empirical evidence. BMC Psychiatry 22, 421 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Manson, J. H. & Robbins, M. L. New evaluation of the Electronically Activated Recorder (EAR): obtrusiveness, compliance, and participant self-selection effects. Front. Psychol. 8, 658 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Mehl, M. R. The lay assessment of subclinical depression in daily life. Psychol. Assess. 18, 340–345 (2006).

    Article  PubMed  Google Scholar 

  60. Rachuri, K. K., Mascolo, C., Musolesi, M. & Rentfrow, P. J. SociableSense: exploring the trade-offs of adaptive sampling and computation offloading for social sensing. In Proc. 17th Annual International Conference on Mobile Computing and Networking 73–84 (Association for Computing Machinery, 2011).

  61. Kwapisz, J. R., Weiss, G. M. & Moore, S. A. Activity recognition using cell phone accelerometers. ACM SIGKDD Explor. Newsl. 12, 74–82 (2011).

    Article  Google Scholar 

  62. Müller, S. R. et al. Analyzing GPS data for psychological research: a tutorial. Adv. Methods Pract. Psychol. Sci. https://doi.org/10.1177/25152459221082680 (2022).

  63. Dubey, H., Mehl, M. R. & Mankodiya, K. BigEAR: inferring the ambient and emotional correlates from smartphone-based acoustic big data. In 2016 IEEE First International Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE) 78–83 (IEEE, 2016).

  64. Thomaz, E., Zhang, C., Essa, I. & Abowd, G. D. Inferring meal eating activities in real world settings from ambient sounds: a feasibility study. In Proc. 20th International Conference on Intelligent User Interfaces 427–431 (Association for Computing Machinery, 2015).

  65. Chen, Z. et al. Unobtrusive sleep monitoring using smartphones. In Proc. 7th International Conference on Pervasive Computing Technologies for Healthcare and Workshops 145–152 (IEEE, 2013).

  66. Funder, D. Towards a resolution of the personality triad: persons, situations, and behaviors. J. Res. Pers. 40, 21–34 (2006).

    Article  Google Scholar 

  67. Rauthmann, J. F., Sherman, R. A. & Funder, D. C. Principles of situation research: towards a better understanding of psychological situations. Eur. J. Pers. 29, 363–381 (2015).

    Article  Google Scholar 

  68. Harari, G. M., Müller, S. R. & Gosling, S. D. in The Oxford Handbook of Psychological Situations (eds Rauthmann, J. F. et al.) Ch. 19, 299–311 (Oxford Univ. Press, 2020).

  69. Graham, L. T., Gosling, S. D. & Travis, C. K. The psychology of home environments: a call for research on residential space. Perspect. Psychol. Sci. 10, 346–356 (2015).

    Article  PubMed  Google Scholar 

  70. Stokols, D. The paradox of environmental psychology. Am. Psychol. 50, 821–837 (1995).

    Article  Google Scholar 

  71. Lane, N. et al. A survey of mobile phone sensing. IEEE Commun. Mag. https://doi.org/10.1109/MCOM.2010.5560598 (2010).

  72. Turner, A. How many people have smartphones worldwide. Bank My Cell https://www.bankmycell.com/blog/how-many-phones-are-in-the-world (2023).

  73. Rosenberg, S. Smartphone ownership is growing rapidly around the world, but not always equally. Pew Research Center’s Global Attitudes Project https://www.pewresearch.org/global/2019/02/05/smartphone-ownership-is-growing-rapidly-around-the-world-but-not-always-equally/ (2019).

  74. Wike, R. et al. Social media seen as mostly good for democracy across many nations, but U.S. is a major outlier. Pew Research Center https://www.pewresearch.org/global/2022/12/06/social-media-seen-as-mostly-good-for-democracy-across-many-nations-but-u-s-is-a-major-outlier/ (2022).

  75. Mobile fact sheet. Pew Research Center https://www.pewresearch.org/internet/fact-sheet/mobile/ (2021).

  76. Tan, C. et al. in Database Systems for Advanced Applications (eds Nah, Y. et al.) 771–774 (Springer International, 2020).

  77. Lathia, N. et al. Smartphones for large-scale behavior change interventions. IEEE Pervasive Comput. 12, 66–73 (2013).

    Article  Google Scholar 

  78. Nahum-Shani, I. et al. Just-in-time adaptive interventions (JITAIs) in mobile health: key components and design principles for ongoing health behavior support. Ann. Behav. Med. 52, 446–462 (2018).

    Article  PubMed  Google Scholar 

  79. Coughlin, L. N. et al. Toward a just-in-time adaptive intervention to reduce emerging adult alcohol use: testing approaches for identifying when to intervene. Subst. Use Misuse 56, 2115–2125 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Harari, G. M., Soh, S. & Kroencke, L. in Mobile Sensing in Psychology: Methods and Applications (eds Mehl, M. R. et al.) Ch. 1, 3–24 (Guilford, 2023).

  81. Harari, G. M. et al. An evaluation of students’ interest in and compliance with self-tracking methods: recommendations for incentives based on three smartphone sensing studies. Soc. Psychol. Pers. Sci. 8, 479–492 (2017).

    Article  Google Scholar 

  82. Nebeker, C. et al. Engaging research participants to inform the ethical conduct of mobile imaging, pervasive sensing, and location tracking research. Transl. Behav. Med. 6, 577–586 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Nebeker, C. et al. Ethical and regulatory challenges of research using pervasive sensing and other emerging technologies: IRB perspectives. AJOB Empir. Bioeth. 8, 266–276 (2017).

    Article  PubMed  Google Scholar 

  84. Vitak, J., Proferes, N., Shilton, K. & Ashktorab, Z. Ethics regulation in social computing research: examining the role of institutional review boards. J. Empir. Res. Hum. Res. Ethics 12, 372–382 (2017).

    Article  PubMed  Google Scholar 

  85. Cychosz, M. et al. Longform recordings of everyday life: ethics for best practices. Behav. Res. Methods 52, 1951–1969 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Boonstra, T. W. et al. Using mobile phone sensor technology for mental health research: integrated analysis to identify hidden challenges and potential solutions. J. Med. Internet Res. 20, e10131 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Booth, B. M. et al. Multimodal human and environmental sensing for longitudinal behavioral studies in naturalistic settings: framework for sensor selection, deployment, and management. J. Med. Internet Res. 21, e12832 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Arnett, J. J. Emerging adulthood. A theory of development from the late teens through the twenties. Am. Psychol. 55, 469–480 (2000).

    Article  PubMed  Google Scholar 

  89. Cohen, S. & Wills, T. A. Stress, social support, and the buffering hypothesis. Psychol. Bull. 98, 310–357 (1985).

    Article  PubMed  Google Scholar 

  90. Emmons, R. A. & Diener, E. Influence of impulsivity and sociability on subjective well-being. J. Pers. Soc. Psychol. 50, 1211–1215 (1986).

    Article  Google Scholar 

  91. Siedlecki, K. L., Salthouse, T. A., Oishi, S. & Jeswani, S. The relationship between social support and subjective well-being across age. Soc. Indic. Res. 117, 561–576 (2014).

    Article  PubMed  Google Scholar 

  92. Yang, Y. C. et al. Social relationships and physiological determinants of longevity across the human life span. Proc. Natl Acad. Sci. USA 113, 578–583 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Mehl, M. R., Vazire, S., Holleran, S. E. & Clark, C. S. Eavesdropping on happiness: well-being is related to having less small talk and more substantive conversations. Psychol. Sci. 21, 539–541 (2010).

    Article  PubMed  Google Scholar 

  94. Sun, J., Harris, K. & Vazire, S. Is well-being associated with the quantity and quality of social interactions? J. Pers. Soc. Psychol. 119, 1478–1496 (2020).

    Article  PubMed  Google Scholar 

  95. Sandstrom, G. M. & Dunn, E. W. Social interactions and well-being: the surprising power of weak ties. Pers. Soc. Psychol. Bull. 40, 910–922 (2014).

    Article  PubMed  Google Scholar 

  96. Wu, C. et al. Improving prediction of real-time loneliness and companionship type using geosocial features of personal smartphone data. Smart Health 20, 100180 (2021).

    Article  Google Scholar 

  97. daSilva, A. W. et al. Daily perceived stress predicts less next day social interaction: evidence from a naturalistic mobile sensing study. Emotion 21, 1760–1770 (2021).

    Article  PubMed  Google Scholar 

  98. Tackman, A. M. et al. ‘Personality in its natural habitat’ revisited: a pooled, multi-sample examination of the relationships between the big five personality traits and daily behaviour and language use. Eur. J. Pers. 34, 753–776 (2020).

    Article  Google Scholar 

  99. Milek, A. et al. “Eavesdropping on happiness” revisited: a pooled, multisample replication of the association between life satisfaction and observed daily conversation quantity and quality. Psychol. Sci. 29, 1451–1462 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Harari, G. M. et al. Sensing sociability: individual differences in young adults’ conversation, calling, texting, and app use behaviors in daily life. J. Pers. Soc. Psychol. 119, 204–228 (2020).

    Article  PubMed  Google Scholar 

  101. Montag, C. et al. Smartphone usage in the 21st century: who is active on WhatsApp? BMC Res. Notes 8, 331 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Mehl, M. R. The Electronically Activated Recorder (EAR): a method for the naturalistic observation of daily social behavior. Curr. Dir. Psychol. Sci. 26, 184–190 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Robbins, M. L. et al. Brief report: naturalistically observed swearing, emotional support and depressive symptoms in women coping with illness. Health Psychol. 30, 789–792 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Harari, G. M. et al. Personality sensing for theory development and assessment in the digital age. Eur. J. Pers. 34, 649–669 (2020).

    Article  Google Scholar 

  105. Gonzalez, M. C., Hidalgo, C. A. & Barabasi, A.-L. Understanding individual human mobility patterns. Nature 453, 779–782 (2008).

    Article  PubMed  Google Scholar 

  106. Williams, N. E., Thomas, T. A., Dunbar, M., Eagle, N. & Dobra, A. Measures of human mobility using mobile phone records enhanced with GIS data. PLoS ONE 10, e0133630 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Anderson, J. Exploring the consequences of mobility: reclaiming jet lag as the state of travel disorientation. Mobilities 10, 1–16 (2015).

    Article  Google Scholar 

  108. Birenboim, A. & Shoval, N. Mobility research in the age of the smartphone. Ann. Am. Assoc. Geogr. 106, 283–291 (2016).

    Google Scholar 

  109. Röcke, C. et al. Charting everyday activities in later life: study protocol of the Mobility, Activity, and Social Interactions study (MOASIS). Front. Psychol. 13, 1011177 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Müller, S. R., Peters, H., Matz, S. C., Wang, W. & Harari, G. M. Investigating the relationships between mobility behaviours and indicators of subjective well-being using smartphone-based experience sampling and GPS tracking. Eur. J. Pers. 34, 714–732 (2020).

    Article  Google Scholar 

  111. Luo, M., Kim, E.-K., Weibel, R., Martin, M. & Röcke, C. GPS-derived daily mobility and daily well-being in community-dwelling older adults. Gerontology 69, 875–887 (2023).

    Article  PubMed  Google Scholar 

  112. Müller, S. R. et al. Depression predictions from GPS-based mobility do not generalize well to large demographically heterogeneous samples. Sci. Rep. 11, 14007 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Wu, C. et al. Exploring post COVID-19 outbreak intradaily mobility pattern change in college students: a GPS-focused smartphone sensing study. Front. Digit. Health 3, 765972 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Saeb, S., Lattie, E. G., Schueller, S. M., Kording, K. P. & Mohr, D. C. The relationship between mobile phone location sensor data and depressive symptom severity. PeerJ 4, e2537 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Canzian, L. & Musolesi, M. Trajectories of depression: unobtrusive monitoring of depressive states by means of smartphone mobility traces analysis. In Proc. 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing — UbiComp ‗15 1293–1304 (ACM, 2015).

  116. Jacobson, N. C. & Chung, Y. J. Passive sensing of prediction of moment-to-moment depressed mood among undergraduates with clinical levels of depression sample using smartphones. Sensors 20, 3572 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Laiou, P. et al. The association between home stay and symptom severity in major depressive disorder: preliminary findings from a multicenter observational study using geolocation data from smartphones. JMIR mHealth uHealth 10, e28095 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Buss, D. M. & Craik, K. H. The act frequency approach to personality. Psychol. Rev. 90, 105–126 (1983).

    Article  Google Scholar 

  119. Elleman, L. G., Condon, D. M. & Revelle, W. Laying personality BARE: behavioral frequencies strengthen personality-criterion relationships. Preprint at PsyArXiv https://doi.org/10.31234/osf.io/yufne (2020).

  120. Goldberg, L. R. in Then A Miracle Occurs: Focusing on Behavior in Social Psychological Theory and Research (eds. Agnew, C. R., Carlston, D. E., Graziano, W. G. & Kelly, J. R.) 205–226 (Oxford Univ. Press, 2009).

  121. Shaw, H., Taylor, P. J., Ellis, D. A. & Conchie, S. M. Behavioral consistency in the digital age. Psychol. Sci. 33, 364–370 (2022).

    Article  PubMed  Google Scholar 

  122. Roehrick, K., Vaid, S. S. & Harari, G. M. Situating smartphones in daily life: Big Five traits and contexts associated with young adults’ smartphone use. J. Pers. Soc. Psychol. (in the press).

  123. Stachl, C. et al. Personality traits predict smartphone usage. Eur. J. Pers. 31, 701–722 (2017).

    Article  Google Scholar 

  124. Montag, C. et al. Correlating personality and actual phone usage: evidence from psychoinformatics. J. Individ. Differ. 35, 158–165 (2014).

    Article  Google Scholar 

  125. Rüegger, D. et al. How are personality states associated with smartphone data? Eur. J. Pers. 34, 687–713 (2020).

    Article  Google Scholar 

  126. Chittaranjan, G., Blom, J. & Gatica-Perez, D. Mining large-scale smartphone data for personality studies. Pers. Ubiquitous Comput. 17, 433–450 (2013).

    Article  Google Scholar 

  127. Xu, R., Frey, R. M., Fleisch, E. & Ilic, A. Understanding the impact of personality traits on mobile app adoption — insights from a large-scale field study. Comput. Hum. Behav. 62, 244–256 (2016).

    Article  Google Scholar 

  128. Bleidorn, W. & Hopwood, C. J. Using machine learning to advance personality assessment and theory. Pers. Soc. Psychol. Rev. 23, 190–203 (2019).

    Article  PubMed  Google Scholar 

  129. Hinds, J. & Joinson, A. Human and computer personality prediction from digital footprints. Curr. Dir. Psychol. Sci. 28, 204–211 (2019).

    Article  Google Scholar 

  130. Marengo, D., Elhai, J. D. & Montag, C. Predicting Big Five personality traits from smartphone data: a meta-analysis on the potential of digital phenotyping. J. Pers. https://doi.org/10.1111/jopy.12817 (2023).

  131. Phan, L. V. & Rauthmann, J. F. Personality computing: new frontiers in personality assessment. Soc. Personal. Psychol. Compass 15, e12624 (2021).

    Article  Google Scholar 

  132. Yan, R. et al. Exploratory machine learning modeling of adaptive and maladaptive personality traits from passively sensed behavior. Future Gener. Comput. Syst. 132, 266–281 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  133. de Montjoye, Y.-A., Hidalgo, C. A., Verleysen, M. & Blondel, V. D. Unique in the crowd: the privacy bounds of human mobility. Sci. Rep. 3, 1376 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Mønsted, B., Mollgaard, A. & Mathiesen, J. Phone-based metric as a predictor for basic personality traits. J. Res. Pers. 74, 16–22 (2018).

    Article  Google Scholar 

  135. Eid, M. & Holtmann, J. in Mobile Sensing in Psychology: Methods and Applications (eds. Mehl, M., Eid, M., Wrzus, C., Harari, G. M. & Ebner-Priemer, U.) Ch. 14 (Guilford, 2023).

  136. Wrzus, C. & Schoedel, R. in Mobile Sensing in Psychology: Methods and Applications (eds. Mehl, M., Eid, M., Wrzus, C., Harari, G. M. & Ebner-Priemer, U.) Ch. 3 (Guilford, 2023).

  137. Chen, Z. et al. ContextSense: unobtrusive discovery of incremental social context using dynamic Bluetooth data. In Proc. 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct Publication 23–26 (ACM, 2014).

  138. Vega, J. et al. Reproducible Analysis Pipeline for Data Streams: open-source software to process data collected with mobile devices. Front. Digit. Health 3, 769823 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Micheletti, M., Yao, X., Johnson, M. & de Barbaro, K. Validating a model to detect infant crying from naturalistic audio. Behav. Res. Methods https://doi.org/10.3758/s13428-022-01961-x (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Kiang, M. V. et al. Sociodemographic characteristics of missing data in digital phenotyping. Sci. Rep. 11, 15408 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Khwaja, M. et al. Modeling personality vs. modeling personalidad: in-the-wild mobile data analysis in five countries suggests cultural impact on personality models. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 3, 88 (2019).

    Article  Google Scholar 

  142. Saha, K. et al. Person-centered predictions of psychological constructs with social media contextualized by multimodal sensing. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 5, 32 (2021).

    Article  Google Scholar 

  143. van Heerden, A., Wassenaar, D., Essack, Z., Vilakazi, K. & Kohrt, B. A. In-home passive sensor data collection and its implications for social media research: perspectives of community women in rural South Africa. J. Empir. Res. Hum. Res. Ethics 15, 97–107 (2020).

    Article  PubMed  Google Scholar 

  144. Mayer, J., Mutchler, P. & Mitchell, J. C. Evaluating the privacy properties of telephone metadata. Proc. Natl Acad. Sci. USA 113, 5536–5541 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Beierle, F. et al. Context data categories and privacy model for mobile data collection apps. Procedia Comput. Sci. 134, 18–25 (2018).

    Article  Google Scholar 

  146. Li, Y. et al. PrivacyStreams: enabling transparency in personal data processing for mobile apps. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 1, 76 (2017).

    Article  Google Scholar 

  147. Wiese, J., Das, S., Hong, J. I. & Zimmerman, J. Evolving the ecosystem of personal behavioral data. Hum. Comput. Interact. 32, 447–510 (2017).

    Article  Google Scholar 

  148. Emanuel, E. J., Wendler, D., Killen, J. & Grady, C. What makes clinical research in developing countries ethical? The benchmarks of ethical research. J. Infect. Dis. 189, 930–937 (2004).

    Article  PubMed  Google Scholar 

  149. Robbins, M. L. Practical suggestions for legal and ethical concerns with social environment sampling methods. Soc. Psychol. Pers. Sci. 8, 573–580 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank J. Bunting, K. Chen, D. Jordan and E. Stogianni for their research assistance with this project.

Author information

Authors and Affiliations

Authors

Contributions

G.M.H. researched and wrote the manuscript. G.M.H. and S.D.G. contributed equally to the discussion of content and reviewing and editing the manuscript.

Corresponding author

Correspondence to Gabriella M. Harari.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Psychology thanks Egon Dejonckheere, who co-reviewed with Koen Niemeijer; David Richter; and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Application programming interface

(API). A type of software that enables two pieces of software to connect and communicate with one another.

Big Five traits

A model of five primary dimensions of individual differences in personality (extraversion, agreeableness, conscientiousness, neuroticism and openness).

Classification models

A subset of supervised machine learning models that classify data into different categories.

Depression

A negative affective state that interferes with daily life, ranging from unhappiness and discontent to an extreme feeling of sadness, pessimism and despondency.

Machine learning

A set of methods that detect and predict patterns in data.

Personality traits

Relatively stable, consistent and enduring characteristic patterns of thinking, feeling and behaving that describe an individual.

Subjective well-being

The happiness and life satisfaction appraisal of an individual, typically assessed using self-reports of affective well-being (for example, negative and positive affect) or cognitive well-being (for example, satisfaction in different life domains).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harari, G.M., Gosling, S.D. Understanding behaviours in context using mobile sensing. Nat Rev Psychol 2, 767–779 (2023). https://doi.org/10.1038/s44159-023-00235-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44159-023-00235-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing