Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An additive framework for kirigami design

Abstract

We present an additive approach for the inverse design of kirigami-based mechanical metamaterials by focusing on the empty (negative) spaces instead of the solid tiles. By considering each negative space as a four-bar linkage, we identify a simple recursive relationship between adjacent linkages, yielding an efficient method for creating kirigami patterns. This allows us to solve the kirigami design problem using elementary linear algebra, with compatibility, reconfigurability and rigid-deployability encoded into an iterative procedure involving simple matrix multiplications. The resulting linear design strategy circumvents the solution of a non-convex global optimization problem and allows us to control the degrees of freedom in the deployment angle field, linkage offsets and boundary conditions. We demonstrate this by creating a large variety of rigid-deployable, compact, reconfigurable kirigami patterns. We then realize our kirigami designs physically using two simple but effective fabrication strategies with very different materials. Altogether, our additive approaches present routes for efficient mechanical metamaterial design and fabrication based on ori/kirigami art forms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Marching construction for quad kirigami design.
Fig. 2: Encoding different desired properties in the design matrix.
Fig. 3: Linear and nonlinear inverse design of quad kirigami patterns using the proposed framework.
Fig. 4: Physical model fabrication for rigid-deployable kirigami fabricated via a 3D printing-based method and a cast silicone composite method.

Similar content being viewed by others

Data availability

Source data for Fig. 3c are available with this manuscript. Kirigami pattern files are available on Zenodo24.

Code availability

The kirigami design codes are available on Zenodo24.

References

  1. Callens, S. J. & Zadpoor, A. A. From flat sheets to curved geometries: origami and kirigami approaches. Mater. Today 21, 241–264 (2018).

    Article  Google Scholar 

  2. Zhai, Z., Wu, L. & Jiang, H. Mechanical metamaterials based on origami and kirigami. Appl. Phys. Rev. 8, 041319 (2021).

    Article  Google Scholar 

  3. Lang, R. J. Origami Design Secrets: Mathematical Methods for an Ancient Art (CRC Press, 2012).

  4. Demaine, E. D. & O’Rourke, J. Geometric Folding Algorithms: Linkages, Origami, Polyhedra (Cambridge Univ. Press, 2007).

  5. Hull, T. C. Origametry: Mathematical Methods in Paper Folding (Cambridge Univ. Press, 2020).

  6. Temko, F. Kirigami, The Creative Art of Paper Cutting (Platt & Munk, 1962).

  7. Borcea, C. & Streinu, I. Geometric auxetics. Proc. R. Soc. A 471, 20150033 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, B. G.-g et al. Topological mechanics of origami and kirigami. Phys. Rev. Lett. 116, 135501 (2016).

    Article  Google Scholar 

  9. Bertoldi, K., Vitelli, V., Christensen, J. & Van Hecke, M. Flexible mechanical metamaterials. Nat. Rev. Mater. 2, 17066 (2017).

    Article  Google Scholar 

  10. Celli, P. et al. Shape-morphing architected sheets with non-periodic cut patterns. Soft Matter 14, 9744–9749 (2018).

    Article  Google Scholar 

  11. Singh, N. & van Hecke, M. Design of pseudo-mechanisms and multistable units for mechanical metamaterials. Phys. Rev. Lett. 126, 248002 (2021).

    Article  MathSciNet  Google Scholar 

  12. Zheng, Y., Niloy, I., Celli, P., Tobasco, I. & Plucinsky, P. Continuum field theory for the deformations of planar kirigami. Phys. Rev. Lett. 128, 208003 (2022).

    Article  MathSciNet  Google Scholar 

  13. Czajkowski, M., Coulais, C., van Hecke, M. & Rocklin, D. Conformal elasticity of mechanism-based metamaterials. Nat. Commun. 13, 211 (2022).

    Article  Google Scholar 

  14. Konaković-Luković, M., Panetta, J., Crane, K. & Pauly, M. Rapid deployment of curved surfaces via programmable auxetics. ACM Trans. Graph. 37, 106 (2018).

    Article  Google Scholar 

  15. Choi, G. P. T., Dudte, L. H. & Mahadevan, L. Programming shape using kirigami tessellations. Nat. Mater. 18, 999–1004 (2019).

    Article  Google Scholar 

  16. Jiang, C., Rist, F., Pottmann, H. & Wallner, J. Freeform quad-based kirigami. ACM Trans. Graph. 39, 1–11 (2020).

    Article  Google Scholar 

  17. Choi, G. P. T., Dudte, L. H. & Mahadevan, L. Compact reconfigurable kirigami. Phys. Rev. Res. 3, 043030 (2021).

    Article  Google Scholar 

  18. Dang, X., Feng, F., Duan, H. & Wang, J. Theorem for the design of deployable kirigami tessellations with different topologies. Phys. Rev. E 104, 055006 (2021).

    Article  MathSciNet  Google Scholar 

  19. Thompson, D. W. On Growth and Form (Cambridge Univ. Press, 1942).

  20. Truby, R. L. & Lewis, J. A. Printing soft matter in three dimensions. Nature 540, 371–378 (2016).

    Article  Google Scholar 

  21. Dudte, L. H., Choi, G. P. T. & Mahadevan, L. An additive algorithm for origami design. Proc. Natl Acad. Sci. USA 118, e2019241118 (2021).

    Article  MathSciNet  Google Scholar 

  22. Dudte, L. H., Vouga, E., Tachi, T. & Mahadevan, L. Programming curvature using origami tessellations. Nat. Mater. 15, 583–588 (2016).

    Article  Google Scholar 

  23. Lang, R. J. & Howell, L. Rigidly foldable quadrilateral meshes from angle arrays. J. Mech. Robot. 10, 021004 (2018).

    Article  Google Scholar 

  24. Dudte, L. H., Choi, G. P. T., Becker, K. P. & Mahadevan, L. ‘Additive kirigami’. Zenodo https://doi.org/10.5281/zenodo.7763613 (2023).

Download references

Acknowledgements

This work was supported in part by the National Science Foundation under grants nos. DMS-2002103 (G.P.T.C.), DMR 20-11754 (L.M.), DMREF 19-22321 (L.M.) and EFRI 18-30901 (L.M.), and the Simons Foundation (L.M.) and the Henri Seydoux Fund (L.M.).

Author information

Authors and Affiliations

Authors

Contributions

L.H.D. and L.M. conceived the research. L.H.D., G.P.T.C., K.P.B. and L.M. designed the research. L.H.D. and G.P.T.C. derived the theoretical results, implemented the algorithms and conducted the numerical experiments. K.P.B. built the physical models. L.H.D., G.P.T.C., K.P.B. and L.M. analyzed the results and wrote the manuscript. L.M. supervised the research.

Corresponding author

Correspondence to L. Mahadevan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Computational Science thanks Xianqiao Wang, Alberto Corigliano and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Kaitlin McCardle, in collaboration with the Nature Computational Science team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections 1–4, Figs. 1–23 and discussion.

Source data

Source Data Fig. 3

Raw numerical source data for Fig. 3c.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dudte, L.H., Choi, G.P.T., Becker, K.P. et al. An additive framework for kirigami design. Nat Comput Sci 3, 443–454 (2023). https://doi.org/10.1038/s43588-023-00448-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43588-023-00448-9

This article is cited by

Search

Quick links

Nature Briefing AI and Robotics

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: AI and Robotics