Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Dendritic excitability controls overdispersion

A preprint version of the article is available at bioRxiv.

Abstract

The brain is an intricate assembly of intercommunicating neurons whose input–output function is only partially understood. The role of active dendrites in shaping spiking responses, in particular, is unclear. Although existing models account for active dendrites and spiking responses, they are too complex to analyze analytically and demand long stochastic simulations. Here we combine cable and renewal theory to describe how input fluctuations shape the response of neuronal ensembles with active dendrites. We found that dendritic input readily and potently controls interspike interval dispersion. This phenomenon can be understood by considering that neurons display three fundamental operating regimes: one mean-driven regime and two fluctuation-driven regimes. We show that these results are expected to appear for a wide range of dendritic properties and verify predictions of the model in experimental data. These findings have implications for the role of interspike interval dispersion in learning and for theories of attractor states.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Three operational regimes.
Fig. 2: Experimental validation.

Similar content being viewed by others

Data availability

The raw electrophysiology data can be obtained by writing to the corresponding author, who will seek the permission of the data owners (Matthew Larkum and Christine Grienberger). Source data are provided with this paper. Source data used in Fig. 1, Extended Data Fig. 1 and Supplementary Figs. 1, 3 and 4 can also be generated using the publicly available code.

Code availability

All code used in this manuscript is publicly available on Code Ocean (ref. 38) and on GitHub at https://github.com/ZachFriedenberger/dendritic-renewal-theory.

References

  1. Brunel, N. Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons. J. Comput. Neurosci. 8, 183–208 (2000).

    Article  Google Scholar 

  2. van Vreeswijk, C. Stability of the asynchronous state in networks of non-linear oscillators. Phys. Rev. Lett. 84, 5110 (2000).

    Article  Google Scholar 

  3. Renart, A., Moreno-Bote, R., Wang, X.-J. & Parga, N. Mean-driven and fluctuation-driven persistent activity in recurrent networks. Neural Comput. 19, 1–46 (2007).

    Article  MathSciNet  Google Scholar 

  4. Schwalger, T., Deger, M. & Gerstner, W. Towards a theory of cortical columns: from spiking neurons to interacting neural populations of finite size. PLoS Comput. Biol. 13, e1005507 (2017).

    Article  Google Scholar 

  5. Tiberi, L. et al. Gell-Mann–Low criticality in neural networks. Phys. Rev. Lett. 128, 168301 (2022).

    Article  MathSciNet  Google Scholar 

  6. Ricciardi, L. M. Diffusion Processes and Related Topics in Biology (Springer, 1977).

  7. Renart, A., Song, P. & Wang, X. J. Robust spatial working memory through homeostatic synaptic scaling in heterogeneous cortical networks. Neuron 38, 473–485 (2003).

    Article  Google Scholar 

  8. Vilela, R. D. & Lindner, B. Comparative study of different integrate-and-fire neurons: spontaneous activity, dynamical response and stimulus-induced correlation. Phys. Rev. E 80, 031909 (2009).

    Article  Google Scholar 

  9. Rauch, A., Camera, G. L., Luscher, H., Senn, W. & Fusi, S. Neocortical pyramidal cells respond as integrate-and-fire neurons to in vivo-like input currents. J. Neurophysiol. 90, 1598–1612 (2003).

    Article  Google Scholar 

  10. Mensi, S., Naud, R., Avermann, M., Petersen, C. C. H. & Gerstner, W. Parameter extraction and classification of three neuron types reveals two different adaptation mechanisms. J. Neurophysiol. 107, 1756–1775 (2012).

    Article  Google Scholar 

  11. Mel, B. W. A connectionist model may shed light on neural mechanisms for visually guided reaching. J. Cogn. Neurosci. 3, 273–292 (1991).

    Article  Google Scholar 

  12. Poirazi, P. & Mel, B. W. Choice and value flexibility jointly contribute to the capacity of a subsampled quadratic classifier. Neural Comput. 12, 1189–1205 (2000).

    Article  Google Scholar 

  13. Schiller, J., Major, G., Koester, H. J. & Schiller, Y. NMDA spikes in basal dendrites of cortical pyramidal neurons. Nature 404, 285–289 (2000).

    Article  Google Scholar 

  14. Larkum, M., Zhu, J. & Sakmann, B. A new cellular mechanism for coupling inputs arriving at different cortical layers. Nature 398, 338–341 (1999).

    Article  Google Scholar 

  15. Magee, J. C. Dendritic lh normalizes temporal summation in hippocampal CA1 neurons. Nat. Neurosci. 2, 508–514 (1999).

    Article  Google Scholar 

  16. Judák, L. et al. Sharp-wave ripple doublets induce complex dendritic spikes in parvalbumin interneurons in vivo. Nat. Commun. 13, 6715 (2022).

    Article  Google Scholar 

  17. Larkum, M. E., Senn, W. & Luscher, H.-R. Top-down dendritic input increases the gain of layer 5 pyramidal neurons. Cereb. Cortex 14, 1059–1070 (2004).

    Article  Google Scholar 

  18. Poirazi, P., Brannon, T. & Mel, B. W. Pyramidal neuron as two-layer neural network. Neuron 37, 989–999 (2003).

    Article  Google Scholar 

  19. Ujfalussy, B. B., Makara, J. K., Lengyel, M. & Branco, T. Global and multiplexed dendritic computations under in vivo-like conditions. Neuron 100, 579–592 (2018).

    Article  Google Scholar 

  20. Dembrow, N. C. & Spain, W. J. Input rate encoding and gain control in dendrites of neocortical pyramidal neurons. Cell Rep. 38, 110382 (2022).

    Article  Google Scholar 

  21. Harkin, E. F., Shen, P. R., Goel, A., Richards, B. A. & Naud, R. Parallel and recurrent cascade models as a unifying force for understanding subcellular computation. Neuroscience 489, 200–215 (2022).

    Article  Google Scholar 

  22. Magó, Á., Kis, N., Lüko, B. & Makara, J. K. Distinct dendritic Ca2+ spike forms produce opposing input-output transformations in rat CA3 pyramidal cells. eLife 10, e74493 (2021).

    Article  Google Scholar 

  23. Polsky, A., Mel, B. & Schiller, J. Encoding and decoding bursts by NMDA spikes in basal dendrites of layer 5 pyramidal neurons. J. Neurosci. 29, 11891–11903 (2009).

    Article  Google Scholar 

  24. Xu, N.-l. et al. Nonlinear dendritic integration of sensory and motor input during an active sensing task. Nature 492, 247–251 (2012).

    Article  Google Scholar 

  25. Rall, W. & Rinzel, J. Branch input resistance and steady attenuation for input to one branch of a dendritic neuron model. Biophys. J. 13, 648–687 (1973).

    Article  Google Scholar 

  26. Rall, W. in Methods in Neuronal Modeling (eds Koch, C. & Segev, I.) 9–62 (MIT Press, 1989).

  27. Pillow, J. et al. Spatio-temporal correlations and visual signalling in a complete neuronal population. Nature 454, 995–999 (2008).

    Article  Google Scholar 

  28. Pozzorini, C., Naud, R., Mensi, S. & Gerstner, W. Temporal whitening by power-law adaptation in neocortical neurons. Nat. Neurosci. 16, 942–948 (2013).

    Article  Google Scholar 

  29. Gerstner, W. Time structure of the activity in neural network models. Phys. Rev. E 51, 738–758 (1995).

    Article  Google Scholar 

  30. Naud, R. & Gerstner, W. Coding and decoding with adapting neurons: a population approach to the peri-stimulus time histogram. PLoS Comput. Biol. 8, e1002711 (2012).

    Article  MathSciNet  Google Scholar 

  31. Senzai, Y., Fernandez-Ruiz, A. & Buzsáki, G. Layer-specific physiological features and interlaminar interactions in the primary visual cortex of the mouse. Neuron 101, 500–513 (2019).

    Article  Google Scholar 

  32. Holt, G. R., Softky, W. R., Koch, C. & Douglas, R. J. Comparison of discharge variability in vitro and in vivo in cat visual cortex neurons. J. Neurophysiol. 75, 1806–1814 (1996).

    Article  Google Scholar 

  33. Grienberger, C., Chen, X. & Konnerth, A. NMDA receptor-dependent multidendrite Ca2+ spikes required for hippocampal burst firing in vivo. Neuron 81, 1274–1281 (2014).

    Article  Google Scholar 

  34. Compte, A. et al. Temporally irregular mnemonic persistent activity in prefrontal neurons of monkeys during a delayed response task. J. Neurophysiol. 90, 3441–3454 (2003).

    Article  Google Scholar 

  35. Barbieri, F. & Brunel, N. Can attractor network models account for the statistics of firing during persistent activity in prefrontal cortex?. Front. Neurosci. 2, 114–122 (2008).

    Article  Google Scholar 

  36. Prescott, S. A. & De Koninck, Y. Gain control of firing rate by shunting inhibition: roles of synaptic noise and dendritic saturation. Proc. Natl Acad. Sci. USA 100, 2076–2081 (2003).

    Article  Google Scholar 

  37. Jarsky, T., Roxin, A., Kath, W. L. & Spruston, N. Conditional dendritic spike propagation following distal synaptic activation of hippocampal CA1 pyramidal neurons. Nat. Neurosci. 8, 1667–1676 (2005).

    Article  Google Scholar 

  38. Friedenberger, Z. & Naud, R. Dendritic Excitability Controls Overdispersion [code] https://doi.org/10.24433/CO.9810370.v1 (2023).

Download references

Acknowledgements

We thank all members of the Neural Coding Lab for helpful discussions regarding the manuscript. This work was supported by an NSERC Discovery Grant (to R.N., RGPIN-2017-06872) and an NSERC PGS-D Scholarship (to Z.F.).

Author information

Authors and Affiliations

Authors

Contributions

Z.F. provided conceptualization, writing, mathematical derivations, simulations and data analysis. R.N. provided conceptualization, writing and supervision. All authors reviewed the manuscript and approved the final version.

Corresponding author

Correspondence to Richard Naud.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Computational Science thanks Maria Psarrou and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Ananya Rastogi, in collaboration with the Nature Computational Science team. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Dendritic control of overdispersion is observed for a wide range of dendritic spike amplitudes and durations.

Dendritic input controls frequency shift, gain, and overdispersion. a Schematic of the parametrization of dendritic input modulation in terms of the shift (a) and gain (g) of the f-I curve, as well as overdispersion (c). b-d Heatmaps of the effect on shift (a), gain (g) and overdispersion (c) for different amplitude and duration of the dendritic spikes. The color scale bar corresponds to the dimensionless values of (a), (g), and (c). The undefined region in c-d corresponds to a region where our definitions of gain and dispersion break down (see Methods section ‘Effect of the dendritic spike amplitude and duration’).

Source data

Supplementary information

Source data

Source Data Fig. 1

CSV files for the data in Fig. 1.

Source Data Fig. 2

CSV files for the data in Fig. 2.

Source Data Extended Data Fig. 1

CSV files for the data in Extended Data Fig. 1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Friedenberger, Z., Naud, R. Dendritic excitability controls overdispersion. Nat Comput Sci 4, 19–28 (2024). https://doi.org/10.1038/s43588-023-00580-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43588-023-00580-6

Search

Quick links

Nature Briefing AI and Robotics

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: AI and Robotics