Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Environmental influences on mathematics performance in early childhood

Abstract

Mathematics skills relate to lifelong career, health and financial outcomes. Individuals’ cognitive abilities predict mathematics performance and there is growing recognition that environmental influences, including differences in culture and variability in mathematics engagement, also affect mathematics performance. In this Review, we summarize evidence indicating that differences between languages, exposure to maths-focused language, socioeconomic status, attitudes and beliefs about mathematics, and engagement with mathematics activities influence young children’s mathematics performance. These influences play out at the community and individual levels. However, research on the role of these environmental influences for foundational number skills, including understanding of number words, is limited. Future research is needed to understand individual differences in the development of early emerging mathematics skills such as number word skills, examining to what extent different types of environmental input are necessary and how children’s cognitive abilities shape the impact of environmental input.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Abilities and environmental factors influencing symbolic mathematics performance.
Fig. 2: Typical timeline for emergence of foundational mathematics skills in English-speaking children.
Fig. 3: Average timeline of the number word acquisition process for English-speaking children.

Similar content being viewed by others

References

  1. Agarwal, S. & Mazumder, B. Cognitive abilities and household financial decision making. Am. Econ. J. Appl. Econ. 5, 193–207 (2013).

    Article  Google Scholar 

  2. Currie, J. & Thomas, D. Early test scores, socioeconomic status and future outcomes. Res. Labor. Econ. 20, 103–132 (2001).

    Article  Google Scholar 

  3. Reyna, V. F. & Brainerd, C. J. The importance of math in health and human judgment: numeracy, risk communication, and medical decision making. Learn. Individ. Differences 17, 147–159 (2007).

    Article  Google Scholar 

  4. Trusty, J., Robinson, C. R., Plata, M. & Ng, K.-M. Effects of gender, socioeconomic status, and early academic performance on postsecondary educational choice. J. Counseling Dev. 78, 463–472 (2000).

    Article  Google Scholar 

  5. Jordan, N. C., Kaplan, D., Ramineni, C. & Locuniak, M. N. Early math matters: kindergarten number competence and later mathematics outcomes. Dev. Psychol. 45, 850–867 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Duncan, G. J. et al. School readiness and later achievement. Dev. Psychol. 43, 1428–1446 (2007).

    Article  PubMed  Google Scholar 

  7. Coolen, I. et al. Domain-general and domain-specific influences on emerging numerical cognition: contrasting uni-and bidirectional prediction models. Cognition 215, 104816 (2021).

    Article  PubMed  Google Scholar 

  8. Chu, F. W., vanMarle, K. & Geary, D. C. Predicting children’s reading and mathematics achievement from early quantitative knowledge and domain-general cognitive abilities. Front. Psychol. 7, 775 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Espy, K. A. et al. The contribution of executive functions to emergent mathematic skills in preschool children. Dev. Neuropsychol. 26, 465–486 (2004).

    Article  PubMed  Google Scholar 

  10. Fuchs, L. et al. The prevention, identification, and cognitive determinants of math difficulty. J. Educ. Psychol. 97, 493–513 (2005).

    Article  Google Scholar 

  11. Aunola, K., Leskinen, E., Lerkkanen, M.-K. & Nurmi, J.-E. Developmental dynamics of math performance from preschool to grade 2. J. Educ. Psychol. 96, 699–713 (2004).

    Article  Google Scholar 

  12. Geary, D. C. Cognitive predictors of achievement growth in mathematics: a 5-year longitudinal study. Dev. Psychol. 47, 1539–1552 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Passolunghi, M. C., Cargnelutti, E. & Pastore, M. The contribution of general cognitive abilities and approximate number system to early mathematics. Br. J. Educ. Psychol. 84, 631–649 (2014).

    Article  PubMed  Google Scholar 

  14. Feigenson, L., Dehaene, S. & Spelke, E. Core systems of number. Trends Cogn. Sci. 8, 307–314 (2004).

    Article  PubMed  Google Scholar 

  15. Krajcsi, A., Kojouharova, P. & Lengyel, G. in A Life in Cognition. Language, Cognition, and Mind, vol 11 (eds Gervain, J., Csibra, G. & Kovacs, K.) 379-394 (Springer, 2022).

  16. Gebuis, T., Cohen Kadosh, R. & Gevers, W. Sensory-integration system rather than approximate number system underlies numerosity processing: a critical review. Acta Psychol. 171, 17–35 (2016).

    Article  Google Scholar 

  17. Leibovich, T., Katzin, N., Harel, M. & Henik, A. From “sense of number” to “sense of magnitude”: the role of continuous magnitudes in numerical cognition. Behav. Brain Sci. 40, e164 (2017).

    Article  PubMed  Google Scholar 

  18. Halberda, J. Perceptual input is not conceptual content. Trends Cogn. Sci. 23, 636–638 (2019).

    Article  PubMed  Google Scholar 

  19. Clarke, S. & Beck, J. The number sense represents (rational) numbers. Behav. Brain Sci. 44, E178 (2021).

  20. Feigenson, L. & Carey, S. On the limits of infants’ quantification of small object arrays. Cognition 97, 295–313 (2005).

    Article  PubMed  Google Scholar 

  21. Barner, D. Bootstrapping numeral meanings and the origin of exactness. Lang. Learn. Dev. 8, 177–185 (2012).

    Article  Google Scholar 

  22. Barner, D. Language, procedures, and the non-perceptual origin of number word meanings. J. Child. Lang. 44, 553–590 (2017).

    Article  PubMed  Google Scholar 

  23. Carey, S. & Barner, D. Ontogenetic origins of human integer representations. Trends Cogn. Sci. 23, 823–835 (2019).

    Article  PubMed  Google Scholar 

  24. Carey, S., Shusterman, A., Haward, P. & Distefano, R. Do analog number representations underlie the meanings of young children’s verbal numerals? Cognition 168, 243–255 (2017).

    Article  PubMed  Google Scholar 

  25. Gunderson, E. A., Spaepen, E. & Levine, S. C. Approximate number word knowledge before the cardinal principle. J. Exp. Child. Psychol. 130, 35–55 (2015).

    Article  PubMed  Google Scholar 

  26. Le Corre, M. & Carey, S. One, two, three, four, nothing more: an investigation of the conceptual sources of the verbal counting principles. Cognition 105, 395–438 (2007).

    Article  PubMed  Google Scholar 

  27. Sarnecka, B. W. Learning to represent exact numbers. Synthese 198, 1001–1018 (2015).

    Article  Google Scholar 

  28. Feigenson, L. & Carey, S. Tracking individuals via object-files: evidence from infants’ manual search. Dev. Sci. 6, 568–584 (2003).

    Article  Google Scholar 

  29. Dehaene, S., Dehaene-Lambertz, G. & Cohen, L. Abstract representations of numbers in the animal and human brain. Trends Neurosci. 21, 355–361 (1998).

    Article  PubMed  Google Scholar 

  30. Libertus, M. E. & Brannon, E. M. Behavioral and neural basis of number sense in infancy. Curr. Dir. Psychol. Sci. 18, 346–351 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Libertus, M. E. & Brannon, E. M. Stable individual differences in number discrimination in infancy. Dev. Sci. 13, 900–906 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Halberda, J., Ly, R., Wilmer, J. B., Naiman, D. Q. & Germine, L. Number sense across the lifespan as revealed by a massive internet-based sample. Proc. Natl Acad. Sci. USA 109, 11116–11120 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Dehaene, S. Origins of mathematical intuitions: the case of arithmetic. Ann. N. Y. Acad. Sci. 1156, 232–259 (2009).

    Article  PubMed  Google Scholar 

  34. Libertus, M. E., Odic, D., Feigenson, L. & Halberda, J. The precision of mapping between number words and the approximate number system predicts children’s formal math abilities. J. Exp. Child. Psychol. 150, 207–226 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Mussolin, C., Nys, J., Leybaert, J. & Content, A. How approximate and exact number skills are related to each other across development: a review. Dev. Rev. 39, 1–15 (2016).

    Article  Google Scholar 

  36. Nieder, A. Number faculty is rooted in our biological heritage. Trends Cogn. Sci. 21, 403–404 (2017).

    Article  PubMed  Google Scholar 

  37. Odic, D., Le Corre, M. & Halberda, J. Children’s mappings between number words and the approximate number system. Cognition 138, 102–121 (2015).

    Article  PubMed  Google Scholar 

  38. Park, J., Bermudez, V., Roberts, R. C. & Brannon, E. M. Non-symbolic approximate arithmetic training improves math performance in preschoolers. J. Exp. Child. Psychol. 152, 278–293 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Pinheiro-Chagas, P. et al. In how many ways is the approximate number system associated with exact calculation? PLoS One 9, e111155 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Starr, A., Libertus, M. E. & Brannon, E. M. Number sense in infancy predicts mathematical abilities in childhood. Proc. Natl Acad. Sci. USA 110, 18116–18120 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Wagner, J. B. & Johnson, S. C. An association between understanding cardinality and analog magnitude representations in preschoolers. Cognition 119, 10–22 (2011).

    Article  PubMed  Google Scholar 

  42. Chen, Q. & Li, J. Association between individual differences in non-symbolic number acuity and math performance: a meta-analysis. Acta Psychol. 148, 163–172 (2014).

    Article  Google Scholar 

  43. Fazio, L. K., Bailey, D. H., Thompson, C. A. & Siegler, R. S. Relations of different types of numerical magnitude representations to each other and to mathematics achievement. J. Exp. Child. Psychol. 123, 53–72 (2014).

    Article  PubMed  Google Scholar 

  44. Schneider, M. et al. Associations of non-symbolic and symbolic numerical magnitude processing with mathematical competence: a meta-analysis. Dev. Sci. 20, e12372 (2017).

    Article  Google Scholar 

  45. Szkudlarek, E. & Brannon, E. M. Does the approximate number system serve as a foundation for symbolic mathematics? Lang. Learn. Dev. 13, 171–190 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Piazza, M. et al. Developmental trajectory of number acuity reveals a severe impairment in developmental dyscalculia. Cognition 116, 33–41 (2010).

    Article  PubMed  Google Scholar 

  47. Mazzocco, M. M., Feigenson, L. & Halberda, J. Impaired acuity of the approximate number system underlies mathematical learning disability (dyscalculia). Child. Dev. 82, 1224–1237 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Wang, J. J., Halberda, J. & Feigenson, L. Approximate number sense correlates with math performance in gifted adolescents. Acta Psychol. 176, 78–84 (2017).

    Article  Google Scholar 

  49. Geary, D. C. Early foundations for mathematics learning and their relations to learning disabilities. Curr. Dir. Psychol. Sci. 22, 23–27 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Holloway, I. D. & Ansari, D. Mapping numerical magnitudes onto symbols: the numerical distance effect and individual differences in children’s mathematics achievement. J. Exp. Child. Psychol. 103, 17–29 (2009).

    Article  PubMed  Google Scholar 

  51. Rathé, S., Torbeyns, J., De Smedt, B. & Verschaffel, L. Spontaneous focusing on Arabic number symbols and its association with early mathematical competencies. Early Child. Res. Q. 48, 111–121 (2019).

    Article  Google Scholar 

  52. Zhou, X. & Wang, B. Preschool children’s representation and understanding of written number symbols. Early Child. Dev. Care 174, 253–266 (2004).

    Article  Google Scholar 

  53. Hornburg, C. B., Schmitt, S. A. & Purpura, D. J. Relations between preschoolers’ mathematical language understanding and specific numeracy skills. J. Exp. Child. Psychol. 176, 84–100 (2018).

    Article  PubMed  Google Scholar 

  54. King, Y. A. & Purpura, D. J. Direct numeracy activities and early math skills: math language as a mediator. Early Child. Res. Q. 54, 252–259 (2021).

    Article  Google Scholar 

  55. Purpura, D. J. & Logan, J. A. The nonlinear relations of the approximate number system and mathematical language to early mathematics development. Dev. Psychol. 51, 1717–1724 (2015).

    Article  PubMed  Google Scholar 

  56. Toll, S. W. M. & Van Luit, J. E. H. The developmental relationship between language and low early numeracy skills throughout kindergarten. Exceptional Child. 81, 64–78 (2014).

    Article  Google Scholar 

  57. Gray, S. A. & Reeve, R. A. Number-specific and general cognitive markers of preschoolers’ math ability profiles. J. Exp. Child. Psychol. 147, 1–21 (2016).

    Article  PubMed  Google Scholar 

  58. Hannula, M. M. & Lehtinen, E. Spontaneous focusing on numerosity and mathematical skills of young children. Learn. Instr. 15, 237–256 (2005).

    Article  Google Scholar 

  59. McMullen, J., Hannula-Sormunen, M. M. & Lehtinen, E. Preschool spontaneous focusing on numerosity predicts rational number conceptual knowledge 6 years later. Zdm 47, 813–824 (2015).

    Article  Google Scholar 

  60. Nanu, C. E., McMullen, J., Munck, P., Pipari Study, G. & Hannula-Sormunen, M. M. Spontaneous focusing on numerosity in preschool as a predictor of mathematical skills and knowledge in the fifth grade. J. Exp. Child. Psychol. 169, 42–58 (2018).

    Article  PubMed  Google Scholar 

  61. Cheng, Y.-L. & Mix, K. S. Spatial training improves children’s mathematics ability. J. Cogn. Dev. 15, 2–11 (2013).

    Article  Google Scholar 

  62. Purpura, D. J., Napoli, A. R., Wehrspann, E. A. & Gold, Z. S. Causal connections between mathematical language and mathematical knowledge: a dialogic reading intervention. J. Res. Educ. Effective. 10, 116–137 (2016).

    Article  Google Scholar 

  63. Pruden, S. M., Levine, S. C. & Huttenlocher, J. Children’s spatial thinking: does talk about the spatial world matter? Dev. Sci. 14, 1417–1430 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Rittle-Johnson, B., Zippert, E. L. & Boice, K. L. The roles of patterning and spatial skills in early mathematics development. Early Child. Res. Q. 46, 166–178 (2019).

    Article  Google Scholar 

  65. Verdine, B. N., Golinkoff, R. M., Hirsh-Pasek, K. & Newcombe, N. S. I. Spatial skills, their development, and their links to mathematics. Monogr. Soc. Res. Child. Dev. 82, 7–30 (2017).

    Article  PubMed  Google Scholar 

  66. Fuchs, L. S. et al. The contributions of numerosity and domain-general abilities to school readiness. Child. Dev. 81, 1520–1533 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Träff, U., Olsson, L., Skagerlund, K. & Östergren, R. Kindergarten domain-specific and domain-general cognitive precursors of hierarchical mathematical development: a longitudinal study. J. Educ. Psychol. 112, 93–109 (2020).

    Article  Google Scholar 

  68. Xenidou-Dervou, I. et al. Cognitive predictors of children’s development in mathematics achievement: a latent growth modeling approach. Dev. Sci. 21, e12671 (2018).

    Article  PubMed  Google Scholar 

  69. Hrastinski, I. & Wilbur, R. B. Academic achievement of deaf and hard-of-hearing students in an ASL/English bilingual program. J. Deaf. Stud. Deaf Educ. 21, 156–170 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Kritzer, K. L. Barely started and already left behind: a descriptive analysis of the mathematics ability demonstrated by young deaf children. J. Deaf. Stud. Deaf Educ. 14, 409–421 (2009).

    Article  PubMed  Google Scholar 

  71. Leybaert, J. & Van Cutsem, M. N. Counting in sign language. J. Exp. Child. Psychol. 81, 482–501 (2002).

    Article  PubMed  Google Scholar 

  72. Pagliaro, C. M. & Kritzer, K. L. Learning to learn: an analysis of early learning behaviours demonstrated by young deaf/hard-of-hearing children with high/low mathematics ability. Deafness Educ. Int. 12, 54–76 (2013).

    Article  Google Scholar 

  73. Santos, S. & Cordes, S. Math abilities in deaf and hard of hearing children: the role of language in developing number concepts. Psychol. Rev. 129, 199–211 (2021).

    Article  PubMed  Google Scholar 

  74. Titus, J. The concept of fractional number among deaf and hard of hearing students. Am. Ann. Deaf. 140, 255–283 (1995).

    Article  PubMed  Google Scholar 

  75. Spaepen, E., Coppola, M., Spelke, E. S., Carey, S. E. & Goldin-Meadow, S. Number without a language model. Proc. Natl Acad. Sci. USA 108, 3163–3168 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Gordon, P. Numerical cognition without words: evidence from Amazonia. Science 306, 496–499 (2004).

    Article  PubMed  Google Scholar 

  77. Pica, P., Lemer, C., Izard, V. & Dehaene, S. Exact and approximate arithmetic in an Amazonian indigene group. Science 306, 499–503 (2004).

    Article  PubMed  Google Scholar 

  78. Dowker, A. & Nuerk, H. C. Editorial: Linguistic influences on mathematics. Front. Psychol. 7, 1035 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Pixner, S., Moeller, K., Hermanova, V., Nuerk, H. C. & Kaufmann, L. Whorf reloaded: language effects on nonverbal number processing in first grade — a trilingual study. J. Exp. Child. Psychol. 108, 371–382 (2011).

    Article  PubMed  Google Scholar 

  80. Pixner, S. et al. One language, two number-word systems and many problems: numerical cognition in the Czech language. Res. Dev. Disabil. 32, 2683–2689 (2011).

    Article  PubMed  Google Scholar 

  81. Miller, K. F. & Stigler, J. W. Counting in Chinese: cultural variation in a basic cognitive skill. Cogn. Dev. 2, 279–305 (1987).

    Article  Google Scholar 

  82. Miura, I. T. & Okamoto, Y. Comparisons of U.S. and Japanese first graders’ cognitive representation of number and understanding of place value. J. Educ. Psychol. 81, 109–114 (1989).

    Article  Google Scholar 

  83. Miura, I. T. & Yukari, O. in The Development Of Arithmetic Concepts And Skills: Constructing Adaptive Expertise (eds Baroody, A. J. & Dowker, A.) 229–242 (Lawrence Erlbaum, 2003).

  84. Miura, I. T. et al. First graders’ cognitive representation of number and understanding of place value: cross-national comparisons: France, Japan, Korea, Sweden, and the United States. J. Educ. Psychol. 85, 24–30 (1993).

    Article  Google Scholar 

  85. Song, M.-J. & Ginsburg, H. P. The development of informal and formal mathematical thinking in Korean and U. S. Children. Child Dev. 58, 1286–1296 (1987).

    Google Scholar 

  86. Stevenson, H. W., Lee, S. Y. & Stigler, J. W. Mathematics achievement of Chinese, Japanese, and American children. Science 231, 693–699 (1986).

    Article  PubMed  Google Scholar 

  87. Miura, I. T., Okamoto, Y., Vlahovic-Stetic, V., Kim, C. C. & Han, J. H. Language supports for children’s understanding of numerical fractions: cross-national comparisons. J. Exp. Child. Psychol. 74, 356–365 (1999).

    Article  PubMed  Google Scholar 

  88. Gobel, S. M., Moeller, K., Pixner, S., Kaufmann, L. & Nuerk, H. C. Language affects symbolic arithmetic in children: the case of number word inversion. J. Exp. Child. Psychol. 119, 17–25 (2014).

    Article  PubMed  Google Scholar 

  89. Imbo, I., Vanden Bulcke, C., De Brauwer, J. & Fias, W. Sixty-four or four-and-sixty? The influence of language and working memory on children’s number transcoding. Front. Psychol. 5, 313 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Moeller, K., Shaki, S., Gobel, S. M. & Nuerk, H. C. Language influences number processing–a quadrilingual study. Cognition 136, 150–155 (2015).

    Article  PubMed  Google Scholar 

  91. Zuber, J., Pixner, S., Moeller, K. & Nuerk, H. C. On the language specificity of basic number processing: transcoding in a language with inversion and its relation to working memory capacity. J. Exp. Child. Psychol. 102, 60–77 (2009).

    Article  PubMed  Google Scholar 

  92. Else-Quest, N. M., Hyde, J. S. & Linn, M. C. Cross-national patterns of gender differences in mathematics: a meta-analysis. Psychol. Bull. 136, 103–127 (2010).

    Article  PubMed  Google Scholar 

  93. Huntsinger, C. S., Jose, P. E., Liaw, F.-R. & Ching, W.-D. Cultural differences in early mathematics learning: a comparison of Euro-American, Chinese-American, and Taiwan-Chinese families. Int. J. Behav. Dev. 21, 371–388 (1997).

    Article  Google Scholar 

  94. Lee, J. Universals and specifics of math self-concept, math self-efficacy, and math anxiety across 41 PISA 2003 participating countries. Learn. Individ. Differences 19, 355–365 (2009).

    Article  Google Scholar 

  95. Nosek, B. A. et al. National differences in gender-science stereotypes predict national sex differences in science and math achievement. Proc. Natl Acad. Sci. USA 106, 10593–10597 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Randel, B., Stevenson, H. W. & Witruk, E. Attitudes, beliefs, and mathematics achievement of German and Japanese high school students. Int. J. Behav. Dev. 24, 190–198 (2000).

    Article  Google Scholar 

  97. Stoet, G. & Geary, D. C. The gender-equality paradox in science, technology, engineering, and mathematics education. Psychol. Sci. 29, 581–593 (2018).

    Article  PubMed  Google Scholar 

  98. Davis-Kean, P. E. The influence of parent education and family income on child achievement: the indirect role of parental expectations and the home environment. J. Fam. Psychol. 19, 294–304 (2005).

    Article  PubMed  Google Scholar 

  99. Elliott, L. & Bachman, H. J. SES disparities in early math abilities: the contributions of parents’ math cognitions, practices to support math, and math talk. Developmental Rev. 49, 1–15 (2018).

    Article  Google Scholar 

  100. Galindo, C. & Sonnenschein, S. Decreasing the SES math achievement gap: initial math proficiency and home learning environments. Contemp. Educ. Psychol. 43, 25–38 (2015).

    Article  Google Scholar 

  101. Jordan, N. C., Kaplan, D., Nabors Olah, L. & Locuniak, M. N. Number sense growth in kindergarten: a longitudinal investigation of children at risk for mathematics difficulties. Child. Dev. 77, 153–175 (2006).

    Article  PubMed  Google Scholar 

  102. Jordan, N. C. & Levine, S. C. Socioeconomic variation, number competence, and mathematics learning difficulties in young children. Dev. Disabil. Res. Rev. 15, 60–68 (2009).

    Article  PubMed  Google Scholar 

  103. Kalaycioglu, D. B. The influence of socioeconomic status, self-efficacy, and anxiety on mathematics achievement in England, Greece, Hong Kong, the Netherlands, Turkey, and the USA. Educ. Sci. Theory Pract. 15, 1391–1401 (2015).

    Google Scholar 

  104. Cheadle, J. E. Educational investment, family context, and children’s math and reading growth from kindergarten through the third grade. Sociol. Educ. 81, 1–31 (2008).

    Article  Google Scholar 

  105. Sousa, S., Park, E. J. & Armor, D. J. Comparing effects of family and school factors on cross-national academic achievement using the 2009 and 2006 PISA surveys. J. Comp. Policy Anal. Res. Pract. 14, 449–468 (2012).

    Article  Google Scholar 

  106. Reardon, S. F. in Social Stratification: Class, Race, and Gender in Sociological Perspectives (ed. Grusky, D. B.) 536–550 (Routledge, 2014).

  107. Hackman, D. A. & Farah, M. J. Socioeconomic status and the developing brain. Trends Cogn. Sci. 13, 65–73 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Elliott, L. & Bachman, H. J. How do parents foster young children’s math skills? Child. Dev. Perspect. 12, 16–21 (2018).

    Article  Google Scholar 

  109. LeFevre, J.-A. et al. Home numeracy experiences and children’s math performance in the early school years. Can. J. Behav. Sci. 41, 55–66 (2009).

    Article  Google Scholar 

  110. Vasilyeva, M., Laski, E., Veraksa, A., Weber, L. & Bukhalenkova, D. Distinct pathways from parental beliefs and practices to children’s numeric skills. J. Cogn. Dev. 19, 345–366 (2018).

    Article  Google Scholar 

  111. Benavides-Varela, S. et al. Numerical activities and information learned at home link to the exact numeracy skills in 5–6 years-old children. Front. Psychol. 7, 94 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Mutaf Yildiz, B., Sasanguie, D., De Smedt, B. & Reynvoet, B. Frequency of home numeracy activities is differentially related to basic number processing and calculation skills in kindergartners. Front. Psychol. 9, 340 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Blevins-Knabe, B. & Musun-Miller, L. Number use at home by children and their parents and its relationship to early mathematical performance. Early Dev. Parent. 5, 35–45 (1996).

    Article  Google Scholar 

  114. Huntsinger, C. S., Jose, P. E. & Luo, Z. Parental facilitation of early mathematics and reading skills and knowledge through encouragement of home-based activities. Early Child. Res. Q. 37, 1–15 (2016).

    Article  Google Scholar 

  115. Kleemans, T., Peeters, M., Segers, E. & Verhoeven, L. Child and home predictors of early numeracy skills in kindergarten. Early Child. Res. Q. 27, 471–477 (2012).

    Article  Google Scholar 

  116. Niklas, F. & Schneider, W. Casting the die before the die is cast: the importance of the home numeracy environment for preschool children. Eur. J. Psychol. Educ. 29, 327–345 (2013).

    Article  Google Scholar 

  117. Skwarchuk, S. L. How do parents support preschoolers’ numeracy learning experiences at home? Early Child. Educ. J. 37, 189–197 (2009).

    Article  Google Scholar 

  118. Silver, A. M., Elliott, L., Imbeah, A. & Libertus, M. E. Understanding the unique contributions of home numeracy, inhibitory control, the approximate number system, and spontaneous focusing on number for children’s math abilities. Math. Think. Learn. 22, 296–311 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Ramani, G. B., Rowe, M. L., Eason, S. H. & Leech, K. A. Math talk during informal learning activities in Head Start families. Cogn. Dev. 35, 15–33 (2015).

    Article  Google Scholar 

  120. Braham, E. J., Libertus, M. E. & McCrink, K. Children’s spontaneous focus on number before and after guided parent–child interactions in a children’s museum. Dev. Psychol. 54, 1492–1498 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Casey, B. M. et al. Maternal support of children’s early numerical concept learning predicts preschool and first-grade math achievement. Child. Dev. 89, 156–173 (2018).

    Article  PubMed  Google Scholar 

  122. Elliott, L., Braham, E. J. & Libertus, M. E. Understanding sources of individual variability in parents’ number talk with young children. J. Exp. Child. Psychol. 159, 1–15 (2017).

    Article  PubMed  Google Scholar 

  123. Gibson, D. J., Gunderson, E. A. & Levine, S. C. Causal effects of parent number talk on preschoolers’ number knowledge. Child. Dev. 91, e1162–e1177 (2020).

    Article  PubMed  Google Scholar 

  124. Gunderson, E. A. & Levine, S. C. Some types of parent number talk count more than others: relations between parents’ input and children’s cardinal-number knowledge. Dev. Sci. 14, 1021–1032 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Klibanoff, R. S., Levine, S. C., Huttenlocher, J., Vasilyeva, M. & Hedges, L. V. Preschool children’s mathematical knowledge: the effect of teacher “math talk.”. Dev. Psychol. 42, 59–69 (2006).

    Article  PubMed  Google Scholar 

  126. Levine, S. C., Suriyakham, L. W., Rowe, M. L., Huttenlocher, J. & Gunderson, E. A. What counts in the development of young children’s number knowledge? Dev. Psychol. 46, 1309–1319 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Mix, K. S., Sandhofer, C. M., Moore, J. A. & Russell, C. Acquisition of the cardinal word principle: the role of input. Early Child. Res. Q. 27, 274–283 (2012).

    Article  Google Scholar 

  128. Silver, A. M., Elliott, L. & Libertus, M. E. Parental math input is not uniformly beneficial for young children: the moderating role of inhibitory control. J. Educ. Psychol. https://doi.org/10.1037/edu0000679 (2021).

  129. Susperreguy, M. I. & Davis-Kean, P. E. Maternal math talk in the home and math skills in preschool children. Early Educ. Dev. 27, 841–857 (2016).

    Article  Google Scholar 

  130. DeFlorio, L. & Beliakoff, A. Socioeconomic status and preschoolers’ mathematical knowledge: the contribution of home activities and parent beliefs. Early Educ. Dev. 26, 319–341 (2014).

    Article  Google Scholar 

  131. Missall, K., Hojnoski, R. L., Caskie, G. I. L. & Repasky, P. Home numeracy environments of preschoolers: examining relations among mathematical activities, parent mathematical beliefs, and early mathematical skills. Early Educ. Dev. 26, 356–376 (2014).

    Article  Google Scholar 

  132. Hornburg, C. B. et al. Next directions in measurement of the home mathematics environment: an international and interdisciplinary perspective. J. Numer. Cogn. 7, 195–220 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Berkowitz, T. et al. Math at home adds up to achievement in school. Science 350, 196–198 (2015).

    Article  PubMed  Google Scholar 

  134. Cheung, S. K. & McBride, C. Effectiveness of parent–child number board game playing in promoting Chinese kindergarteners’ numeracy skills and mathematics interest. Early Educ. Dev. 28, 572–589 (2016).

    Article  Google Scholar 

  135. Leyva, D., Davis, A. & Skorb, L. Math intervention for Latino parents and kindergarteners based on food routines. J. Child. Family Stud. 27, 2541–2551 (2018).

    Article  Google Scholar 

  136. Niklas, F., Cohrssen, C. & Tayler, C. Parents supporting learning: a non-intensive intervention supporting literacy and numeracy in the home learning environment. Int. J. Early Years Educ. 24, 121–142 (2016).

    Article  Google Scholar 

  137. Niklas, F., Cohrssen, C. & Tayler, C. Improving preschoolers’ numerical abilities by enhancing the home numeracy environment. Early Educ. Dev. 27, 372–383 (2015).

    Article  Google Scholar 

  138. Gunderson, E. A., Ramirez, G., Beilock, S. L. & Levine, S. C. Teachers’ spatial anxiety relates to 1st- and 2nd-graders’ spatial learning. Mind Brain Educ. 7, 196–199 (2013).

    Article  Google Scholar 

  139. Musun-Miller, L. & Blevins-Knabe, B. Adults’ beliefs about children and mathematics: how important is it and how do children learn about it? Early Dev. Parent. 7, 191–202 (1998).

    Article  Google Scholar 

  140. Beilock, S. L., Gunderson, E. A., Ramirez, G. & Levine, S. C. Female teachers’ math anxiety affects girls’ math achievement. Proc. Natl Acad. Sci. USA 107, 1860–1863 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Chang, H. & Beilock, S. L. The math anxiety–math performance link and its relation to individual and environmental factors: a review of current behavioral and psychophysiological research. Curr. Opin. Behav. Sci. 10, 33–38 (2016).

    Article  Google Scholar 

  142. Maloney, E. A., Ramirez, G., Gunderson, E. A., Levine, S. C. & Beilock, S. L. Intergenerational effects of parents’ math anxiety on children’s math achievement and anxiety. Psychol. Sci. 26, 1480–1488 (2015).

    Article  PubMed  Google Scholar 

  143. Soni, A. & Kumari, S. The role of parental math anxiety and math attitude in their children’s math achievement. Int. J. Sci. Math. Educ. 15, 331–347 (2017).

    Article  Google Scholar 

  144. Fredricks, J. A. & Eccles, J. S. Children’s competence and value beliefs from childhood through adolescence: growth trajectories in two male-sex-typed domains. Dev. Psychol. 38, 519–533 (2002).

    Article  PubMed  Google Scholar 

  145. Silver, A. M., Elliott, L. & Libertus, M. E. When beliefs matter most: examining children’s math achievement in the context of parental math anxiety. J. Exp. Child. Psychol. 201, 104992 (2021).

    Article  PubMed  Google Scholar 

  146. Sonnenschein, S. et al. Parents’ beliefs about children’s math development and children’s participation in math activities. Child. Dev. Res. 2012, 851657 (2012).

  147. Zippert, E. L. & Ramani, G. B. Parents’ estimations of preschoolers’ number skills relate to at-home number-related activity engagement. Infant. Child Dev. 26, e1968 (2017).

    Article  Google Scholar 

  148. Geary, D. C. & vanMarle, K. Growth of symbolic number knowledge accelerates after children understand cardinality. Cognition 177, 69–78 (2018).

    Article  PubMed  Google Scholar 

  149. Geary, D. C. et al. Early conceptual understanding of cardinality predicts superior school-entry number-system knowledge. Psychol. Sci. 29, 191–205 (2018).

    Article  PubMed  Google Scholar 

  150. Sarnecka, B. W. & Carey, S. How counting represents number: what children must learn and when they learn it. Cognition 108, 662–674 (2008).

    Article  PubMed  Google Scholar 

  151. Carey, S. Where our number concepts come from. J. Phil. 106, 220 (2009).

    Article  Google Scholar 

  152. Fuson, K. C. Children’s Counting and Concepts of Number (Springer Science & Business Media, 2012).

  153. Chu, F. W., vanMarle, K. & Geary, D. C. Early numerical foundations of young children’s mathematical development. J. Exp. Child. Psychol. 132, 205–212 (2015).

    Article  PubMed  Google Scholar 

  154. Wynn, K. Children’s understanding of counting. Cognition 36, 155–193 (1990).

    Article  PubMed  Google Scholar 

  155. Wynn, K. Children’s acquisition of the number words and the counting system. Cogn. Psychol. 24, 220–251 (1992).

    Article  Google Scholar 

  156. Lee, M. D. & Sarnecka, B. W. A model of knower-level behavior in number-concept development. Cogn. Sci. 34, 51–67 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Sarnecka, B. W. & Lee, M. D. Levels of number knowledge during early childhood. J. Exp. Child. Psychol. 103, 325–337 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Huang, Y. T., Spelke, E. & Snedeker, J. When is four far more than three? Children’s generalization of newly acquired number words. Psychol. Sci. 21, 600–606 (2010).

    Article  PubMed  Google Scholar 

  159. O’Rear, C. D., McNeil, N. M. & Kirkland, P. K. Partial knowledge in the development of number word understanding. Dev. Sci. 23, e12944 (2020).

    PubMed  Google Scholar 

  160. Posid, T. & Cordes, S. How high can you count? Probing the limits of children’s counting. Dev. Psychol. 54, 875–889 (2018).

    Article  PubMed  Google Scholar 

  161. Silver, A. M. et al. Measuring emerging number knowledge in toddlers. Front. Psychol. 12, 3057 (2021).

    Article  Google Scholar 

  162. Wagner, K., Chu, J. & Barner, D. Do children’s number words begin noisy? Dev. Sci. 22, e12752 (2019).

    Article  PubMed  Google Scholar 

  163. Davidson, K., Eng, K. & Barner, D. Does learning to count involve a semantic induction? Cognition 123, 162–173 (2012).

    Article  PubMed  Google Scholar 

  164. Sella, F., Slusser, E., Odic, D. & Krajcsi, A. The emergence of children’s natural number concepts: current theoretical challenges. Child. Dev. Perspect. 15, 265–273 (2021).

    Article  Google Scholar 

  165. Butterworth, B. The development of arithmetical abilities. J. Child. Psychol. Psychiat. 46, 3–18 (2005).

    Article  PubMed  Google Scholar 

  166. Leslie, A. M., Gelman, R. & Gallistel, C. R. The generative basis of natural number concepts. Trends Cogn. Sci. 12, 213–218 (2008).

    Article  PubMed  Google Scholar 

  167. Spelke, E. S. Quinian bootstrapping or Fodorian combination? Core and constructed knowledge of number. Behav. Brain Sci. 34, 149–150 (2011).

    Article  Google Scholar 

  168. vanMarle, K. et al. Attaching meaning to the number words: contributions of the object tracking and approximate number systems. Dev. Sci. 21, e12495 (2018).

    Article  Google Scholar 

  169. Carey, S. Bootstrapping & the origin of concepts. Daedalus 133, 59–68 (2004).

    Article  Google Scholar 

  170. Sarnecka, B. W. On the relation between grammatical number and cardinal numbers in development. Front. Psychol. 5, 1132 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Levine, S. C. & Baillargeon, R. in Core Knowledge and Conceptual Change (eds Barner, D & Baron, A. S.) Ch. 8, 127 (Oxford Univ. Press, 2016).

  172. Geary, D. C., vanMarle, K., Chu, F. W., Hoard, M. K. & Nugent, L. Predicting age of becoming a cardinal principle knower. J. Educ. Psychol. 111, 256–267 (2019).

    Article  Google Scholar 

  173. Almoammer, A. et al. Grammatical morphology as a source of early number word meanings. Proc. Natl Acad. Sci. USA 110, 18448–18453 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Izard, V., Pica, P., Spelke, E. & Dehaene, S. Exact equality and successor function: two key concepts on the path towards understanding exact numbers. Phil. Psychol. 21, 491 (2008).

    Article  Google Scholar 

  175. Marusic, F. et al. Do children derive exact meanings pragmatically? Evidence from a dual morphology language. Cognition 207, 104527 (2021).

    Article  PubMed  Google Scholar 

  176. Sarnecka, B. W., Kamenskaya, V. G., Yamana, Y., Ogura, T. & Yudovina, Y. B. From grammatical number to exact numbers: early meanings of ‘one’, ‘two’, and ‘three’ in English, Russian, and Japanese. Cogn. Psychol. 55, 136–168 (2007).

    Article  PubMed  Google Scholar 

  177. Wagner, K., Kimura, K., Cheung, P. & Barner, D. Why is number word learning hard? Evidence from bilingual learners. Cogn. Psychol. 83, 1–21 (2015).

    Article  PubMed  Google Scholar 

  178. Le Corre, M., Li, P., Huang, B. H., Jia, G. & Carey, S. Numerical morphology supports early number word learning: evidence from a comparison of young Mandarin and English learners. Cogn. Psychol. 88, 162–186 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Bloom, P. & Wynn, K. Linguistic cues in the acquisition of number words. J. Child. Lang. 24, 511–533 (1997).

    Article  PubMed  Google Scholar 

  180. Fluck, M. & Henderson, L. Counting and cardinality in English nursery pupils. Br. J. Educ. Psychol. 66, 501–517 (1996).

    Article  PubMed  Google Scholar 

  181. Jordan, N. C., Huttenlocher, J. & Levine, S. C. Differential calculation abilities in young children from middle- and low-income families. Dev. Psychol. 28, 644–653 (1992).

    Article  Google Scholar 

  182. von Spreckelsen, M. et al. Let’s talk about maths: the role of observed “maths-talk” and maths provisions in preschoolers’ numeracy. Mind Brain Educ. 13, 326–340 (2019).

    Article  Google Scholar 

  183. Paliwal, V. & Baroody, A. J. How best to teach the cardinality principle? Early Child. Res. Q. 44, 152–160 (2018).

    Article  Google Scholar 

  184. Dresen, V., Moeller, K. & Pixner, S. Association between language and early numerical development — the case of quantifiers. Eur. J. Dev. Psychol. 1-17 (2021).

  185. Alzahabi, R. & Cain, M. S. Ensemble perception during multiple-object tracking. Attent. Percept. Psychophys. 83, 1263–1274 (2021).

    Article  Google Scholar 

  186. Zosh, J. M., Halberda, J. & Feigenson, L. Memory for multiple visual ensembles in infancy. J. Exp. Psychol. Gen. 140, 141–158 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  187. Feigenson, L. & Halberda, J. Infants chunk object arrays into sets of individuals. Cognition 91, 173–190 (2004).

    Article  PubMed  Google Scholar 

  188. Newcombe, N., Uttal, D. H. & Sauter, M. in The Oxford Handbook of Developmental Psychology Vol. 1 Body and Mind (ed Zelazo, P. D.) 564–590 (Oxford Univ. Press, 2013).

  189. Baroody, A. J., Li, X. & Lai, M.-L. Toddlers’ spontaneous attention to number. Math. Think. Learn. 10, 240–270 (2008).

    Article  Google Scholar 

  190. Merkley, R. & Ansari, D. Why numerical symbols count in the development of mathematical skills: evidence from brain and behavior. Curr. Opin. Behav. Sci. 10, 14–20 (2016).

    Article  Google Scholar 

  191. Hurewitz, F., Papafragou, A., Gleitman, L. & Gelman, R. Asymmetries in the acquisition of numbers and quantifiers. Lang. Learn. Dev. 2, 77–96 (2006).

    Article  Google Scholar 

  192. Carraher, T. N., Carraher, D. W. & Schliemann, A. D. Mathematics in the streets and in schools. Br. J. Developmental Psychol. 3, 21–29 (1985).

    Article  Google Scholar 

  193. Butterworth, B. & Reeve, R. Verbal counting and spatial strategies in numerical tasks: evidence from indigenous Australia. Phil. Psychol. 21, 443–457 (2008).

    Article  Google Scholar 

  194. Butterworth, B., Reeve, R. & Reynolds, F. Using mental representations of space when words are unavailable: studies of enumeration and arithmetic in Indigenous Australia. J. Cross-Cultural Psychol. 42, 630–638 (2011).

    Article  Google Scholar 

  195. Cabell, S. Q., Justice, L. M., McGinty, A. S., DeCoster, J. & Forston, L. D. Teacher–child conversations in preschool classrooms: contributions to children’s vocabulary development. Early Child. Res. Q. 30, 80–92 (2015).

    Article  Google Scholar 

  196. Rowe, M. L., Leech, K. A. & Cabrera, N. Going beyond input quantity: wh-questions matter for toddlers’ language and cognitive development. Cogn. Sci. 41, 162–179 (2017).

    Article  PubMed  Google Scholar 

  197. Duong, S., Bachman, H. J., Votruba-Drzal, E. & Libertus, M. E. What’s in a question? Parents’ question use in dyadic interactions and the relation to preschool-aged children’s math abilities. J. Exp. Child. Psychol. 211, 105213 (2021).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank J. Halberda and J. Iverson for their helpful insights and feedback during the writing of this manuscript. This work was supported by the James S. McDonnell Foundation Scholar Award to M.E.L., by the National Science Foundation under grants HRD1760844 and DRL1920545 to M.E.L., and by the National Institutes of Health under grant T32GM081760 to A.M.S.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Melissa E. Libertus.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Psychology thanks Sara Cordes, Attila Krajcsi, and the other, anonymous, reviewer for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Count list

The list of number words in the order they appear when counting (one, two, three…).

Place-value system

A system of symbolic number notation in which the position of a digit within a number string denotes its power, and the quantity is represented by the symbol.

Arithmetic fluency

The ability to solve arithmetic problems accurately and efficiently.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silver, A.M., Libertus, M.E. Environmental influences on mathematics performance in early childhood. Nat Rev Psychol 1, 407–418 (2022). https://doi.org/10.1038/s44159-022-00061-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44159-022-00061-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing