Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mechanisms underlying training-induced cognitive change

Abstract

The prospect of enhancing cognition through behavioural training interventions, for example, the repetitive practice of cognitive tasks or metacognitive strategy instruction, has seen a surge in popularity over the past 20 years. Although overwhelming evidence demonstrates that such training interventions increase performance in the trained tasks, controversy remains over whether these benefits transfer to other tasks and abilities beyond the trained context. In this Review, we provide an overview of the effectiveness of cognitive training to induce transfer to untrained tasks, with a particular focus on the theoretical mechanisms that have been proposed to underlie training and transfer effects. We highlight that there is relatively little evidence that training enhances cognitive capacity, that is, the overall cognitive resources available to an individual. By contrast, substantial evidence supports training-induced improvements in cognitive efficiency, that is, optimized performance within existing cognitive capacity limits. We conclude that shifting research towards identifying the cognitive mechanisms underlying gains in cognitive efficiency offers a fruitful avenue for developing effective cognitive training interventions. However, to advance our understanding of human cognition and cognitive plasticity we must strive to develop and refine theories that generate testable hypotheses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A typical cognitive training study design.
Fig. 2: The capacity-efficiency model of cognitive training and transfer.

Similar content being viewed by others

References

  1. Lövdén, M., Bäckman, L., Lindenberger, U., Schaefer, S. & Schmiedek, F. A theoretical framework for the study of adult cognitive plasticity. Psychol. Bull. 136, 659–676 (2010).

    Article  Google Scholar 

  2. Kühn, S. & Lindenberger, U. in Handbook of the Psychology of Aging 8th edn (eds Schaie, K. W. & Willis, S. L.) 105–123 (Academic, 2016).

  3. Lindenberger, U. & Lövdén, M. Brain plasticity in human lifespan development: the exploration–selection–refinement model. Annu. Rev. Dev. Psychol. 1, 197–222 (2019).

    Article  Google Scholar 

  4. Baltes, P. B. & Baltes, M. M. in Successful Aging: Perspectives from the Behavioral Sciences (eds Baltes, P. B. & Baltes, M. M.) 1–34 (Cambridge Univ. Press, 1990).

  5. Martinussen, R., Hayden, J., Hogg-Johnson, S. & Tannock, R. A meta-analysis of working memory impairments in children with attention-deficit/hyperactivity disorder. J. Am. Acad. Child. Adolesc. Psychiatry 44, 377–384 (2005).

    Article  Google Scholar 

  6. Demetriou, E. A. et al. Autism spectrum disorders: a meta-analysis of executive function. Mol. Psychiatry 23, 1198–1204 (2018).

    Article  Google Scholar 

  7. Arvanitakis, Z., Shah, R. C. & Bennett, D. A. Diagnosis and management of dementia: review. JAMA 322, 1589–1599 (2019).

    Article  Google Scholar 

  8. Lugtmeijer, S., Lammers, N. A., de Haan, E. H. F., de Leeuw, F.-E. & Kessels, R. P. C. Post-stroke working memory dysfunction: a meta-analysis and systematic review. Neuropsychol. Rev. 31, 202–219 (2021).

    Article  Google Scholar 

  9. Hommel, B. Pseudo-mechanistic explanations in psychology and cognitive neuroscience. Top. Cogn. Sci. 12, 1294–1305 (2020).

    Article  Google Scholar 

  10. Simons, D. J. et al. Do “brain-training” programs work? Psychol. Sci. Public. Interest. 17, 103–186 (2016).

    Article  Google Scholar 

  11. Sala, G. et al. Near and far transfer in cognitive training: a second-order meta-analysis. Collabra: Psychol. 5, 18 (2019).

    Article  Google Scholar 

  12. Sala, G. & Gobet, F. Cognitive training does not enhance general cognition. Trends Cogn. Sci. 23, 9–20 (2019).

    Article  Google Scholar 

  13. Borella, E., Carretti, B., Riboldi, F. & De Beni, R. Working memory training in older adults: evidence of transfer and maintenance effects. Psychol. Aging 25, 767–778 (2010).

    Article  Google Scholar 

  14. Schmiedek, F., Lövdén, M. & Lindenberger, U. Hundred days of cognitive training enhance broad cognitive abilities in adulthood: findings from the COGITO study. Front. Aging Neurosci. 2, 27 (2010).

    Google Scholar 

  15. Barnett, S. M. & Ceci, S. J. When and where do we apply what we learn? A taxonomy for far transfer. Psychol. Bull. 128, 612–637 (2002).

    Article  Google Scholar 

  16. Noack, H., Lövdén, M., Schmiedek, F. & Lindenberger, U. Cognitive plasticity in adulthood and old age: gauging the generality of cognitive intervention effects. Restor. Neurol. Neurosci. 27, 435–453 (2009).

    Google Scholar 

  17. Foroughi, C. K., Monfort, S. S., Paczynski, M., McKnight, P. E. & Greenwood, P. M. Placebo effects in cognitive training. Proc. Natl Acad. Sci. USA 113, 7470 (2016).

    Article  Google Scholar 

  18. Boot, W. R., Simons, D. J., Stothart, C. & Stutts, C. The pervasive problem with placebos in psychology: why active control groups are not sufficient to rule out placebo effects. Perspect. Psychol. Sci. 8, 445–454 (2013).

    Article  Google Scholar 

  19. von Bastian, C. C. & Oberauer, K. Effects and mechanisms of working memory training: a review. Psychol. Res. 78, 803–820 (2014).

    Article  Google Scholar 

  20. Green, C. S. et al. Improving methodological standards in behavioral interventions for cognitive enhancement. J. Cogn. Enhanc. 3, 2–29 (2019).

    Article  Google Scholar 

  21. Green, C. S., Strobach, T. & Schubert, T. On methodological standards in training and transfer experiments. Psychol. Res. 78, 756–772 (2014).

    Article  Google Scholar 

  22. Dahlin, E., Neely, A. S., Larsson, A., Bäckman, L. & Nyberg, L. Transfer of learning after updating training mediated by the striatum. Science 320, 1510–1512 (2008).

    Article  Google Scholar 

  23. Anguera, J. A. et al. Video game training enhances cognitive control in older adults. Nature 501, 97–101 (2013).

    Article  Google Scholar 

  24. Rebok, G. W. et al. Ten-year effects of the Advanced Cognitive Training for Independent and Vital Elderly cognitive training trial on cognition and everyday functioning in older adults. J. Am. Geriatr. Soc. 62, 16–24 (2014).

    Article  Google Scholar 

  25. Motter, J. N., Grinberg, A., Lieberman, D. H., Iqnaibi, W. B. & Sneed, J. R. Computerized cognitive training in young adults with depressive symptoms: effects on mood, cognition, and everyday functioning. J. Affect. Disord. 245, 28–37 (2019).

    Article  Google Scholar 

  26. Shipstead, Z., Redick, T. S. & Engle, R. W. Is working memory training effective? Psychol. Bull. 138, 628–654 (2012).

    Article  Google Scholar 

  27. Hicks, K. & Engle, R. W. in Cognitive and Working Memory Training: Perspectives from Psychology, Neuroscience, and Human Development (eds Bunting, M. F., Novick, J. M., Dougherty, M. R., & Engle, R. W.) 3–13 (Oxford Univ. Press, 2019).

  28. Miyake, A. et al. The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: a latent variable analysis. Cogn. Psychol. 41, 49–100 (2000).

    Article  Google Scholar 

  29. von Bastian, C. C., Guye, S. & De Simoni, C. in Cognitive and Working Memory Training: Perspectives from Psychology, Neuroscience, and Human Development (eds Bunting, M. F., Novick, J. M., Dougherty, M. R., & Engle, R. W.) 58–78 (Oxford Univ. Press, 2020).

  30. Lampit, A., Hallock, H. & Valenzuela, M. Computerized cognitive training in cognitively healthy older adults: a systematic review and meta-analysis of effect modifiers. PLoS Med. 11, e1001756 (2014).

    Article  Google Scholar 

  31. Melby-Lervåg, M., Redick, T. S. & Hulme, C. Working memory training does not improve performance on measures of intelligence or other measures of “far transfer”: evidence from a meta-analytic review. Perspect. Psychol. Sci. 11, 512–534 (2016).

    Article  Google Scholar 

  32. Hartgerink, C. H. J., Wicherts, J. M. & van Assen, M. A. L. M. Too good to be false: nonsignificant results revisited. Collabra: Psychol. 3, 9 (2017).

    Article  Google Scholar 

  33. Button, K. S. et al. Power failure: why small sample size undermines the reliability of neuroscience. Nat. Rev. Neurosci. 14, 365–376 (2013).

    Article  Google Scholar 

  34. Ioannidis, J. P. A. Why most published research findings are false. PLoS Med. 2, e124 (2005).

    Article  Google Scholar 

  35. Halsey, L. G., Curran-Everett, D., Vowler, S. L. & Drummond, G. B. The fickle P value generates irreproducible results. Nat. Methods 12, 179–185 (2015).

    Article  Google Scholar 

  36. Valentine, J. C. in The Handbook of Research Synthesis and Meta-Analysis (eds Cooper, H., Hedges, L. V., & Valentine, J. C.) (Russell Sage Foundation, 2009).

  37. Gathercole, S. E., Dunning, D. L., Holmes, J. & Norris, D. Working memory training involves learning new skills. J. Mem. Lang. 105, 19–42 (2019).

    Article  Google Scholar 

  38. Guye, S., De Simoni, C. & von Bastian, C. C. Do individual differences predict change in cognitive training performance? A latent growth curve modeling approach. J. Cogn. Enhanc. 1, 374–393 (2017).

    Article  Google Scholar 

  39. Wiemers, E. A., Redick, T. S. & Morrison, A. B. The influence of individual differences in cognitive ability on working memory training gains. J. Cogn. Enhanc. 3, 174–185 (2019).

    Article  Google Scholar 

  40. Bürki, C. N., Ludwig, C., Chicherio, C. & de Ribaupierre, A. Individual differences in cognitive plasticity: an investigation of training curves in younger and older adults. Psychol. Res. 78, 821–835 (2014).

    Article  Google Scholar 

  41. Karbach, J., Könen, T. & Spengler, M. Who benefits the most? Individual differences in the transfer of executive control training across the lifespan. J. Cogn. Enhanc. 1, 394–405 (2017).

    Article  Google Scholar 

  42. Hering, A., Meuleman, B., Bürki, C., Borella, E. & Kliegel, M. Improving older adults’ working memory: the influence of age and crystallized intelligence on training outcomes. J. Cogn. Enhanc. 1, 358–373 (2017).

    Article  Google Scholar 

  43. Blacker, K. J., Negoita, S., Ewen, J. B. & Courtney, S. M. N-back versus complex span working memory training. J. Cogn. Enhanc. 1, 434–454 (2017).

    Article  Google Scholar 

  44. von Bastian, C. C. & Eschen, A. Does working memory training have to be adaptive? Psychol. Res. 80, 181–194 (2016).

    Article  Google Scholar 

  45. Park, D. C. & Bischof, G. N. The aging mind: neuroplasticity in response to cognitive training. Dialogues Clin. Neurosci. 15, 109–119 (2013).

    Article  Google Scholar 

  46. ten Brinke, L. F., Davis, J. C., Barha, C. K. & Liu-Ambrose, T. Effects of computerized cognitive training on neuroimaging outcomes in older adults: a systematic review. BMC Geriatr. 17, 139 (2017).

    Article  Google Scholar 

  47. Brehmer, Y. et al. Neural correlates of training-related working-memory gains in old age. Neuroimage 58, 1110–1120 (2011).

    Article  Google Scholar 

  48. Thorndike, E. L. & Woodworth, R. S. The influence of improvement in one mental function upon the efficiency of other functions. Psychol. Rev. 8, 247–261 (1901).

    Article  Google Scholar 

  49. Taatgen, N. A. The nature and transfer of cognitive skills. Psychol. Rev. 120, 439–471 (2013).

    Article  Google Scholar 

  50. Carroll, J. B. Human Cognitive Abilities: A Survey of Factor-Analytic Studies (Cambridge Univ. Press, 1993).

  51. Zimmermann, K., von Bastian, C. C., Röcke, C., Martin, M. & Eschen, A. Transfer after process-based object-location memory training in healthy older adults. Psychol. Aging 31, 798–814 (2016).

    Article  Google Scholar 

  52. Garlick, D. Understanding the nature of the general factor of intelligence: the role of individual differences in neural plasticity as an explanatory mechanism. Psychol. Rev. 109, 116–136 (2002).

    Article  Google Scholar 

  53. De Simoni, C. & von Bastian, C. C. Working memory updating and binding training: Bayesian evidence supporting the absence of transfer. J. Exp. Psychol. Gen. 147, 829–858 (2018).

    Article  Google Scholar 

  54. Meiran, N., Dreisbach, G. & von Bastian, C. C. Mechanisms of working memory training: insights from individual differences. Intelligence 73, 78–87 (2019).

    Article  Google Scholar 

  55. Chein, J. M. & Schneider, W. The brain’s learning and control architecture. Curr. Dir. Psychol. Sci. 21, 78–84 (2012).

    Article  Google Scholar 

  56. Taatgen, N. A. in Cognitive training: An Overview of Features and Applications (eds Strobach, T. & Karbach, J.) 41–54 (Springer, 2021).

  57. Edwards, J. D., Fausto, B. A., Tetlow, A. M., Corona, R. T. & Valdés, E. G. Systematic review and meta-analyses of useful field of view cognitive training. Neurosci. Biobehav. Rev. 84, 72–91 (2018).

    Article  Google Scholar 

  58. Cásedas, L., Pirrucio, V., Vadillo, M. A. & Lupiáñez, J. Does mindfulness meditation training enhance executive control? A systematic review and meta-analysis of randomized controlled trials in adults. Mindfulness 11, 411–424 (2020).

    Article  Google Scholar 

  59. Verhaeghen, P. Mindfulness as attention training: meta-analyses on the links between attention performance and mindfulness interventions, long-term meditation practice, and trait mindfulness. Mindfulness 12, 564–581 (2021).

    Article  Google Scholar 

  60. Gill, L.-N., Renault, R., Campbell, E., Rainville, P. & Khoury, B. Mindfulness induction and cognition: a systematic review and meta-analysis. Conscious. Cogn. 84, 102991 (2020).

    Article  Google Scholar 

  61. Green, C. S. & Bavelier, D. Action video game training for cognitive enhancement. Curr. Opin. Behav. Sci. 4, 103–108 (2015).

    Article  Google Scholar 

  62. Bediou, B. et al. Meta-analysis of action video game impact on perceptual, attentional, and cognitive skills. Psychol. Bull. 144, 77–110 (2018).

    Article  Google Scholar 

  63. Ball, K. & Owsley, C. The useful field of view test: a new technique for evaluating age-related declines in visual function. J. Am. Optom. Assoc. 64, 71–79 (1993).

    Google Scholar 

  64. Wood, J. M. & Owsley, C. Useful field of view test. Gerontology 60, 315–318 (2014).

    Article  Google Scholar 

  65. Benikos, N., Johnstone, S. J. & Roodenrys, S. J. Short-term training in the go/nogo task: behavioural and neural changes depend on task demands. Int. J. Psychophysiol. 87, 301–312 (2013).

    Article  Google Scholar 

  66. Zhao, X., Chen, L. & Maes, J. H. R. Training and transfer effects of response inhibition training in children and adults. Dev. Sci. 21, e12511 (2018).

    Article  Google Scholar 

  67. Hartmann, L., Sallard, E. & Spierer, L. Enhancing frontal top-down inhibitory control with go/nogo training. Brain Struct. Funct. 221, 3835–3842 (2016).

    Article  Google Scholar 

  68. Maraver, M. J., Bajo, M. T. & Gomez-Ariza, C. J. Training on working memory and inhibitory control in young adults. Front. Hum. Neurosci. 10, 588 (2016).

    Article  Google Scholar 

  69. Berkman, E. T., Kahn, L. E. & Merchant, J. S. Training-induced changes in inhibitory control network activity. J. Neurosci. 34, 149 (2014).

    Article  Google Scholar 

  70. Strobach, T., Salminen, T., Karbach, J. & Schubert, T. Practice-related optimization and transfer of executive functions: a general review and a specific realization of their mechanisms in dual tasks. Psychol. Res. 78, 836–851 (2014).

    Article  Google Scholar 

  71. Allom, V., Mullan, B. & Hagger, M. Does inhibitory control training improve health behaviour? A meta-analysis. Health Psychol. Rev. 10, 168–186 (2016).

    Article  Google Scholar 

  72. Jones, A., Tiplady, B., Houben, K., Nederkoorn, C. & Field, M. Do daily fluctuations in inhibitory control predict alcohol consumption? An ecological momentary assessment study. Psychopharmacology 235, 1487–1496 (2018).

    Article  Google Scholar 

  73. Houben, K. & Jansen, A. Training inhibitory control. A recipe for resisting sweet temptations. Appetite 56, 345–349 (2011).

    Article  Google Scholar 

  74. Strobach, T. & Schubert, T. in Cognitive Training (eds Strobach, T. & Karbach, J.) 229–241 (Springer, 2021).

  75. Sala, G., Tatlidil, K. S. & Gobet, F. Video game training does not enhance cognitive ability: a comprehensive meta-analytic investigation. Psychol. Bull. 144, 111–139 (2018).

    Article  Google Scholar 

  76. Hilgard, J., Sala, G., Boot, W. R. & Simons, D. J. Overestimation of action-game training effects: publication bias and salami slicing. Collabra: Psychol. 5, 30 (2019).

    Article  Google Scholar 

  77. Bavelier, D., Green, C. S., Pouget, A. & Schrater, P. Brain plasticity through the life span: learning to learn and action video games. Annu. Rev. Neurosci. 35, 391–416 (2012).

    Article  Google Scholar 

  78. Kattner, F., Cochrane, A., Cox, C. R., Gorman, T. E. & Green, C. S. Perceptual learning generalization from sequential perceptual training as a change in learning rate. Curr. Biol. 27, 840–846 (2017).

    Article  Google Scholar 

  79. Kemp, C., Goodman, N. D. & Tenenbaum, J. B. Learning to learn causal models. Cogn. Sci. 34, 1185–1243 (2010).

    Article  Google Scholar 

  80. Barrett, L. F., Tugade, M. M. & Engle, R. W. Individual differences in working memory capacity and dual-process theories of the mind. Psychol. Bull. 130, 553–573 (2004).

    Article  Google Scholar 

  81. Klingberg, T. Training and plasticity of working memory. Trends Cogn. Sci. 14, 317–324 (2010).

    Article  Google Scholar 

  82. Jaeggi, S. M., Buschkuehl, M., Jonides, J. & Perrig, W. J. Improving fluid intelligence with training on working memory. Proc. Natl Acad. Sci. USA 105, 6829 (2008).

    Article  Google Scholar 

  83. Klingberg, T. et al. Computerized training of working memory in children with ADHD — a randomized, controlled trial. J. Am. Acad. Child. Adolesc. Psychiatry 44, 177–186 (2005).

    Article  Google Scholar 

  84. Redick, T. S. et al. No evidence of intelligence improvement after working memory training: a randomized, placebo-controlled study. J. Exp. Psychol. Gen. 142, 359 (2013).

    Article  Google Scholar 

  85. Chein, J. M. & Morrison, A. B. Expanding the mind’s workspace: training and transfer effects with a complex working memory span task. Psychon. Bull. Rev. 17, 193–199 (2010).

    Article  Google Scholar 

  86. Guye, S. & von Bastian, C. C. Working memory training in older adults: Bayesian evidence supporting the absence of transfer. Psychol. Aging 32, 732–746 (2017).

    Article  Google Scholar 

  87. Sprenger, A. M. et al. Training working memory: limits of transfer. Intelligence 41, 638–663 (2013).

    Article  Google Scholar 

  88. Au, J. et al. Improving fluid intelligence with training on working memory: a meta-analysis. Psychon. Bull. Rev. 22, 366–377 (2015).

    Article  Google Scholar 

  89. Karbach, J. & Verhaeghen, P. Making working memory work: a meta-analysis of executive-control and working memory training in older adults. Psychol. Sci. 25, 2027–2037 (2014).

    Article  Google Scholar 

  90. Schwaighofer, M., Fischer, F. & Bühner, M. Does working memory training transfer? A meta-analysis including training conditions as moderators. Educ. Psychol. 50, 138–166 (2015).

    Article  Google Scholar 

  91. Soveri, A., Antfolk, J., Karlsson, L., Salo, B. & Laine, M. Working memory training revisited: a multi-level meta-analysis of n-back training studies. Psychon. Bull. Rev. 24, 1077–1096 (2017).

    Article  Google Scholar 

  92. Sala, G. & Gobet, F. Working memory training in typically developing children: a multilevel meta-analysis. Psychon. Bull. Rev. 27, 423–434 (2020).

    Article  Google Scholar 

  93. Sala, G., Aksayli, N. D., Tatlidil, K. S., Gondo, Y. & Gobet, F. Working memory training does not enhance older adults’ cognitive skills: a comprehensive meta-analysis. Intelligence 77, 101386 (2019).

    Article  Google Scholar 

  94. Langer, N., von Bastian, C. C., Wirz, H., Oberauer, K. & Jäncke, L. The effects of working memory training on functional brain network efficiency. Cortex 49, 2424–2438 (2013).

    Article  Google Scholar 

  95. Dziemian, S., Appenzeller, S., von Bastian, C. C., Jäncke, L. & Langer, N. Working memory training effects on white matter integrity in young and older adults. Front. Hum. Neurosci. 15, 605213 (2021).

    Article  Google Scholar 

  96. Lawlor-Savage, L., Clark, C. M. & Goghari, V. M. No evidence that working memory training alters gray matter structure: a MRI surface-based analysis. Behav. Brain Res. 360, 323–340 (2019).

    Article  Google Scholar 

  97. Laine, M., Fellman, D., Waris, O. & Nyman, T. J. The early effects of external and internal strategies on working memory updating training. Sci. Rep. 8, 4045 (2018).

    Article  Google Scholar 

  98. Dunning, D. L. & Holmes, J. Does working memory training promote the use of strategies on untrained working memory tasks? Mem. Cognit. 42, 854–862 (2014).

    Article  Google Scholar 

  99. Chase, W. G. & Ericsson, K. A. in Cognitive Skills and Their Acquisition (ed. Anderson, J. R.) 141–189 (Erlbaum, 1981).

  100. Redick, T. S., Wiemers, E. A. & Engle, R. W. The role of proactive interference in working memory training and transfer. Psychol. Res. 84, 1635–1654 (2020).

    Article  Google Scholar 

  101. Zerr, P. et al. The development of retro-cue benefits with extensive practice: implications for capacity estimation and attentional states in visual working memory. Mem. Cognit. 49, 1036–1049 (2021).

    Article  Google Scholar 

  102. Brady, T. F., Konkle, T. & Alvarez, G. A. Compression in visual working memory: using statistical regularities to form more efficient memory representations. J. Exp. Psychol. Gen. 138, 487–502 (2009).

    Article  Google Scholar 

  103. Verhaeghen, P., Marcoen, A. & Goossens, L. Improving memory performance in the aged through mnemonic training: a meta-analytic study. Psychol. Aging 7, 242–251 (1992).

    Article  Google Scholar 

  104. Ball, K. et al. Effects of cognitive training interventions with older adults: a randomized controlled trial. JAMA 288, 2271–2281 (2002).

    Article  Google Scholar 

  105. Belleville, S. et al. Improvement of episodic memory in persons with mild cognitive impairment and healthy older adults: evidence from a cognitive intervention program. Dement. Geriatr. Cogn. Disord. 22, 486–499 (2006).

    Article  Google Scholar 

  106. Belleville, S. et al. MEMO+: efficacy, durability and effect of cognitive training and psychosocial intervention in individuals with mild cognitive impairment. J. Am. Geriatr. Soc. 66, 655–663 (2018).

    Article  Google Scholar 

  107. Hampstead, B. M., Stringer, A. Y., Stilla, R. F., Giddens, M. & Sathian, K. Mnemonic strategy training partially restores hippocampal activity in patients with mild cognitive impairment. Hippocampus 22, 1652–1658 (2012).

    Article  Google Scholar 

  108. Chandler, M. J., Parks, A. C., Marsiske, M., Rotblatt, L. J. & Smith, G. E. Everyday impact of cognitive interventions in mild cognitive impairment: a systematic review and meta-analysis. Neuropsychol. Rev. 26, 225–251 (2016).

    Article  Google Scholar 

  109. Bottiroli, S., Cavallini, E., Dunlosky, J., Vecchi, T. & Hertzog, C. The importance of training strategy adaptation: a learner-oriented approach for improving older adults’ memory and transfer. J. Exp. Psychol. Appl. 19, 205–218 (2013).

    Article  Google Scholar 

  110. Bellander, M. et al. No evidence for improved associative memory performance following process-based associative memory training in older adults. Front. Aging Neurosci. 8, 326 (2017).

    Article  Google Scholar 

  111. Glenberg, A. M. & Lehmann, T. S. Spacing repetitions over 1 week. Mem. Cognit. 8, 528–538 (1980).

    Article  Google Scholar 

  112. Bjork, R. A. in Practical Aspects of Memory: Current Research and Issues, Vol. 1: Memory in Everyday Life (eds Gruneberg, M. M., Morris, P. E. & Sykes, R. N.) 396–401 (Wiley, 1988).

  113. Logan, J. M. & Balota, D. A. Expanded vs. equal interval spaced retrieval practice: exploring different schedules of spacing and retention interval in younger and older adults. Aging Neuropsychol. Cogn. 15, 257–280 (2008).

    Article  Google Scholar 

  114. Karpicke, J. D. & Bauernschmidt, A. Spaced retrieval: absolute spacing enhances learning regardless of relative spacing. J. Exp. Psychol. Learn. Mem. Cogn. 37, 1250–1257 (2011).

    Article  Google Scholar 

  115. Jennings, J. M. & Jacoby, L. L. Improving memory in older adults: training recollection. Neuropsychol. Rehabil. 13, 417–440 (2003).

    Article  Google Scholar 

  116. Jennings, J. M., Webster, L. M., Kleykamp, B. A. & Dagenbach, D. Recollection training and transfer effects in older adults: successful use of a repetition-lag procedure. Aging Neuropsychol. Cogn. 12, 278–298 (2005).

    Article  Google Scholar 

  117. Anderson, N. D., Ebert, P. L., Grady, C. L. & Jennings, J. M. Repetition lag training eliminates age-related recollection deficits (and gains are maintained after three months) but does not transfer: implications for the fractionation of recollection. Psychol. Aging 33, 93–108 (2018).

    Article  Google Scholar 

  118. Boller, B., Jennings, J. M., Dieudonné, B., Verny, M. & Ergis, A.-M. Recollection training and transfer effects in Alzheimer’s disease: effectiveness of the repetition-lag procedure. Brain Cogn. 78, 169–177 (2012).

    Article  Google Scholar 

  119. Jennings, J. M., Lopina, E. C. & Dagenbach, D. in Remembering (eds Lindsay, D. S., Kelley, C. M., Yonelinas, A. P. & Roediger III, H. L) 276–292 (Psychology, 2014).

  120. Stamenova, V. et al. Training recollection in healthy older adults: clear improvements on the training task, but little evidence of transfer. Front. Hum. Neurosci. 8, 898 (2014).

    Article  Google Scholar 

  121. Bailey, H., Dagenbach, D. & Jennings, J. M. The locus of the benefits of repetition-lag memory training. Aging Neuropsychol. Cogn. 18, 577–593 (2011).

    Article  Google Scholar 

  122. Koch, I., Poljac, E., Müller, H. & Kiesel, A. Cognitive structure, flexibility, and plasticity in human multitasking — an integrative review of dual-task and task-switching research. Psychol. Bull. 144, 557–583 (2018).

    Article  Google Scholar 

  123. Nguyen, L., Murphy, K. & Andrews, G. Immediate and long-term efficacy of executive functions cognitive training in older adults: a systematic review and meta-analysis. Psychol. Bull. 145, 698–733 (2019).

    Article  Google Scholar 

  124. Dörrenbächer, S. & Kray, J. The impact of game-based task-shifting training on motivation and executive control in children with ADHD. J. Cogn. Enhanc. 3, 64–84 (2019).

    Article  Google Scholar 

  125. Minear, M. & Shah, P. Training and transfer effects in task switching. Mem. Cognit. 36, 1470–1483 (2008).

    Article  Google Scholar 

  126. Karbach, J. & Kray, J. How useful is executive control training? Age differences in near and far transfer of task-switching training. Dev. Sci. 12, 978–990 (2009).

    Article  Google Scholar 

  127. von Bastian, C. C. & Oberauer, K. Distinct transfer effects of training different facets of working memory capacity. J. Mem. Lang. 69, 36–58 (2013).

    Article  Google Scholar 

  128. Pereg, M., Shahar, N. & Meiran, N. Task switching training effects are mediated by working-memory management. Intelligence 41, 467–478 (2013).

    Article  Google Scholar 

  129. Zinke, K., Zeintl, M., Eschen, A., Herzog, C. & Kliegel, M. Potentials and limits of plasticity induced by working memory training in old-old age. Gerontology 58, 79–87 (2012).

    Article  Google Scholar 

  130. Braver, T. S. The variable nature of cognitive control: a dual mechanisms framework. Trends Cogn. Sci. 16, 106–113 (2012).

    Article  Google Scholar 

  131. Schumacher, E. H. et al. Virtually perfect time sharing in dual-task performance: uncorking the central cognitive bottleneck. Psychol. Sci. 12, 101–108 (2001).

    Article  Google Scholar 

  132. Schubert, T. & Strobach, T. Practice-related optimization of dual-task performance: efficient task instantiation during overlapping task processing. J. Exp. Psychol. Hum. Percept. Perform. 44, 1884–1904 (2018).

    Article  Google Scholar 

  133. Bier, B., de Boysson, C. & Belleville, S. Identifying training modalities to improve multitasking in older adults. Age 36, 9688 (2014).

    Article  Google Scholar 

  134. Gagnon, L. G. & Belleville, S. Training of attentional control in mild cognitive impairment with executive deficits: results from a double-blind randomised controlled study. Neuropsychol. Rehabil. 22, 809–835 (2012).

    Article  Google Scholar 

  135. Lee, H. et al. Performance gains from directed training do not transfer to untrained tasks. Acta Psychol. 139, 146–158 (2012).

    Article  Google Scholar 

  136. Voss, M. W. et al. Effects of training strategies implemented in a complex videogame on functional connectivity of attentional networks. Neuroimage 59, 138–148 (2012).

    Article  Google Scholar 

  137. Bherer, L. et al. Testing the limits of cognitive plasticity in older adults: application to attentional control. Acta Psychol. 123, 261–278 (2006).

    Article  Google Scholar 

  138. Bherer, L. et al. Training effects on dual-task performance: are there age-related differences in plasticity of attentional control? Psychol. Aging 20, 695–709 (2005).

    Article  Google Scholar 

  139. Kramer, A. F., Larish, J. F. & Strayer, D. L. Training for attentional control in dual task settings: a comparison of young and old adults. J. Exp. Psychol. Appl. 1, 50–76 (1995).

    Article  Google Scholar 

  140. Hazeltine, E., Teague, D. & Ivry, R. B. Simultaneous dual-task performance reveals parallel response selection after practice. J. Exp. Psychol. Hum. Percept. Perform. 28, 527–545 (2002).

    Article  Google Scholar 

  141. Liepelt, R., Strobach, T., Frensch, P. & Schubert, T. Improved intertask coordination after extensive dual-task practice. Q. J. Exp. Psychol. 64, 1251–1272 (2011).

    Article  Google Scholar 

  142. Strobach, T., Frensch, P., Müller, H. & Schubert, T. Evidence for the acquisition of dual-task coordination skills in older adults. Acta Psychol. 160, 104–116 (2015).

    Article  Google Scholar 

  143. Strobach, T., Frensch, P. A. & Schubert, T. Video game practice optimizes executive control skills in dual-task and task switching situations. Acta Psychol. 140, 13–24 (2012).

    Article  Google Scholar 

  144. Strobach, T., Frensch, P. A., Soutschek, A. & Schubert, T. Investigation on the improvement and transfer of dual-task coordination skills. Psychol. Res. 76, 794–811 (2012).

    Article  Google Scholar 

  145. Bender, A. D., Filmer, H. L., Naughtin, C. K. & Dux, P. E. Dynamic, continuous multitasking training leads to task-specific improvements but does not transfer across action selection tasks. NPJ Sci. Learn. 2, 14 (2017).

    Article  Google Scholar 

  146. Jensen, A. How much can we boost IQ and scholastic achievement? Harv. Educ. Rev. 39, 1–123 (1969).

    Article  Google Scholar 

  147. Klingberg, T., Forssberg, H. & Westerberg, H. Training of working memory in children with ADHD. J. Clin. Exp. Neuropsychol. 24, 781–791 (2002).

    Article  Google Scholar 

  148. Jones, J. S., Milton, F., Mostazir, M. & Adlam, A. R. The academic outcomes of working memory and metacognitive strategy training in children: a double-blind randomized controlled trial. Dev. Sci. 23, e12870 (2018).

    Google Scholar 

  149. Carpenter, J. et al. Domain-general enhancements of metacognitive ability through adaptive training. J. Exp. Psychol. Gen. 148, 51–64 (2019).

    Article  Google Scholar 

  150. Belleville, S., Mellah, S., de Boysson, C., Demonet, J.-F. & Bier, B. The pattern and loci of training-induced brain changes in healthy older adults are predicted by the nature of the intervention. PLoS ONE 9, e102710 (2014).

    Article  Google Scholar 

  151. Boyke, J., Driemeyer, J., Gaser, C., Büchel, C. & May, A. Training-induced brain structure changes in the elderly. J. Neurosci. 28, 7031 (2008).

    Article  Google Scholar 

  152. Engvig, A. et al. Memory training impacts short-term changes in aging white matter: a longitudinal diffusion tensor imaging study. Hum. Brain Mapp. 33, 2390–2406 (2012).

    Article  Google Scholar 

  153. Cabeza, R. et al. Maintenance, reserve and compensation: the cognitive neuroscience of healthy ageing. Nat. Rev. Neurosci. 19, 701–710 (2018).

    Article  Google Scholar 

  154. Stern, Y. et al. Whitepaper: defining and investigating cognitive reserve, brain reserve, and brain maintenance. Alzheimers Dement. 16, 1305–1311 (2020).

    Article  Google Scholar 

  155. Belleville, S. et al. Training-related brain plasticity in subjects at risk of developing Alzheimer’s disease. Brain 134, 1623–1634 (2011).

    Article  Google Scholar 

  156. Belleville, S. & Bherer, L. Biomarkers of cognitive training effects in aging. Curr. Transl Geriatr. Exp. Gerontol. Rep. 1, 104–110 (2012).

    Article  Google Scholar 

  157. Erickson, K. I. et al. Striatal volume predicts level of video game skill acquisition. Cereb. Cortex 20, 2522–2530 (2010).

    Article  Google Scholar 

  158. Keysers, C., Gazzola, V. & Wagenmakers, E.-J. Using Bayes factor hypothesis testing in neuroscience to establish evidence of absence. Nat. Neurosci. 23, 788–799 (2020).

    Article  Google Scholar 

  159. Rouder, J. N., Morey, R. D., Verhagen, J., Province, J. M. & Wagenmakers, E.-J. Is there a free lunch in inference? Top. Cogn. Sci. 8, 520–547 (2016).

    Article  Google Scholar 

  160. Cumming, G. Understanding The New Statistics: Effect Sizes, Confidence Intervals, and Meta-Analysis (Routledge, 2011).

  161. Dienes, Z. Bayesian versus orthodox statistics: which side are you on? Perspect. Psychol. Sci. 6, 274–290 (2011).

    Article  Google Scholar 

  162. Simmons, J. P., Nelson, L. D. & Simonsohn, U. False-positive psychology: undisclosed flexibility in data collection and analysis allows presenting anything as significant. Psychol. Sci. 22, 1359–1366 (2011).

    Article  Google Scholar 

  163. Jeffreys, H. The Theory of Probability 3rd edn (Oxford Univ. Press, 1998).

  164. Kass, R. E. & Raftery, A. E. Bayes factors. J. Am. Stat. Assoc. 90, 773–795 (1995).

    Article  Google Scholar 

  165. Kruschke, J. K. Doing Bayesian Data Analysis: A Tutorial with R and BUGS (Elsevier Academic, 2011).

  166. JASP Team. A fresh way to do statistics. JASP https://jasp-stats.org/ (2018).

  167. Dougherty, M. R., Hamovitz, T. & Tidwell, J. W. Reevaluating the effectiveness of n-back training on transfer through the Bayesian lens: support for the null. Psychon. Bull. Rev. 23, 306–316 (2016).

    Article  Google Scholar 

  168. Farrell, S. & Lewandowsky, S. Computational Modeling of Cognition and Behavior (Cambridge Univ. Press, 2018).

  169. Redick, T. S. & Lindsey, D. R. B. Complex span and n-back measures of working memory: a meta-analysis. Psychon. Bull. Rev. 20, 1102–1113 (2013).

    Article  Google Scholar 

  170. Anderson, J. R. How Can The Human Mind Occur In The Physical Universe? (Oxford Univ. Press, 2009).

  171. Takeuchi, H. & Kawashima, R. Effects of processing speed training on cognitive functions and neural systems. Rev. Neurosci. 23, 289–301 (2012).

    Article  Google Scholar 

  172. Ratcliff, R. A theory of memory retrieval. Psychol. Rev. 85, 59–108 (1978).

    Article  Google Scholar 

  173. Schmiedek, F., Oberauer, K., Wilhelm, O., Süß, H.-M. & Wittmann, W. W. Individual differences in components of reaction time distributions and their relations to working memory and intelligence. J. Exp. Psychol. Gen. 136, 414–429 (2007).

    Article  Google Scholar 

  174. van Ravenzwaaij, D., Brown, S. & Wagenmakers, E.-J. An integrated perspective on the relation between response speed and intelligence. Cognition 119, 381–393 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of the Economic and Social Research Council (UK) to C.C.v.B. (ES/V013610/1), the Social Sciences and Humanities Research Council (Canada) to S.B. (2004-2020-0009) and the German Research Foundation to T.S. (STR 1223/10-1).

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article. C.C.v.B., S.B. and T.S. contributed substantially to discussion of the content. All authors wrote the article. All authors reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Claudia C. von Bastian.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Psychology thanks M. Lövdén, R. Maes and G. Sala for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Effectiveness

Positive training effects in ecologically valid, real-world settings with little experimental control and non-homogeneous samples.

Mechanisms

Theoretical constructs specifying the function and organization of one or more cognitive processes and their interplay with other processes and/or biological substrates.

Action video gaming

Playing video games with a fast-paced, complex and dynamic visual environment with a high degree of visual clutter and distraction, demanding focused and distributed attention.

Process-based training

Repetitive practice of tasks that are assumed to require basic cognitive processes.

Useful field of view test

Computer-based measure of the ability to discriminate stimuli presented in central vision with or without concurrent tasks and distractors in peripheral vision.

Probabilistic inference

Computing the probability of one or more random variables using a specific value or set of values.

Working memory capacity

Quantity of information that can be held accessible in working memory in the present moment.

Fluid intelligence

Ability to solve novel reasoning problems.

Strategy-based training

Instruction on mental processes or strategies that differ from those typically involved in the task.

Self-efficacy

One’s belief in their ability to manage and succeed in a particular situation.

Spaced learning

Repeated exposures to learning are spread out over time; for example, short practice sessions spread over multiple days.

Massed learning

Repeated exposures to learning are grouped together; for example, one long practice session on a single day.

Switch costs

Differences in performance between repetition trials, in which participants perform the same task as in the previous trial, and switch trials, in which participants perform a different task than in the previous trial.

Dual-task costs

Differences in performance between dual-task trials, in which participants perform two tasks simultaneously, and single-task trials, in which participants complete one of the two tasks.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

von Bastian, C.C., Belleville, S., Udale, R.C. et al. Mechanisms underlying training-induced cognitive change. Nat Rev Psychol 1, 30–41 (2022). https://doi.org/10.1038/s44159-021-00001-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44159-021-00001-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing