Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

The landscape of computational approaches for artificial photosynthesis

Abstract

Artificial photosynthesis is an attractive strategy for converting solar energy into fuels, largely because the Earth receives enough solar energy in one hour to meet humanity’s energy needs for an entire year. However, developing devices for artificial photosynthesis remains difficult and requires computational approaches to guide and assist the interpretation of experiments. In this Perspective, we discuss current and future computational approaches, as well as the challenges of designing and characterizing molecular assemblies that absorb solar light, transfer electrons between interfaces, and catalyze water-splitting and fuel-forming reactions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic representation of natural photosynthesis and artificial photosynthesis.
Fig. 2: Water splitting driven by photoexcitation.
Fig. 3: Computational modeling of reduction potentials and catalytic mechanism in artificial photosynthesis.
Fig. 4: Sizes and timescales of computational modeling methods and chemical events in artificial photosynthesis.

Similar content being viewed by others

References

  1. Cramer, C. J. & Truhlar, D. G. Density functional theory for transition metals and transition metal chemistry. Phys. Chem. Chem. Phys. 11, 10757–10816 (2009).

    Article  Google Scholar 

  2. Pacchioni, G. Modeling doped and defective oxides in catalysis with density functional theory methods: room for improvements. J. Chem. Phys. 128, 182505 (2008).

    Article  Google Scholar 

  3. Scanlon, D. O., Morgan, B. J. & Watson, G. W. Modeling the polaronic nature of p-type defects in Cu2O: The failure of GGA and GGA+U. J. Chem. Phys. 131, 124703 (2009).

    Article  Google Scholar 

  4. Casida, M. E. & Huix-Rotllant, M. in Density-Functional Methods for Excited States (eds Ferré, N. et al.) 1–60 (Springer, 2016).

  5. Young, K. J. et al. Light-driven water oxidation for solar fuels. Coord. Chem. Rev. 256, 2503–2520 (2012).

    Article  Google Scholar 

  6. Negre, C. F. A. et al. Efficiency of interfacial electron transfer from Zn-porphyrin dyes into TiO2 correlated to the linker single molecule conductance. J. Phys. Chem. C 117, 24462–24470 (2013).

    Article  Google Scholar 

  7. Sivula, K. & van de Krol, R. Semiconducting materials for photoelectrochemical energy conversion. Nat. Rev. Mater. 1, 15010 (2016).

    Article  Google Scholar 

  8. Rego, L. G. C. & Batista, V. S. Quantum dynamics simulations of interfacial electron transfer in sensitized TiO2 semiconductors. J. Am. Chem. Soc. 125, 7989–7997 (2003).

    Article  Google Scholar 

  9. Yang, K. R. et al. Solution structures of highly active molecular Ir water-oxidation catalysts from density functional theory combined with high-energy X-ray scattering and EXAFS spectroscopy. J. Am. Chem. Soc. 138, 5511–5514 (2016).

    Article  Google Scholar 

  10. Doan, H. A. et al. Quantum chemistry-informed active learning to accelerate the design and discovery of sustainable energy storage materials. Chem. Mater. 32, 6338–6346 (2020).

    Article  Google Scholar 

  11. Yao, Z. et al. Machine learning for a sustainable energy future. Nat. Rev. Mater. 8, 202–215 (2022).

  12. Liu, J., Wan, L., Li, Z. & Yang, J. Simulating periodic systems on a quantum computer using molecular orbitals. J. Chem. Theory Comput. 16, 6904–6914 (2020).

    Article  Google Scholar 

  13. Mizuta, K. et al. Deep variational quantum eigensolver for excited states and its application to quantum chemistry calculation of periodic materials. Phys. Rev. Res. 3, 043121 (2021).

    Article  Google Scholar 

  14. Cao, Y. et al. Quantum chemistry in the age of quantum computing. Chem. Rev. 119, 10856–10915 (2019).

    Article  Google Scholar 

  15. López, I. et al. A self‐improved water‐oxidation catalyst: is one site really enough? Angew. Chem. Int. Ed. 53, 205–209 (2014).

    Article  Google Scholar 

  16. Heyd, J., Peralta, J. E., Scuseria, G. E. & Martin, R. L. Energy band gaps and lattice parameters evaluated with the Heyd-Scuseria-Ernzerhof screened hybrid functional. J. Chem. Phys. 123, 174101 (2005).

    Article  Google Scholar 

  17. Wang, L., Long, R. & Prezhdo, O. V. Time-domain ab initio modeling of photoinduced dynamics at nanoscale interfaces. Annu. Rev. Phys. Chem. 66, 549–579 (2015).

    Article  Google Scholar 

  18. González, L. & Lindh, R. Quantum Chemistry and Dynamics of Excited States: Methods and Applications (John Wiley and Sons, 2020).

  19. Man, I. C. et al. Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem 3, 1159–1165 (2011).

    Article  Google Scholar 

  20. Seh, Z. W. et al. Combining theory and experiment in electrocatalysis: insights into materials design. Science 355, eaad4998 (2017).

    Article  Google Scholar 

  21. Fujishima, A. & Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972).

    Article  Google Scholar 

  22. Stowasser, R. & Hoffmann, R. What do the Kohn−Sham orbitals and eigenvalues mean? J. Am. Chem. Soc. 121, 3414–3420 (1999).

    Article  Google Scholar 

  23. Cohen, A. J., Mori-Sánchez, P. & Yang, W. Insights into current limitations of density functional theory. Science 321, 792–794 (2008).

    Article  Google Scholar 

  24. Anisimov, V. I., Zaanen, J. & Andersen, O. K. Band theory and Mott insulators: Hubbard U instead of Stoner I. Phys. Rev. B 44, 943–954 (1991).

    Article  Google Scholar 

  25. Liechtenstein, A. I., Anisimov, V. I. & Zaanen, J. Density-functional theory and strong interactions: orbital ordering in Mott-Hubbard insulators. Phys. Rev. B 52, R5467–R5470 (1995).

    Article  Google Scholar 

  26. Dudarev, S. L., Botton, G. A., Savrasov, S. Y., Humphreys, C. J. & Sutton, A. P. Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+U study. Phys. Rev. B 57, 1505–1509 (1998).

    Article  Google Scholar 

  27. Liao, P. & Carter, E. A. New concepts and modeling strategies to design and evaluate photo-electro-catalysts based on transition metal oxides. Chem. Soc. Rev. 42, 2401–2422 (2013).

    Article  Google Scholar 

  28. Meng, X. Y. et al. Enhanced photoelectrochemical activity for Cu and Ti doped hematite: the first principles calculations. Appl. Phys. Lett. 98, 112104 (2011).

    Article  Google Scholar 

  29. Becke, A. D. Density‐functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993).

    Article  Google Scholar 

  30. Hedin, L. New method for calculating the one-particle Green’s function with application to the electron-gas problem. Phys. Rev. 139, A796–A823 (1965).

    Article  Google Scholar 

  31. Kulik, H. et al. Roadmap on machine learning in electronic structure. Electron. Struct. 4, 023004 (2022).

  32. Runge, E. & Gross, E. K. U. Density-functional theory for time-dependent systems. Phys. Rev. Lett. 52, 997–1000 (1984).

    Article  Google Scholar 

  33. Carter-Fenk, K., Cunha, L. A., Arias-Martinez, J. E. & Head-Gordon, M. Electron-affinity time-dependent density functional theory: formalism and applications to core-excited states. J. Phys. Chem. Lett. 13, 9664–9672 (2022).

  34. Hait, D. & Head-Gordon, M. Orbital optimized density functional theory for electronic excited states. J. Phys. Chem. Lett. 12, 4517–4529 (2021).

    Article  Google Scholar 

  35. Kümmel, S. Charge-transfer excitations: a challenge for time-dependent density functional theory that has been met. Adv. Energy Mater. 7, 1700440 (2017).

    Article  Google Scholar 

  36. Salpeter, E. E. & Bethe, H. A. A relativistic equation for bound-state problems. Phys. Rev. 84, 1232–1242 (1951).

    Article  MathSciNet  MATH  Google Scholar 

  37. Joung, J. F. et al. Deep learning optical spectroscopy based on experimental database: potential applications to molecular design. JACS Au 1, 427–438 (2021).

    Article  Google Scholar 

  38. Abuabara, S. G., Rego, L. G. C. & Batista, V. S. Influence of thermal fluctuations on interfacial electron transfer in functionalized TiO2 semiconductors. J. Am. Chem. Soc. 127, 18234–18242 (2005).

    Article  Google Scholar 

  39. Li, C. et al. Facet-dependent photoelectrochemical performance of TiO2 nanostructures: an experimental and computational study. J. Am. Chem. Soc. 137, 1520–1529 (2015).

    Article  Google Scholar 

  40. Menzel, J. P. et al. Photoinduced electron injection in a fully solvated dye-sensitized photoanode: a dynamical semiempirical study. J. Phys. Chem. C 124, 27965–27976 (2020).

    Article  Google Scholar 

  41. Jiang, J. et al. Molecular design of light-harvesting photosensitizers: effect of varied linker conjugation on interfacial electron transfer. Phys. Chem. Chem. Phys. 18, 18678–18682 (2016).

    Article  Google Scholar 

  42. Liu, C. & Jakubikova, E. Two-step model for ultrafast interfacial electron transfer: limitations of Fermi’s golden rule revealed by quantum dynamics simulations. Chem. Sci. 8, 5979–5991 (2017).

    Article  Google Scholar 

  43. Oliboni, R. S. et al. Vibronic effects in the ultrafast interfacial electron transfer of perylene-sensitized TiO2 surfaces. J. Phys. Chem. C 123, 12599–12607 (2019).

    Article  Google Scholar 

  44. Komsa, H.-P., Broqvist, P. & Pasquarello, A. Alignment of defect levels and band edges through hybrid functionals: effect of screening in the exchange term. Phys. Rev. B 81, 205118 (2010).

    Article  Google Scholar 

  45. Toroker, M. C. et al. First principles scheme to evaluate band edge positions in potential transition metal oxide photocatalysts and photoelectrodes. Phys. Chem. Chem. Phys. 13, 16644–16654 (2011).

    Article  Google Scholar 

  46. Snyder, J. C., Rupp, M., Hansen, K., Müller, K.-R. & Burke, K. Finding density functionals with machine learning. Phys. Rev. Lett. 108, 253002 (2012).

    Article  Google Scholar 

  47. Letchworth-Weaver, K. & Arias, T. A. Joint density functional theory of the electrode-electrolyte interface: application to fixed electrode potentials, interfacial capacitances, and potentials of zero charge. Phys. Rev. B 86, 075140 (2012).

    Article  Google Scholar 

  48. Cheng, J. & Sprik, M. Aligning electronic energy levels at the TiO2/H2O interface. Phys. Rev. B 82, 081406 (2010).

    Article  Google Scholar 

  49. Cramer, C. J. Essentials of Computational Chemistry: Theories and Models (Wiley, 2004).

  50. Tomasi, J., Mennucci, B. & Cammi, R. Quantum mechanical continuum solvation models. Chem. Rev. 105, 2999–3094 (2005).

    Article  Google Scholar 

  51. Basdogan, Y., Maldonado, A. M. & Keith, J. A. Advances and challenges in modeling solvated reaction mechanisms for renewable fuels and chemicals. WIREs Comput. Mol. Sci. 10, e1446 (2020).

    Article  Google Scholar 

  52. Pliego, J. R. & Riveros, J. M. The cluster−continuum model for the calculation of the solvation free energy of ionic species. J. Phys. Chem. A 105, 7241–7247 (2001).

    Article  Google Scholar 

  53. Jinich, A., Sanchez-Lengeling, B., Ren, H., Harman, R. & Aspuru-Guzik, A. A mixed quantum chemistry/machine learning approach for the fast and accurate prediction of biochemical redox potentials and its large-scale application to 315 000 redox reactions. ACS Cent. Sci. 5, 1199–1210 (2019).

    Article  Google Scholar 

  54. Toyao, T. et al. Machine learning for catalysis informatics: recent applications and prospects. ACS Catal. 10, 2260–2297 (2020).

    Article  Google Scholar 

  55. Freeze, J. G., Kelly, H. R. & Batista, V. S. Search for catalysts by inverse design: artificial intelligence, mountain climbers, and alchemists. Chem. Rev. 119, 6595–6612 (2019).

    Article  Google Scholar 

  56. Xu, Y., Yamazaki, M. & Villars, P. Inorganic materials database for exploring the nature of material. Jpn. J. Appl. Phys. 50, 11RH02 (2011).

    Article  Google Scholar 

  57. Curtarolo, S. et al. AFLOWLIB.ORG: a distributed materials properties repository from high-throughput ab initio calculations. Comput. Mater. Sci. 58, 227–235 (2012).

    Article  Google Scholar 

  58. Belsky, A., Hellenbrandt, M., Karen, V. L. & Luksch, P. New developments in the Inorganic Crystal Structure Database (ICSD): accessibility in support of materials research and design. Acta Crystallogr. Sect. B 58, 364–369 (2002).

    Article  Google Scholar 

  59. Jain, A. et al. The Materials Project: a materials genome approach to accelerating materials innovation. APL Mater. 1, 011002 (2013).

    Article  Google Scholar 

  60. Saal, J. E., Kirklin, S., Aykol, M., Meredig, B. & Wolverton, C. Materials design and discovery with high-throughput density functional theory: the open quantum materials database (OQMD). JOM 65, 1501–1509 (2013).

    Article  Google Scholar 

  61. LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).

    Article  Google Scholar 

  62. Palkovits, R. & Palkovits, S. Using artificial intelligence to forecast water oxidation catalysts. ACS Catal. 9, 8383–8387 (2019).

    Article  Google Scholar 

  63. Guo, Y. et al. Machine-learning-guided discovery and optimization of additives in preparing Cu catalysts for CO2 reduction. J. Am. Chem. Soc. 143, 5755–5762 (2021).

    Article  Google Scholar 

  64. Zheng, J. et al. Symbolic transformer accelerating machine learning screening of hydrogen and deuterium evolution reaction catalysts in MA2Z4 materials. ACS Appl. Mater. Interfaces 13, 50878–50891 (2021).

    Article  Google Scholar 

  65. Takigawa, I., Shimizu, K.-i, Tsuda, K. & Takakusagi, S. Machine-learning prediction of the d-band center for metals and bimetals. RSC Adv. 6, 52587–52595 (2016).

    Article  Google Scholar 

  66. Zhang, Y. & Xu, X. Machine learning band gaps of doped-TiO2 photocatalysts from structural and morphological parameters. ACS Omega 5, 15344–15352 (2020).

    Article  Google Scholar 

  67. Spiegelman, F. et al. Density-functional tight-binding: basic concepts and applications to molecules and clusters. Adv. Phys. X 5, 1710252 (2020).

    Google Scholar 

  68. Senftle, T. P. et al. The ReaxFF reactive force-field: development, applications and future directions. NPJ Comput. Mater. 2, 15011 (2016).

    Article  Google Scholar 

  69. Kmiecik, S. et al. Coarse-grained protein models and their applications. Chem. Rev. 116, 7898–7936 (2016).

    Article  Google Scholar 

  70. Samanta, B. et al. Challenges of modeling nanostructured materials for photocatalytic water splitting. Chem. Soc. Rev. 51, 3794–3818 (2022).

    Article  Google Scholar 

  71. Blase, X., Duchemin, I. & Jacquemin, D. The Bethe–Salpeter equation in chemistry: relations with TD-DFT, applications and challenges. Chem. Soc. Rev. 47, 1022–1043 (2018).

    Article  Google Scholar 

  72. Wiktor, J., Reshetnyak, I., Ambrosio, F. & Pasquarello, A. Comprehensive modeling of the band gap and absorption spectrum of BiVO4. Phys. Rev. Mater. 1, 022401 (2017).

    Article  Google Scholar 

  73. da Silva Oliboni, R., Bortolini, G., Torres, A. & Rego, L. G. C. A nonadiabatic excited state molecular Mechanics/Extended Hückel Ehrenfest method. J. Phys. Chem. C 120, 27688–27698 (2016).

    Article  Google Scholar 

  74. Greene, S. M. & Batista, V. S. Tensor-train split-operator fourier transform (TT-SOFT) method: multidimensional nonadiabatic quantum dynamics. J. Chem. Theory Comput. 13, 4034–4042 (2017).

    Article  Google Scholar 

  75. Westermayr, J. & Marquetand, P. Machine learning for electronically excited states of molecules. Chem. Rev. 121, 9873–9926 (2021).

    Article  Google Scholar 

  76. Rudshteyn, B. et al. Calculation of metallocene ionization potentials via auxiliary field quantum Monte Carlo: toward benchmark quantum chemistry for transition metals. J. Chem. Theory Comput. 18, 2845–2862 (2022).

    Article  Google Scholar 

  77. Gaggioli, C. A., Stoneburner, S. J., Cramer, C. J. & Gagliardi, L. Beyond density functional theory: the multiconfigurational approach to model heterogeneous catalysis. ACS Catal. 9, 8481–8502 (2019).

    Article  Google Scholar 

  78. Szalay, S. et al. Tensor product methods and entanglement optimization for ab initio quantum chemistry. Int. J. Quantum Chem. 115, 1342–1391 (2015).

    Article  Google Scholar 

  79. Kirkpatrick, J. et al. Pushing the frontiers of density functionals by solving the fractional electron problem. Science 374, 1385–1389 (2021).

    Article  Google Scholar 

  80. Guda, A. A. et al. Understanding X-ray absorption spectra by means of descriptors and machine learning algorithms. NPJ Comput. Mater. 7, 203 (2021).

    Article  Google Scholar 

  81. Behler, J. Machine learning potentials for atomistic simulations. J. Chem. Phys. 145, 170901 (2016).

    Article  Google Scholar 

  82. Masood, H., Toe, C. Y., Teoh, W. Y., Sethu, V. & Amal, R. Machine learning for accelerated discovery of solar photocatalysts. ACS Catal. 9, 11774–11787 (2019).

    Article  Google Scholar 

  83. Chen, Z., Bononi, F. C., Sievers, C. A., Kong, W.-Y. & Donadio, D. UV–visible absorption spectra of solvated molecules by quantum chemical machine learning. J. Chem. Theory Comput. 18, 4891–4902 (2022).

    Article  Google Scholar 

  84. Hruska, E., Gale, A. & Liu, F. Bridging the experiment-calculation divide: machine learning corrections to redox potential calculations in implicit and explicit solvent models. J. Chem. Theory Comput. 18, 1096–1108 (2022).

    Article  Google Scholar 

  85. Seritan, S. & Martinez, T. OMSC 2019 nonadiabatic dynamics study of the B850-B800 complex in LH2 using TeraChem Cloud. VIRT&L-COMM 19, VIRT&L-COMM.19.2019.21 (2019).

Download references

Acknowledgements

The authors acknowledge support from the Photosynthetic Systems Program, Office of Basic Energy Sciences, United States Department of Energy, under contract no. DESC0001423 (V.S.B.). We thank the National Energy Research Scientific Computing Center and the Yale Center for Research Computing for computing time. We also acknowledge support from the National Science Foundation under grant 2124511 (Centers for Chemical Innovation Phase I: National Science Foundation Center for Quantum Dynamics on Modular Quantum Devices) for the development of quantum computing algorithms applied to photosynthetic systems.

Author information

Authors and Affiliations

Authors

Contributions

K.R.Y., G.W.K. and V.S.B. reviewed the relevant material, brainstormed solutions and wrote the paper.

Corresponding author

Correspondence to Victor S. Batista.

Ethics declarations

Competing interests

The authors declare no competing interest.

Peer review

Peer review information

Nature Computational Science thanks Dimitrios Pantazis and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Kaitlin McCardle, in collaboration with the Nature Computational Science team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, K.R., Kyro, G.W. & Batista, V.S. The landscape of computational approaches for artificial photosynthesis. Nat Comput Sci 3, 504–513 (2023). https://doi.org/10.1038/s43588-023-00450-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43588-023-00450-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing