Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Principles of cognitive control over task focus and task switching

Abstract

Adaptive behaviour requires the ability to focus on a task and protect it from distraction (cognitive stability) and to rapidly switch tasks when circumstances change (cognitive flexibility). Burgeoning research literatures have aimed to understand how people achieve task focus and task switch readiness. In this Perspective, I integrate these literatures to derive a cognitive architecture and functional rules underlying the regulation of cognitive stability and flexibility. I propose that task focus and task switch readiness are supported by independent mechanisms. However, I also suggest that the strategic regulation of both mechanisms is governed by shared learning principles: an incremental, online learner that nudges control up or down based on the recent history of task demands (a recency heuristic) and episodic reinstatement when the current context matches a past experience (a recognition heuristic). Finally, I discuss algorithmic and neural implementations of these processes, as well as clinical implications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Working memory in the use and updating of task sets.
Fig. 2: Classic tasks and results indexing adjustments in cognitive stability and flexibility.
Fig. 3: One-dimensional and two-dimensional conceptions of cognitive stability and flexibility.
Fig. 4: Independent effects of control over stability and flexibility.
Fig. 5: Incremental and episodic guidance of stability and flexibility.

Similar content being viewed by others

References

  1. Miller, E. K. & Cohen, J. D. An integrative theory of prefrontal cortex function. Annu. Rev. Neurosci. 24, 167–202 (2001).

    Article  PubMed  Google Scholar 

  2. Baddeley, A. D. & Hitch, G. in The Psychology of Learning and Motivation: Advances in Research and Theory Vol. 8 (ed Bower, G. H.) pp. 47–89 (Academic, 1974).

  3. Cowan, N. Evolving conceptions of memory storage, selective attention, and their mutual constraints within the human information-processing system. Psychol. Bull. 104, 163–191 (1988).

    Article  PubMed  Google Scholar 

  4. Oberauer, K. in The Psychology of Learning and Motivation Vol. 51 (ed Ross, B. H.) pp. 45–100 (Elsevier Academic, 2009).

  5. Allport, A., Styles, E. A. & Hsieh, S. in Attention and Performance Vol. XV (eds Moscovitch, M. & Umilta, C.) pp. 421–452 (MIT Press, 1994).

  6. Rogers, R. D. & Monsell, S. Costs of a predictable switch between simple cognitive tasks. J. Exp. Psychol. Gen. 124, 207–231 (1995).

    Article  Google Scholar 

  7. Frank, M. J., Loughry, B. & O’Reilly, R. C. Interactions between frontal cortex and basal ganglia in working memory: a computational model. Cogn. Affect. Behav. Neurosci. 1, 137–160 (2001).

    Article  PubMed  Google Scholar 

  8. Goschke, T. in Voluntary Action: Brains, Minds, and Sociality (eds Prinz, W. et al.) pp. 49–85 (Oxford University, 2003).

  9. Hommel, B. in Advances in Motivation Science Vol. 2 (ed Elliot, A. J.) pp. 33–67 (Elsevier, 2015).

  10. Uddin, L. Q. Cognitive and behavioural flexibility: neural mechanisms and clinical considerations. Nat. Rev. Neurosci. 22, 167–179 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Cepeda, N. J., Cepeda, M. L. & Kramer, A. F. Task switching and attention deficit hyperactivity disorder. J. Abnorm. Child Psychol. 28, 213–226 (2000).

    Article  PubMed  Google Scholar 

  12. Craig, F. et al. A review of executive function deficits in autism spectrum disorder and attention-deficit/hyperactivity disorder. Neuropsychiatr. Dis. Treat. 12, 1191–1202 (2016).

    PubMed  PubMed Central  Google Scholar 

  13. D’Cruz, A. M. et al. Reduced behavioral flexibility in autism spectrum disorders. Neuropsychology 27, 152–160 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Uddin, L. Q. Brain mechanisms supporting flexible cognition and behavior in adolescents with autism spectrum disorder. Biol. Psychiatry 89, 172–183 (2021).

    Article  PubMed  Google Scholar 

  15. Nieuwenstein, M. R., Aleman, A. & de Haan, E. H. Relationship between symptom dimensions and neurocognitive functioning in schizophrenia: a meta-analysis of WCST and CPT studies. Wisconsin Card Sorting Test. Continuous performance test. J. Psychiatr. Res. 35, 119–125 (2001).

    Article  PubMed  Google Scholar 

  16. Robbins, T. W. & Cools, R. Cognitive deficits in Parkinson’s disease: a cognitive neuroscience perspective. Mov. Disord. 29, 597–607 (2014).

    Article  PubMed  Google Scholar 

  17. Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S. & Cohen, J. D. Conflict monitoring and cognitive control. Psychol. Rev. 108, 624–652 (2001).

    Article  PubMed  Google Scholar 

  18. Monsell, S. Task switching. Trends Cogn. Sci. 7, 134–140 (2003).

    Article  PubMed  Google Scholar 

  19. Goschke, T. in Action Science: Foundations of an Ermerging Discipline (eds Beisert, A et al.) pp. 409–434 (MIT Press, 2013).

  20. Dreisbach, G. & Frober, K. On how to be flexible (or not): modulation of the stability-flexibility balance. Curr. Dir. Psychol. Sci. 28, 3–9 (2018).

    Article  Google Scholar 

  21. Braem, S. & Egner, T. Getting a grip on cognitive flexibility. Curr. Dir. Psychol. Sci. 27, 470–476 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Stroop, J. R. Studies of interference in serial verbal reactions. J. Exp. Psychol. 18, 643–662 (1935).

    Article  Google Scholar 

  23. MacLeod, C. M. Half a century of research on the Stroop effect: an integrative review. Psychol. Bull. 109, 163–203 (1991).

    Article  PubMed  Google Scholar 

  24. Parris, B. A., Hasshim, N., Wadsley, M., Augustinova, M. & Ferrand, L. The loci of Stroop effects: a critical review of methods and evidence for levels of processing contributing to color-word Stroop effects and the implications for the loci of attentional selection. Psychol. Res. 86, 1029–1053 (2022).

    Article  PubMed  Google Scholar 

  25. Cohen, J. D., Dunbar, K. & McClelland, J. L. On the control of automatic processes: a parallel distributed processing account of the Stroop effect. Psychol. Rev. 97, 332–361 (1990).

    Article  PubMed  Google Scholar 

  26. Logan, G. D. & Zbrodoff, N. J. When it helps to be misled: facilitative effects of increasing the frequency of conflicting stimuli in a Stroop-like task. Mem. Cogn. 7, 166–174 (1979).

    Article  Google Scholar 

  27. Gratton, G., Coles, M. G. & Donchin, E. Optimizing the use of information: strategic control of activation of responses. J. Exp. Psychol. Gen. 121, 480–506 (1992).

    Article  PubMed  Google Scholar 

  28. Bugg, J. M. & Chanani, S. List-wide control is not entirely elusive: evidence from picture-word Stroop. Psychon. Bull. Rev. 18, 930–936 (2011).

    Article  PubMed  Google Scholar 

  29. Bugg, J. M. & Crump, M. J. In support of a distinction between voluntary and stimulus-driven control: a review of the literature on proportion congruent effects. Front. Psychol. 3, 367 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Egner, T. Congruency sequence effects and cognitive control. Cogn. Affect. Behav. Neurosci. 7, 380–390 (2007).

    Article  PubMed  Google Scholar 

  31. Egner, T. The Wiley Handbook of Cognitive Control (ed Egner, T.) pp. 64–78 (Wiley-Blackwell, 2017).

  32. Bugg, J. M. Dissociating levels of cognitive control: the case of Stroop interference. Curr. Dir. Psychol. Sci. 21, 302–309 (2012).

    Article  Google Scholar 

  33. Jacoby, L. L., Lindsay, D. S. & Hessels, S. Item-specific control of automatic processes: Stroop process dissociations. Psychon. Bull. Rev. 10, 638–644 (2003).

    Article  PubMed  Google Scholar 

  34. Spinelli, G. & Lupker, S. J. Item-specific control of attention in the Stroop task: contingency learning is not the whole story in the item-specific proportion-congruent effect. Mem. Cogn. 48, 426–435 (2020).

    Article  Google Scholar 

  35. Bugg, J. M., Jacoby, L. L. & Chanani, S. Why it is too early to lose control in accounts of item-specific proportion congruency effects. J. Exp. Psychol. Hum. Percept. Perform. 37, 844–859 (2011).

    Article  PubMed  Google Scholar 

  36. Bugg, J. M. & Hutchison, K. A. Converging evidence for control of color-word Stroop interference at the item level. J. Exp. Psychol. Hum. Percept. Perform. 39, 433–449 (2013).

    Article  PubMed  Google Scholar 

  37. Sudevan, P. & Taylor, D. A. The cuing and priming of cognitive operations. J. Exp. Psychol. Hum. Percept. Perform. 13, 89–103 (1987).

    Article  PubMed  Google Scholar 

  38. Meiran, N. Reconfiguration of processing mode prior to task performance. J. Exp. Psychol. Learn. Mem. Cogn. 22, 1423–1442 (1996).

    Article  Google Scholar 

  39. Waszak, F., Hommel, B. & Allport, A. Task-switching and long-term priming: role of episodic stimulus-task bindings in task-shift costs. Cogn. Psychol. 46, 361–413 (2003).

    Article  PubMed  Google Scholar 

  40. Vandierendonck, A., Liefooghe, B. & Verbruggen, F. Task switching: interplay of reconfiguration and interference control. Psychol. Bull. 136, 601–626 (2010).

    Article  PubMed  Google Scholar 

  41. Dreisbach, G. & Haider, H. Preparatory adjustment of cognitive control in the task switching paradigm. Psychon. Bull. Rev. 13, 334–338 (2006).

    Article  PubMed  Google Scholar 

  42. Monsell, S. & Mizon, G. A. Can the task-cuing paradigm measure an endogenous task-set reconfiguration process? J. Exp. Psychol. Hum. Percept. Perform. 32, 493–516 (2006).

    Article  PubMed  Google Scholar 

  43. Schneider, D. W. & Logan, G. D. Priming cue encoding by manipulating transition frequency in explicitly cued task switching. Psychon. Bull. Rev. 13, 145–151 (2006).

    Article  PubMed  Google Scholar 

  44. Siqi-Liu, A. & Egner, T. Contextual adaptation of cognitive flexibility is driven by task- and item-level learning. Cogn. Affect. Behav. Neurosci. 20, 757–782 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Bejjani, C., Siqi-Liu, A. & Egner, T. Minimal impact of consolidation on learned switch-readiness. J. Exp. Psychol. Learn. Mem. Cogn. 47, 1622–1637 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Kang, M. S. & Chiu, Y. C. Proactive and reactive metacontrol in task switching. Mem. Cogn. 49, 1617–1632 (2021).

    Article  Google Scholar 

  47. Chiu, Y. C. & Egner, T. Cueing cognitive flexibility: item-specific learning of switch readiness. J. Exp. Psychol. Hum. Percept. Perform. 43, 1950–1960 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Frober, K. & Dreisbach, G. Keep flexible — keep switching! The influence of forced task switching on voluntary task switching. Cognition 162, 48–53 (2017).

    Article  PubMed  Google Scholar 

  49. Chiu, Y. C., Frober, K. & Egner, T. Item-specific priming of voluntary task switches. J. Exp. Psychol. Hum. Percept. Perform. 46, 434–441 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Musslick, S. & Cohen, J. D. Rationalizing constraints on the capacity for cognitive control. Trends Cogn. Sci. 25, 757–775 (2021).

    Article  PubMed  Google Scholar 

  51. Geddert, R. & Egner, T. No need to choose: independent regulation of cognitive stability and flexibility challenges the stability-flexibility tradeoff. J. Exp. Psychol. Gen. 151, 3009–3027 (2022).

    Article  PubMed  Google Scholar 

  52. Bejjani, C., Hoyle, R. H. & Egner, T. Distinct but correlated latent factors support the regulation of learned conflict-control and task-switching. Cogn. Psychol. 135, 101474 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Nack, C. & Chiu, Y. C. A dual-dimension framework of cognitive flexibility and stability. Preprint at PsyArXiv https://doi.org/10.31234/osf.io/knmr7 (2022).

  54. Cools, R. & D’Esposito, M. Inverted-U-shaped dopamine actions on human working memory and cognitive control. Biol. Psychiatry 69, e113–e125 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Dreisbach, G. Mechanisms of cognitive control: the functional role of task rules. Curr. Dir. Psychol. Sci. 21, 227–231 (2012).

    Article  Google Scholar 

  56. Meiran, N. in Control of Cognitive Processes: Attention and Performance Vol. XVIII (eds Driver, J. & Monsell, S.) Ch. 16, pp. 377–399 (MIT Press, 2000).

  57. Kiesel, A. et al. Control and interference in task switching — a review. Psychol. Bull. 136, 849–874 (2010).

    Article  PubMed  Google Scholar 

  58. Goschke, T. in Control of Cognitive Processes: Attention and Performance XVIII (eds Monsell, S. & Driver, J.) pp. 331–355 (MIT Press, 2000).

  59. Brown, J. W., Reynolds, J. R. & Braver, T. S. A computational model of fractionated conflict-control mechanisms in task-switching. Cogn. Psychol. 55, 37–85 (2007).

    Article  PubMed  Google Scholar 

  60. Dreisbach, G. & Goschke, T. How positive affect modulates cognitive control: reduced perseveration at the cost of increased distractibility. J. Exp. Psychol. Learn. Mem. Cogn. 30, 343–353 (2004).

    Article  PubMed  Google Scholar 

  61. Goschke, T. & Bolte, A. Emotional modulation of control dilemmas: the role of positive affect, reward, and dopamine in cognitive stability and flexibility. Neuropsychologia 62, 403–423 (2014).

    Article  PubMed  Google Scholar 

  62. Dreisbach, G. How positive affect modulates cognitive control: the costs and benefits of reduced maintenance capability. Brain Cogn. 60, 11–19 (2006).

    Article  PubMed  Google Scholar 

  63. Hefer, C. & Dreisbach, G. How performance-contingent reward prospect modulates cognitive control: increased cue maintenance at the cost of decreased flexibility. J. Exp. Psychol. Learn. Mem. Cogn. 43, 1643–1658 (2017).

    Article  PubMed  Google Scholar 

  64. Chiew, K. S. & Braver, T. S. Dissociable influences of reward motivation and positive emotion on cognitive control. Cogn. Affect. Behav. Neurosci. 14, 509–529 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Braem, S. Conditioning task switching behavior. Cognition 166, 272–276 (2017).

    Article  PubMed  Google Scholar 

  66. Talanow, T. & Ettinger, U. Effects of task repetition but no transfer of inhibitory control training in healthy adults. Acta Psychol. 187, 37–53 (2018).

    Article  Google Scholar 

  67. Zhao, X., Wang, H. & Maes, J. H. R. Training and transfer effects of extensive task-switching training in students. Psychol. Res. 84, 389–403 (2020).

    Article  PubMed  Google Scholar 

  68. Miyake, A. et al. The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: a latent variable analysis. Cogn. Psychol. 41, 49–100 (2000).

    Article  PubMed  Google Scholar 

  69. Miyake, A. & Friedman, N. P. The nature and organization of individual differences in executive functions: four general conclusions. Curr. Dir. Psychol. Sci. 21, 8–14 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Frober, K., Raith, L. & Dreisbach, G. The dynamic balance between cognitive flexibility and stability: the influence of local changes in reward expectation and global task context on voluntary switch rate. Psychol. Res. 82, 65–77 (2018).

    Article  PubMed  Google Scholar 

  71. Shenhav, A., Botvinick, M. M. & Cohen, J. D. The expected value of control: an integrative theory of anterior cingulate cortex function. Neuron 79, 217–240 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Kool, W. & Botvinick, M. A labor/leisure tradeoff in cognitive control. J. Exp. Psychol. Gen. 143, 131–141 (2014).

    Article  PubMed  Google Scholar 

  73. Kool, W., McGuire, J. T., Rosen, Z. B. & Botvinick, M. M. Decision making and the avoidance of cognitive demand. J. Exp. Psychol. Gen. 139, 665–682 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Westbrook, A., Kester, D. & Braver, T. S. What is the subjective cost of cognitive effort? Load, trait, and aging effects revealed by economic preference. PLoS ONE 8, e68210 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Braver, T. S. The variable nature of cognitive control: a dual mechanisms framework. Trends Cogn. Sci. 16, 106–113 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Egner, T. Creatures of habit (and control): a multi-level learning perspective on the modulation of congruency effects. Front. Psychol. 5, 1247 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Jiang, J., Heller, K. & Egner, T. Bayesian modeling of flexible cognitive control. Neurosci. Biobehav. Rev. 46, 30–43 (2014).

    Article  PubMed  Google Scholar 

  78. Jiang, J., Wagner, A. D. & Egner, T. Integrated externally and internally generated task predictions jointly guide cognitive control in prefrontal cortex. eLife 7, e39497 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Wen, T., Geddert, R. M., Madlon-Kay, S. & Egner, T. Transfer of learned cognitive flexibility to novel stimuli and task sets. Psychol. Sci. 34, 435–454 (2023).

    Article  PubMed  Google Scholar 

  80. Spinelli, G., Perry, J. R. & Lupker, S. J. Adaptation to conflict frequency without contingency and temporal learning: evidence from the picture-word interference task. J. Exp. Psychol. Hum. Percept. Perform. 45, 995–1014 (2019).

    Article  PubMed  Google Scholar 

  81. Bugg, J. M. Conflict-triggered top-down control: default mode, last resort, or no such thing. J. Exp. Psychol. Learn. Mem. Cogn. 40, 567–587 (2014).

    Article  PubMed  Google Scholar 

  82. Hutchison, K. A. The interactive effects of listwide control, item-based control, and working memory capacity on Stroop performance. J. Exp. Psychol. Learn. Mem. Cogn. 37, 851–860 (2011).

    Article  PubMed  Google Scholar 

  83. Gonthier, C., Braver, T. S. & Bugg, J. M. Dissociating proactive and reactive control in the Stroop task. Mem. Cogn. 44, 778–788 (2016).

    Article  Google Scholar 

  84. Spinelli, G. & Lupker, S. J. Proactive control in the Stroop task: a conflict-frequency manipulation free of item-specific, contingency-learning, and color-word correlation confounds. J. Exp. Psychol. Learn. Mem. Cogn. 47, 1550–1562 (2021).

    Article  PubMed  Google Scholar 

  85. Spinelli, G. & Lupker, S. J. Robust evidence for proactive conflict adaptation in the proportion-congruent paradigm. J. Exp. Psychol. Learn. Mem. Cogn. 49, 675–700 (2022).

    Article  PubMed  Google Scholar 

  86. Bugg, J. M. & Gonthier, C. List-level control in the flanker task. Q. J. Exp. Psychol. 73, 1444–1459 (2020).

    Article  Google Scholar 

  87. Bejjani, C., Tan, S. & Egner, T. Performance feedback promotes proactive but not reactive adaptation of conflict-control. J. Exp. Psychol. Hum. Percept. Perform. 46, 369–387 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Bejjani, C. & Egner, T. Evaluating the learning of stimulus-control associations through incidental memory of reinforcement events. J. Exp. Psychol. Learn. Mem. Cogn. 47, 1599–1621 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Sabah, K., Dolk, T., Meiran, N. & Dreisbach, G. When less is more: costs and benefits of varied vs. fixed content and structure in short-term task switching training. Psychol. Res. 83, 1531–1542 (2019).

    Article  PubMed  Google Scholar 

  90. Sabah, K., Dolk, T., Meiran, N. & Dreisbach, G. Enhancing task-demands disrupts learning but enhances transfer gains in short-term task-switching training. Psychol. Res. 85, 1473–1487 (2021).

    Article  PubMed  Google Scholar 

  91. Siqi-Liu, A. & Egner, T. Task sets define boundaries of learned cognitive flexibility in list-wide proportion switch manipulations. J. Exp. Psychol. Hum. Percept. Perform. 49, 1111–1122 (2023).

    Article  PubMed  Google Scholar 

  92. Hazeltine, E., Lightman, E., Schwarb, H. & Schumacher, E. H. The boundaries of sequential modulations: evidence for set-level control. J. Exp. Psychol. Hum. Percept. Perform. 37, 1898–1914 (2011).

    Article  PubMed  Google Scholar 

  93. Grant, L. D., Cookson, S. L. & Weissman, D. H. Task sets serve as boundaries for the congruency sequence effect. J. Exp. Psychol. Hum. Percept. Perform. 46, 798–812 (2020).

    Article  PubMed  Google Scholar 

  94. Schumacher, E. H. & Hazeltine, E. Hierarchical task representation: task files and response selection. Curr. Dir. Psychol. Sci. 25, 449–454 (2016).

    Article  Google Scholar 

  95. Blais, C., Robidoux, S., Risko, E. F. & Besner, D. Item-specific adaptation and the conflict-monitoring hypothesis: a computational model. Psychol. Rev. 114, 1076–1086 (2007).

    Article  PubMed  Google Scholar 

  96. Verguts, T. & Notebaert, W. Hebbian learning of cognitive control: dealing with specific and nonspecific adaptation. Psychol. Rev. 115, 518–525 (2008).

    Article  PubMed  Google Scholar 

  97. Abrahamse, E., Braem, S., Notebaert, W. & Verguts, T. Grounding cognitive control in associative learning. Psychol. Bull. 142, 693–728 (2016).

    Article  PubMed  Google Scholar 

  98. Verguts, T. & Notebaert, W. Adaptation by binding: a learning account of cognitive control. Trends Cogn. Sci. 13, 252–257 (2009).

    Article  PubMed  Google Scholar 

  99. Hommel, B., Musseler, J., Aschersleben, G. & Prinz, W. The Theory of Event Coding (TEC): a framework for perception and action planning. Behav. Brain Sci. 24, 849–878 (2001).

    Article  PubMed  Google Scholar 

  100. Frings, C. et al. Binding and retrieval in action control (BRAC). Trends Cogn. Sci. 24, 375–387 (2020).

    Article  PubMed  Google Scholar 

  101. Dignath, D., Johannsen, L., Hommel, B. & Kiesel, A. Reconciling cognitive-control and episodic-retrieval accounts of sequential conflict modulation: binding of control-states into event-files. J. Exp. Psychol. Hum. Percept. Perform. 45, 1265–1270 (2019).

    Article  PubMed  Google Scholar 

  102. Hommel, B. Event files: evidence for automatic integration of stimulus-response episodes. Vis. Cogn. 5, 183–216 (1998).

    Article  Google Scholar 

  103. Hommel, B. Event files: feature binding in and across perception and action. Trends Cogn. Sci. 8, 494–500 (2004).

    Article  PubMed  Google Scholar 

  104. Kikumoto, A. & Mayr, U. Conjunctive representations that integrate stimuli, responses, and rules are critical for action selection. Proc. Natl Acad. Sci. USA 117, 10603–10608 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Spape, M. M. & Hommel, B. He said, she said: episodic retrieval induces conflict adaptation in an auditory Stroop task. Psychon. Bull. Rev. 15, 1117–1121 (2008).

    Article  PubMed  Google Scholar 

  106. Duncan, K. D. & Shohamy, D. Memory states influence value-based decisions. J. Exp. Psychol. Gen. 145, 1420–1426 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Mayr, U. & Bryck, R. L. Sticky rules: integration between abstract rules and specific actions. J. Exp. Psychol. Learn. Mem. Cogn. 31, 337–350 (2005).

    Article  PubMed  Google Scholar 

  108. Schiltenwolf, M., Kiesel, A. & Dignath, D. No temporal decay of cognitive control in the congruency sequence effect. J. Exp. Psychol. Learn. Mem. Cogn. 49, 1247–1263 (2022).

    Article  PubMed  Google Scholar 

  109. Brosowsky, N. P. & Crump, M. J. C. Memory-guided selective attention: single experiences with conflict have long-lasting effects on cognitive control. J. Exp. Psychol. Gen. 147, 1134–1153 (2018).

    Article  PubMed  Google Scholar 

  110. Whitehead, P. S., Pfeuffer, C. U. & Egner, T. Memories of control: one-shot episodic learning of item-specific stimulus-control associations. Cognition 199, 104220 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Sutton, R. & Barto, A. Reinforcement Learning (MIT Press, 1998).

  112. Behrens, T. E., Woolrich, M. W., Walton, M. E. & Rushworth, M. F. Learning the value of information in an uncertain world. Nat. Neurosci. 10, 1214–1221 (2007).

    Article  PubMed  Google Scholar 

  113. Blais, C. & Verguts, T. Increasing set size breaks down sequential congruency: evidence for an associative locus of cognitive control. Acta Psychol. 141, 133–139 (2012).

    Article  Google Scholar 

  114. Plonsky, O., Teodorescu, K. & Erev, I. Reliance on small samples, the wavy recency effect, and similarity-based learning. Psychol. Rev. 122, 621–647 (2015).

    Article  PubMed  Google Scholar 

  115. Bornstein, A. M., Khaw, M. W., Shohamy, D. & Daw, N. D. Reminders of past choices bias decisions for reward in humans. Nat. Commun. 8, 15958 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Wang, S., Feng, S. F. & Bornstein, A. M. Mixing memory and desire: how memory reactivation supports deliberative decision-making. Wiley Interdiscip. Rev. Cogn. Sci. 13, e1581 (2021).

    Article  PubMed  Google Scholar 

  117. Bornstein, A. M. & Norman, K. A. Reinstated episodic context guides sampling-based decisions for reward. Nat. Neurosci. 20, 997–1003 (2017).

    Article  PubMed  Google Scholar 

  118. Horner, A. J., Bisby, J. A., Bush, D., Lin, W. J. & Burgess, N. Evidence for holistic episodic recollection via hippocampal pattern completion. Nat. Commun. 6, 7462 (2015).

    Article  PubMed  Google Scholar 

  119. Chiu, Y. C., Jiang, J. & Egner, T. The caudate nucleus mediates learning of stimulus-control state associations. J. Neurosci. 37, 1028–1038 (2017).

    Article  PubMed  Google Scholar 

  120. Whitehead, P. S., Pfeuffer, C. U. & Egner, T. Assessing the durability of one-shot stimulus-control bindings. J. Cogn. 5, 26 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Nicholas, J., Daw, N. D. & Shohamy, D. Uncertainty alters the balance between incremental learning and episodic memory. eLife https://doi.org/10.7554/eLife.81679 (2022).

  122. Gershman, S. J. & Daw, N. D. Reinforcement learning and episodic memory in humans and animals: an integrative framework. Annu. Rev. Psychol. 68, 101–128 (2017).

    Article  PubMed  Google Scholar 

  123. Crump, M. J. & Milliken, B. The flexibility of context-specific control: evidence for context-driven generalization of item-specific control settings. Q. J. Exp. Psychol. 62, 1523–1532 (2009).

    Article  Google Scholar 

  124. Bejjani, C., Zhang, Z. & Egner, T. Control by association: transfer of implicitly primed attentional states across linked stimuli. Psychon. Bull. Rev. 25, 617–626 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Behrens, T. E. J. et al. What is a cognitive map? Organizing knowledge for flexible behavior. Neuron 100, 490–509 (2018).

    Article  PubMed  Google Scholar 

  126. Vaidya, A. R. & Badre, D. Abstract task representations for inference and control. Trends Cogn. Sci. 26, 484–498 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Schmidt, J. R. Questioning conflict adaptation: proportion congruent and Gratton effects reconsidered. Psychon. Bull. Rev. 20, 615–630 (2013).

    Article  PubMed  Google Scholar 

  128. Schmidt, J. R. Evidence against conflict monitoring and adaptation: an updated review. Psychon. Bull. Rev. 26, 753–771 (2019).

    Article  PubMed  Google Scholar 

  129. Braem, S. et al. Measuring adaptive control in conflict tasks. Trends Cogn. Sci. 23, 769–783 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Spinelli, G., Morton, J. B. & Lupker, S. J. Both task-irrelevant and task-relevant information trigger reactive conflict adaptation in the item-specific proportion-congruent paradigm. Psychon. Bull. Rev. 29, 2133–2145 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Algom, D., Fitousi, D. & Chajut, E. Can the Stroop effect serve as the gold standard of conflict monitoring and control? A conceptual critique. Mem. Cogn. 50, 883–897 (2022).

    Article  Google Scholar 

  132. Goldman-Rakic, P. S. in Handbook of Physiology, Section1: The Nervous System Vol. 5 (eds Plum, F. & Mountcastle, V. B.) pp. 373–417 (American Physiological Society, 1987).

  133. Fuster, J. M. & Alexander, G. E. Neuron activity related to short-term memory. Science 173, 652–654 (1971).

    Article  PubMed  Google Scholar 

  134. Freedman, D. J., Riesenhuber, M., Poggio, T. & Miller, E. K. Categorical representation of visual stimuli in the primate prefrontal cortex. Science 291, 312–316 (2001).

    Article  PubMed  Google Scholar 

  135. Stokes, M. G. et al. Dynamic coding for cognitive control in prefrontal cortex. Neuron 78, 364–375 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Woolgar, A., Hampshire, A., Thompson, R. & Duncan, J. Adaptive coding of task-relevant information in human frontoparietal cortex. J. Neurosci. 31, 14592–14599 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Waskom, M. L., Kumaran, D., Gordon, A. M., Rissman, J. & Wagner, A. D. Frontoparietal representations of task context support the flexible control of goal-directed cognition. J. Neurosci. 34, 10743–10755 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Miller, E. K. The prefrontal cortex and cognitive control. Nat. Rev. Neurosci. 1, 59–65 (2000).

    Article  PubMed  Google Scholar 

  139. Duncan, J. An adaptive coding model of neural function in prefrontal cortex. Nat. Rev. Neurosci. 2, 820–829 (2001).

    Article  PubMed  Google Scholar 

  140. Desimone, R. & Duncan, J. Neural mechanisms of selective visual attention. Annu. Rev. Neurosci. 18, 193–222 (1995).

    Article  PubMed  Google Scholar 

  141. Gazzaley, A. & Nobre, A. C. Top-down modulation: bridging selective attention and working memory. Trends Cogn. Sci. 16, 129–135 (2012).

    Article  PubMed  Google Scholar 

  142. Kolling, N., Behrens, T., Wittmann, M. K. & Rushworth, M. Multiple signals in anterior cingulate cortex. Curr. Opin. Neurobiol. 37, 36–43 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Alexander, W. H. & Brown, J. W. Medial prefrontal cortex as an action-outomce predictor. Nat. Neurosci. 14, 1338–1344 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Mansouri, F. A., Egner, T. & Buckley, M. J. Monitoring demands for executive control: shared functions between human and nonhuman primates. Trends Neurosci. 40, 15–27 (2017).

    Article  PubMed  Google Scholar 

  145. Botvinick, M. M., Nystrom, L. E., Fissell, K., Carter, C. S. & Cohen, J. D. Conflict monitoring versus selection-for-action in anterior cingulate cortex. Nature 402, 179–181 (1999).

    Article  PubMed  Google Scholar 

  146. MacDonald, A. W. 3rd, Cohen, J. D., Stenger, V. A. & Carter, C. S. Dissociating the role of the dorsolateral prefrontal and anterior cingulate cortex in cognitive control. Science 288, 1835–1838 (2000).

    Article  PubMed  Google Scholar 

  147. Kerns, J. G. et al. Anterior cingulate conflict monitoring and adjustments in control. Science 303, 1023–1026 (2004).

    Article  PubMed  Google Scholar 

  148. Egner, T. & Hirsch, J. Cognitive control mechanisms resolve conflict through cortical amplification of task-relevant information. Nat. Neurosci. 8, 1784–1790 (2005).

    Article  PubMed  Google Scholar 

  149. Muhle-Karbe, P. S., Jiang, J. & Egner, T. Causal evidence for learning-dependent frontal lobe contributions to cognitive control. J. Neurosci. 38, 962–973 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Jiang, J., Beck, J., Heller, K. & Egner, T. An insula-frontostriatal network mediates flexible cognitive control by adaptively predicting changing control demands. Nat. Commun. 6, 8165 (2015).

    Article  PubMed  Google Scholar 

  151. Chiu, Y. C. & Egner, T. Cortical and subcortical contributions to context-control learning. Neurosci. Biobehav. Rev. 99, 33–41 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Owen, A. M., McMillan, K. M., Laird, A. R. & Bullmore, E. N-back working memory paradigm: a meta-analysis of normative functional neuroimaging studies. Hum. Brain Mapp. 25, 46–59 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Kim, C., Cilles, S. E., Johnson, N. F. & Gold, B. T. Domain general and domain preferential brain regions associated with different types of task switching: a meta-analysis. Hum. Brain Mapp. 33, 130–142 (2012).

    Article  PubMed  Google Scholar 

  154. Worringer, B. et al. Common and distinct neural correlates of dual-tasking and task-switching: a meta-analytic review and a neuro-cognitive processing model of human multitasking. Brain Struct. Funct. 224, 1845–1869 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Nir-Cohen, G., Kessler, Y. & Egner, T. Neural substrates of working memory updating. J. Cogn. Neurosci. 32, 2285–2302 (2020).

    Article  PubMed  Google Scholar 

  156. Murty, V. P. et al. Selective updating of working memory content modulates meso-cortico-striatal activity. Neuroimage 57, 1264–1272 (2011).

    Article  PubMed  Google Scholar 

  157. Cools, R., Sheridan, M., Jacobs, E. & D’Esposito, M. Impulsive personality predicts dopamine-dependent changes in frontostriatal activity during component processes of working memory. J. Neurosci. 27, 5506–5514 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Chatham, C. H. & Badre, D. Multiple gates on working memory. Curr. Opin. Behav. Sci. 1, 23–31 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Leber, A. B., Turk-Browne, N. B. & Chun, M. M. Neural predictors of moment-to-moment fluctuations in cognitive flexibility. Proc. Natl Acad. Sci. USA 105, 13592–13597 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  160. De Baene, W. & Brass, M. Switch probability context (in)sensitivity within the cognitive control network. Neuroimage 77, 207–214 (2013).

    Article  PubMed  Google Scholar 

  161. Sayali, C. & Badre, D. Neural systems underlying the learning of cognitive effort costs. Cogn. Affect. Behav. Neurosci. 21, 698–716 (2021).

    Article  PubMed  Google Scholar 

  162. Cools, R. Chemistry of the adaptive mind: lessons from dopamine. Neuron 104, 113–131 (2019).

    Article  PubMed  Google Scholar 

  163. den Ouden, H. E. et al. Dissociable effects of dopamine and serotonin on reversal learning. Neuron 80, 1090–1100 (2013).

    Article  Google Scholar 

  164. Furman, D. J. et al. Effects of dopaminergic drugs on cognitive control processes vary by genotype. J. Cogn. Neurosci. 32, 804–821 (2020).

    Article  PubMed  Google Scholar 

  165. Salthouse, T. A., Babcock, R. L. & Shaw, R. J. Effects of adult age on structural and operational capacities in working memory. Psychol. Aging 6, 118–127 (1991).

    Article  PubMed  Google Scholar 

  166. Cepeda, N. J., Kramer, A. F. & Gonzalez de Sather, J. C. Changes in executive control across the life span: examination of task-switching performance. Dev. Psychol. 37, 715–730 (2001).

    Article  PubMed  Google Scholar 

  167. Cuthbert, B. N. & Insel, T. R. Toward new approaches to psychotic disorders: the NIMH research domain criteria project. Schizophr. Bull. 36, 1061–1062 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Barkley, R. A. Behavioral inhibition, sustained attention, and executive functions: constructing a unifying theory of ADHD. Psychol. Bull. 121, 65–94 (1997).

    Article  PubMed  Google Scholar 

  169. Hupfeld, K. E., Abagis, T. R. & Shah, P. Living “in the zone”: hyperfocus in adult ADHD. Atten. Defic. Hyperact. Disord. 11, 191–208 (2019).

    Article  PubMed  Google Scholar 

  170. Maia, T. V. & Frank, M. J. From reinforcement learning models to psychiatric and neurological disorders. Nat. Neurosci. 14, 154–162 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Kishida, K. T., King-Casas, B. & Montague, P. R. Neuroeconomic approaches to mental disorders. Neuron 67, 543–554 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Gillan, C. M., Kosinski, M., Whelan, R., Phelps, E. A. & Daw, N. D. Characterizing a psychiatric symptom dimension related to deficits in goal-directed control. eLife 5, e11305 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Atallah, H. E., Frank, M. J. & O’Reilly, R. C. Hippocampus, cortex, and basal ganglia: insights from computational models of complementary learning systems. Neurobiol. Learn. Mem. 82, 253–267 (2004).

    Article  PubMed  Google Scholar 

  174. Squire, L. R. Memory systems of the brain: a brief history and current perspective. Neurobiol. Learn. Mem. 82, 171–177 (2004).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The author thanks J. Jiang, Y.-C. Chiu, C. Bejjani, P. Whitehead, A. Siqi-Liu and R. Geddert for collaborations and discussions leading to this Perspective. This work was supported by grant R01MH116967 by the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Egner.

Ethics declarations

Competing interests

The author declares no competing interests.

Peer review

Peer review information

Nature Reviews Psychology thanks Maria Augustinova, David Badre and Gesine Dreisbach for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Egner, T. Principles of cognitive control over task focus and task switching. Nat Rev Psychol 2, 702–714 (2023). https://doi.org/10.1038/s44159-023-00234-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44159-023-00234-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing