Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Defect modeling and control in structurally and compositionally complex materials

Abstract

Conventional computational approaches for modeling defects face difficulties when applied to complex materials, mainly due to the vast configurational space of defects. In this Perspective, we discuss the challenges in calculating defect properties in complex materials, review recent advances in computational techniques and showcase new mechanistic insights developed from these methods. We further discuss the remaining challenges in improving the accuracy and efficiency of defect modeling in complex materials, and provide an outlook on potential research directions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic illustration of statistically averaged defect property.
Fig. 2: Schematic illustration for the configuration coordinate diagram for two scenarios.
Fig. 3: Summary of challenges and future research directions for defect modeling in complex materials.

Similar content being viewed by others

References

  1. Pantelides, S. T. The electronic structure of impurities and other point defects in semiconductors. Rev. Mod. Phys. 50, 797–858 (1978).

    Article  Google Scholar 

  2. Estreicher, S. K. Hydrogen-related defects in crystalline semiconductors: a theorist’s perspective. Mater. Sci. Eng. R. Rep. 14, 319–412 (1995).

    Article  Google Scholar 

  3. Kim, H. & Chelikowsky, J. R. Theoretical scanning tunneling microscopy images of the as vacancy on the GaAs(110) surface. Phys. Rev. Lett. 77, 1063–1066 (1996).

    Article  Google Scholar 

  4. Schultz, P. A. Charged local defects in extended systems. Phys. Rev. Lett. 84, 1942–1945 (2000).

    Article  Google Scholar 

  5. Jain, M., Chelikowsky, J. R. & Louie, S. G. Quasiparticle excitations and charge transition levels of oxygen vacancies in hafnia. Phys. Rev. Lett. 107, 216803 (2011).

    Article  Google Scholar 

  6. Lewis, D. K., Ramasubramaniam, A. & Sharifzadeh, S. Tuned and screened range-separated hybrid density functional theory for describing electronic and optical properties of defective gallium nitride. Phys. Rev. Mater. 4, 063803 (2020).

    Article  Google Scholar 

  7. Gorai, P., Famprikis, T., Singh, B., Stevanović, V. & Canepa, P. Devil is in the defects: electronic conductivity in solid electrolytes. Chem. Mater. 33, 7484–7498 (2021).

    Article  Google Scholar 

  8. George, E. P., Raabe, D. & Ritchie, R. O. High-entropy alloys. Nat. Rev. Mater. 4, 515–534 (2019).

    Article  Google Scholar 

  9. Chen, S., Gong, X. G., Walsh, A. & Wei, S.-H. Electronic structure and stability of quaternary chalcogenide semiconductors derived from cation cross-substitution of II–VI and I–III–VI2 compounds. Phys. Rev. B 79, 165211 (2009).

    Article  Google Scholar 

  10. Ma, Y. et al. High-entropy energy materials: challenges and new opportunities. Energy Environ. Sci. 14, 2883–2905 (2021).

    Article  Google Scholar 

  11. Zhao, X.-G. et al. Design of lead-free inorganic halide perovskites for solar cells via cation-transmutation. J. Am. Chem. Soc. 139, 2630–2638 (2017).

    Article  Google Scholar 

  12. Wang, J., Chen, H., Wei, S. & Yin, W. Materials design of solar cell absorbers beyond perovskites and conventional semiconductors via combining tetrahedral and octahedral coordination. Adv. Mater. 31, 1806593 (2019).

    Article  Google Scholar 

  13. Oses, C., Toher, C. & Curtarolo, S. High-entropy ceramics. Nat. Rev. Mater. 5, 295–309 (2020).

    Article  Google Scholar 

  14. Anderson, P. W. More is different: broken symmetry and the nature of the hierarchical structure of science. Science 177, 393–396 (1972).

    Article  Google Scholar 

  15. Cantor, B. Multicomponent high-entropy Cantor alloys. Prog. Mater. Sci. 120, 100754 (2021).

    Article  Google Scholar 

  16. Cantor, B., Chang, I. T. H., Knight, P. & Vincent, A. J. B. Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A 375–377, 213–218 (2004).

    Article  Google Scholar 

  17. Yeh, J.-W. et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv. Eng. Mater. 6, 299–303 (2004).

    Article  Google Scholar 

  18. Rost, C. M. et al. Entropy-stabilized oxides. Nat. Commun. 6, 8485 (2015).

    Article  Google Scholar 

  19. Yang, B. et al. High-entropy enhanced capacitive energy storage. Nat. Mater. 21, 1074–1080 (2022).

    Article  Google Scholar 

  20. Gild, J. et al. High-entropy metal diborides: a new class of high-entropy materials and a new type of ultrahigh temperature ceramics. Sci. Rep. 6, 37946 (2016).

    Article  Google Scholar 

  21. Sarker, P. et al. High-entropy high-hardness metal carbides discovered by entropy descriptors. Nat. Commun. 9, 4980 (2018).

    Article  Google Scholar 

  22. Jin, T. et al. Mechanochemical‐assisted synthesis of high‐entropy metal nitride via a soft urea strategy. Adv. Mater. 30, 1707512 (2018).

    Article  Google Scholar 

  23. Zhang, R.-Z., Gucci, F., Zhu, H., Chen, K. & Reece, M. J. Data-driven design of ecofriendly thermoelectric high-entropy sulfides. Inorg. Chem. 57, 13027–13033 (2018).

    Article  Google Scholar 

  24. Gild, J. et al. A high-entropy silicide: (Mo0.2Nb0.2Ta0.2Ti0.2W0.2)Si2. J. Materiomics 5, 337–343 (2019).

    Article  Google Scholar 

  25. Zhang, X. et al. Defect-characterized phase transition kinetics. Appl. Phys. Rev. 9, 041311 (2022).

    Article  Google Scholar 

  26. Huang, M. et al. More Se vacancies in Sb2Se3 under Se‐rich conditions: an abnormal behavior induced by defect‐correlation in compensated compound semiconductors. Small 17, 2102429 (2021).

    Article  Google Scholar 

  27. Johnson, J. M. et al. Unusual formation of point-defect complexes in the ultrawide-band-gap semiconductor β-Ga2O3. Phys. Rev. X 9, 041027 (2019).

    Google Scholar 

  28. Sun, J.-P. et al. Structural tolerance factor approach to defect-resistant I2–II–IV–X4 semiconductor design. Chem. Mater. 32, 1636–1649 (2020).

    Article  Google Scholar 

  29. Gorai, P., Long, H., Jones, E., Santhanagopalan, S. & Stevanović, V. Defect chemistry of disordered solid-state electrolyte Li10GeP2S12. J. Mater. Chem. A 8, 3851–3858 (2020).

    Article  Google Scholar 

  30. Guan, H. et al. Chemical environment and magnetic moment effects on point defect formations in CoCrNi-based concentrated solid-solution alloys. Acta Mater. 187, 122–134 (2020).

    Article  Google Scholar 

  31. Zhang, S. B., Wei, S.-H., Zunger, A. & Katayama-Yoshida, H. Defect physics of the CuInSe2 chalcopyrite semiconductor. Phys. Rev. B 57, 9642–9656 (1998).

    Article  Google Scholar 

  32. Wei, S.-H. Overcoming the doping bottleneck in semiconductors. Comput. Mater. Sci. 30, 337–348 (2004).

    Article  Google Scholar 

  33. Lany, S. & Zunger, A. Accurate prediction of defect properties in density functional supercell calculations. Model. Simul. Mater. Sci. Eng. 17, 084002 (2009).

    Article  Google Scholar 

  34. Freysoldt, C. et al. First-principles calculations for point defects in solids. Rev. Mod. Phys. 86, 253–305 (2014).

    Article  Google Scholar 

  35. Xiao, J. et al. Realistic dimension-independent approach for charged-defect calculations in semiconductors. Phys. Rev. B 101, 165306 (2020).

    Article  Google Scholar 

  36. Wang, R., Tan, W., Zhang, J., Chen, F.-X. & Wei, S.-H. First-principles study of alloying effects on fluorine incorporation in AlxGa1−xN alloys. J. Phys. Appl. Phys. 51, 065108 (2018).

    Article  Google Scholar 

  37. Yang, J. & Wei, S.-H. First-principles study of the band gap tuning and doping control in CdSexTe1−x alloy for high efficiency solar cell. Chin. Phys. B 28, 086106 (2019).

    Article  Google Scholar 

  38. Wei, S.-H., Ferreira, L. G., Bernard, J. E. & Zunger, A. Electronic properties of random alloys: special quasirandom structures. Phys. Rev. B 42, 9622–9649 (1990).

    Article  Google Scholar 

  39. Zunger, A., Wei, S.-H., Ferreira, L. G. & Bernard, J. E. Special quasirandom structures. Phys. Rev. Lett. 65, 353–356 (1990).

    Article  Google Scholar 

  40. van de Walle, A. et al. Efficient stochastic generation of special quasirandom structures. Calphad 42, 13–18 (2013).

    Article  Google Scholar 

  41. Jiang, C. & Uberuaga, B. P. Efficient ab initio modeling of random multicomponent alloys. Phys. Rev. Lett. 116, 105501 (2016).

    Article  Google Scholar 

  42. Saltas, V., Horlait, D., Sgourou, E. N., Vallianatos, F. & Chroneos, A. Modelling solid solutions with cluster expansion, special quasirandom structures, and thermodynamic approaches. Appl. Phys. Rev. 4, 041301 (2017).

    Article  Google Scholar 

  43. Tian, F., Lin, D.-Y., Gao, X., Zhao, Y.-F. & Song, H.-F. A structural modeling approach to solid solutions based on the similar atomic environment. J. Chem. Phys. 153, 034101 (2020).

    Article  Google Scholar 

  44. Liu, J., Fernández-Serra, M. V. & Allen, P. B. Special quasiordered structures: role of short-range order in the semiconductor alloy (GaN)1−x(ZnO)x. Phys. Rev. B 93, 054207 (2016).

    Article  Google Scholar 

  45. Yang, J., Zhang, P. & Wei, S.-H. Band structure engineering of Cs2AgBiBr6 perovskite through order–disordered transition: a first-principle study. J. Phys. Chem. Lett. 9, 31–35 (2018).

    Article  Google Scholar 

  46. Yang, J., Wang, J., Yang, C., Zhang, W. & Wei, S.-H. First-principles study of the order–disorder transition and its effects on the optoelectronic property of ABiS2 (A = Na, K). Phys. Rev. Mater. 4, 085402 (2020).

    Article  Google Scholar 

  47. Huang, M. et al. DASP: Defect and Dopant ab-initio Simulation Package. J. Semicond. 43, 042101 (2022).

    Article  MathSciNet  Google Scholar 

  48. Goyal, A., Gorai, P., Peng, H., Lany, S. & Stevanović, V. A computational framework for automation of point defect calculations. Comput. Mater. Sci. 130, 1–9 (2017).

    Article  Google Scholar 

  49. Broberg, D. et al. PyCDT: a Python toolkit for modeling point defects in semiconductors and insulators. Comput. Phys. Commun. 226, 165–179 (2018).

    Article  Google Scholar 

  50. Lerch, D., Wieckhorst, O., Hart, G. L. W., Forcade, R. W. & Müller, S. UNCLE: a code for constructing cluster expansions for arbitrary lattices with minimal user-input. Model. Simul. Mater. Sci. Eng. 17, 055003 (2009).

    Article  Google Scholar 

  51. Samin, A. J., Andersson, D. A., Holby, E. F. & Uberuaga, B. P. First-principles localized cluster expansion study of the kinetics of hydrogen diffusion in homogeneous and heterogeneous Fe–Cr alloys. Phys. Rev. B 99, 014110 (2019).

    Article  Google Scholar 

  52. Cheng, Y., Zhu, L., Zhou, J. & Sun, Z. pyGACE: combining the genetic algorithm and cluster expansion methods to predict the ground-state structure of systems containing point defects. Comput. Mater. Sci. 174, 109482 (2020).

    Article  Google Scholar 

  53. Bartók, A. P., Kermode, J., Bernstein, N. & Csányi, G. Machine learning a general-purpose interatomic potential for silicon. Phys. Rev. X 8, 041048 (2018).

    Google Scholar 

  54. Wang, H., Zhang, L., Han, J. & E, W. DeePMD-kit: a deep learning package for many-body potential energy representation and molecular dynamics. Comput. Phys. Commun. 228, 178–184 (2018).

    Article  Google Scholar 

  55. Kostiuchenko, T., Körmann, F., Neugebauer, J. & Shapeev, A. Impact of lattice relaxations on phase transitions in a high-entropy alloy studied by machine-learning potentials. npj Comput. Mater. 5, 55 (2019).

    Article  Google Scholar 

  56. Frey, N. C., Akinwande, D., Jariwala, D. & Shenoy, V. B. Machine learning-enabled design of point defects in 2D materials for quantum and neuromorphic information processing. ACS Nano 14, 13406–13417 (2020).

    Article  Google Scholar 

  57. Jinnouchi, R., Miwa, K., Karsai, F., Kresse, G. & Asahi, R. On-the-fly active learning of interatomic potentials for large-scale atomistic simulations. J. Phys. Chem. Lett. 11, 6946–6955 (2020).

    Article  Google Scholar 

  58. Ko, T. W., Finkler, J. A., Goedecker, S. & Behler, J. A fourth-generation high-dimensional neural network potential with accurate electrostatics including non-local charge transfer. Nat. Commun. 12, 398 (2021).

    Article  Google Scholar 

  59. Cheng, G., Gong, X.-G. & Yin, W.-J. Crystal structure prediction by combining graph network and optimization algorithm. Nat. Commun. 13, 1492 (2022).

    Article  Google Scholar 

  60. Abadi, M. et al. TensorFlow: A System for Large-Scale Machine Learning. In Proceedings of the 12th USENIX Conference on Operating Systems Design and Implementation 265–283 (USENIX, 2016).

  61. Stevanović, V., Lany, S., Zhang, X. & Zunger, A. Correcting density functional theory for accurate predictions of compound enthalpies of formation: fitted elemental-phase reference energies. Phys. Rev. B 85, 115104 (2012).

    Article  Google Scholar 

  62. Xiao, Z. et al. Intrinsic instability of Cs2In(I)M(III)X6 (M = Bi, Sb; X = Halogen) double perovskites: a combined density functional theory and experimental study. J. Am. Chem. Soc. 139, 6054–6057 (2017).

    Article  Google Scholar 

  63. Kang, J., Zhang, X. & Wei, S.-H. Advances and challenges in DFT-based energy materials design. Chin. Phys. B https://doi.org/10.1088/1674-1056/ac89d7 (2022).

  64. Byggmästar, J., Nordlund, K. & Djurabekova, F. Modeling refractory high-entropy alloys with efficient machine-learned interatomic potentials: defects and segregation. Phys. Rev. B 104, 104101 (2021).

    Article  Google Scholar 

  65. Lu, E. et al. Enhancement of vacancy diffusion by C and N interstitials in the equiatomic FeMnNiCoCr high entropy alloy. Acta Mater. 215, 117093 (2021).

    Article  Google Scholar 

  66. Roy, A., Singh, P., Balasubramanian, G. & Johnson, D. D. Vacancy formation energies and migration barriers in multi-principal element alloys. Acta Mater. 226, 117611 (2022).

    Article  Google Scholar 

  67. Henkelman, G., Uberuaga, B. P., Jónsson, H. & Jónsson, H. Climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000).

    Article  Google Scholar 

  68. Yang, J.-H., Park, J.-S., Kang, J. & Wei, S.-H. First-principles multiple-barrier diffusion theory: the case study of interstitial diffusion in CdTe. Phys. Rev. B 91, 075202 (2015).

    Article  Google Scholar 

  69. Osetsky, Y. et al. Tunable chemical complexity to control atomic diffusion in alloys. npj Comput. Mater. 6, 38 (2020).

    Article  Google Scholar 

  70. Kottke, J. et al. Experimental and theoretical study of tracer diffusion in a series of (CoCrFeMn)100−xNix alloys. Acta Mater. 194, 236–248 (2020).

    Article  Google Scholar 

  71. Wang, Y.-Z. & Wang, Y.-J. Disentangling diffusion heterogeneity in high-entropy alloys. Acta Mater. 224, 117527 (2022).

    Article  Google Scholar 

  72. Xu, L. & Henkelman, G. Adaptive kinetic Monte Carlo for first-principles accelerated dynamics. J. Chem. Phys. 129, 114104 (2008).

    Article  Google Scholar 

  73. Henkelman, G. & Jónsson, H. A dimer method for finding saddle points on high dimensional potential surfaces using only first derivatives. J. Chem. Phys. 111, 7010 (1999).

    Article  Google Scholar 

  74. Osetsky, Y. N., Béland, L. K., Barashev, A. V. & Zhang, Y. On the existence and origin of sluggish diffusion in chemically disordered concentrated alloys. Curr. Opin. Solid State Mater. Sci. 22, 65–74 (2018).

    Article  Google Scholar 

  75. Zhou, X.-Y. et al. Machine learning assisted design of FeCoNiCrMn high-entropy alloys with ultra-low hydrogen diffusion coefficients. Acta Mater. 224, 117535 (2022).

    Article  Google Scholar 

  76. Zhao, S. Application of machine learning in understanding the irradiation damage mechanism of high-entropy materials. J. Nucl. Mater. 559, 153462 (2022).

    Article  Google Scholar 

  77. Zhang, X., Turiansky, M. E., Shen, J.-X. & Van de Walle, C. G. Defect tolerance in halide perovskites: a first-principles perspective. J. Appl. Phys. 131, 090901 (2022).

    Article  Google Scholar 

  78. Kavanagh, S. R., Walsh, A. & Scanlon, D. O. Rapid recombination by cadmium vacancies in CdTe. ACS Energy Lett. 6, 1392–1398 (2021).

    Article  Google Scholar 

  79. Kavanagh, S. R., Scanlon, D. O., Walsh, A. & Freysoldt, C. Impact of metastable defect structures on carrier recombination in solar cells. Faraday Discuss. 239, 339–356 (2022).

  80. Kim, S., Hood, S. N. & Walsh, A. Anharmonic lattice relaxation during nonradiative carrier capture. Phys. Rev. B 100, 041202 (2019).

    Article  Google Scholar 

  81. Turiansky, M. E. et al. Nonrad: computing nonradiative capture coefficients from first principles. Comput. Phys. Commun. 267, 108056 (2021).

    Article  MathSciNet  Google Scholar 

  82. Zhang, X. & Wei, S.-H. Origin of efficiency enhancement by lattice expansion in hybrid-perovskite solar cells. Phys. Rev. Lett. 128, 136401 (2022).

    Article  Google Scholar 

  83. Xiao, Y. et al. Anharmonic multi-phonon nonradiative transition: an ab initio calculation approach. Sci. China Phys. Mech. Astron. 63, 277312 (2020).

    Article  Google Scholar 

  84. Lin, Y. & Akimov, A. V. Dependence of nonadiabatic couplings with Kohn–Sham orbitals on the choice of density functional: pure vs hybrid. J. Phys. Chem. A 120, 9028–9041 (2016).

    Article  Google Scholar 

  85. Kang, J. Effects of band edge positions on defect structure in lead halide perovskites: a case study on the Br vacancy in CsPbBr3. Phys. Rev. Mater. 4, 085405 (2020).

    Article  Google Scholar 

  86. Wang, S. et al. Effective lifetime of non-equilibrium carriers in semiconductors from non-adiabatic molecular dynamics simulations. Nat. Comput. Sci. 2, 486–493 (2022).

    Article  Google Scholar 

  87. Wang, B., Chu, W. & Prezhdo, O. V. Interpolating nonadiabatic molecular dynamics Hamiltonian with inverse fast Fourier transform. J. Phys. Chem. Lett. 13, 331–338 (2022).

    Article  Google Scholar 

  88. Akimov, A. V. Extending the time scales of nonadiabatic molecular dynamics via machine learning in the time domain. J. Phys. Chem. Lett. 12, 12119–12128 (2021).

    Article  Google Scholar 

  89. Chen, S., Yang, J.-H., Gong, X. G., Walsh, A. & Wei, S.-H. Intrinsic point defects and complexes in the quaternary kesterite semiconductor Cu2ZnSnS4. Phys. Rev. B 81, 245204 (2010).

    Article  Google Scholar 

  90. Li, J., Yuan, Z.-K., Chen, S., Gong, X.-G. & Wei, S.-H. Effective and noneffective recombination center defects in Cu2ZnSnS4: significant difference in carrier capture cross sections. Chem. Mater. 31, 826–833 (2019).

    Article  Google Scholar 

  91. Kim, S., Park, J.-S., Hood, S. N. & Walsh, A. Lone-pair effect on carrier capture in Cu2ZnSnS4 solar cells. J. Mater. Chem. A 7, 2686–2693 (2019).

    Article  Google Scholar 

  92. Zhang, S. B., Wei, S.-H. & Zunger, A. Stabilization of ternary compounds via ordered arrays of defect pairs. Phys. Rev. Lett. 78, 4059–4062 (1997).

    Article  Google Scholar 

  93. Shukla, S. et al. Over 15% efficient wide-band-gap Cu(In,Ga)S2 solar cell: suppressing bulk and interface recombination through composition engineering. Joule 5, 1816–1831 (2021).

    Article  Google Scholar 

  94. Martinez, A. D., Fioretti, A. N., Toberer, E. S. & Tamboli, A. C. Synthesis, structure, and optoelectronic properties of II–IV–V2 materials. J. Mater. Chem. A 5, 11418–11435 (2017).

    Article  Google Scholar 

  95. Huang, M., Wang, S.-S., Wu, Y.-N. & Chen, S. Defect physics of ternary semiconductor ZnGeP2 with a high density of anion–cation antisites: a first-principles study. Phys. Rev. Appl. 15, 024035 (2021).

    Article  Google Scholar 

  96. Tsunoda, N., Kumagai, Y., Takahashi, A. & Oba, F. Electrically benign defect behavior in zinc tin nitride revealed from first principles. Phys. Rev. Appl. 10, 011001 (2018).

    Article  Google Scholar 

  97. Pan, J. et al. Perfect short-range ordered alloy with line-compound-like properties in the ZnSnN2:ZnO system. npj Comput. Mater. 6, 63 (2020).

    Article  Google Scholar 

  98. Pan, J. et al. Interplay between composition, electronic structure, disorder, and doping due to dual sublattice mixing in nonequilibrium synthesis of ZnSnN2:O. Adv. Mater. 31, 1807406 (2019).

    Article  Google Scholar 

  99. Adamski, N. L., Zhu, Z., Wickramaratne, D. & Van de Walle, C. G. Hybrid functional study of native point defects and impurities in ZnGeN2. J. Appl. Phys. 122, 195701 (2017).

    Article  Google Scholar 

  100. Adamski, N. L., Zhu, Z., Wickramaratne, D. & Van de Walle, C. G. Strategies for p-type doping of ZnGeN2. Appl. Phys. Lett. 114, 032101 (2019).

    Article  Google Scholar 

  101. Braun, J. L. et al. Charge‐induced disorder controls the thermal conductivity of entropy‐stabilized oxides. Adv. Mater. 30, 1805004 (2018).

    Article  Google Scholar 

  102. Ye, B. et al. First-principles study, fabrication and characterization of (Zr0.25Nb0.25Ti0.25V0.25)C high-entropy ceramics. Acta Mater. 170, 15–23 (2019).

    Article  Google Scholar 

  103. Janotti, A. & Van de Walle, C. G. Native point defects in ZnO. Phys. Rev. B 76, 165202 (2007).

    Article  Google Scholar 

  104. Diallo, I. C. & Demchenko, D. O. Native point defects in GaN: a hybrid-functional study. Phys. Rev. Appl. 6, 064002 (2016).

    Article  Google Scholar 

  105. Wallace, S. K., Frost, J. M. & Walsh, A. Atomistic insights into the order–disorder transition in Cu2ZnSnS4 solar cells from Monte Carlo simulations. J. Mater. Chem. A 7, 312–321 (2019).

    Article  Google Scholar 

  106. Yuan, Z.-K. et al. Engineering solar cell absorbers by exploring the band alignment and defect disparity: the case of Cu- and Ag-based kesterite compounds. Adv. Funct. Mater. 25, 6733–6743 (2015).

    Article  Google Scholar 

  107. Xiao, Z., Meng, W., Li, J. V. & Yan, Y. Distant-atom mutation for better Earth-abundant light absorbers: a case study of Cu2BaSnSe4. ACS Energy Lett. 2, 29–35 (2017).

    Article  Google Scholar 

  108. Freysoldt, C., Neugebauer, J. & Van de Walle, C. G. Fully ab initio finite-size corrections for charged-defect supercell calculations. Phys. Rev. Lett. 102, 016402 (2009).

    Article  Google Scholar 

  109. Komsa, H.-P. & Pasquarello, A. Finite-size supercell correction for charged defects at surfaces and interfaces. Phys. Rev. Lett. 110, 095505 (2013).

    Article  Google Scholar 

  110. Falletta, S., Wiktor, J. & Pasquarello, A. Finite-size corrections of defect energy levels involving ionic polarization. Phys. Rev. B 102, 041115 (2020).

    Article  Google Scholar 

  111. Chagas da Silva, M. et al. Self-consistent potential correction for charged periodic systems. Phys. Rev. Lett. 126, 076401 (2021).

    Article  Google Scholar 

  112. Rak, Z. S. et al. Charge compensation and electrostatic transferability in three entropy-stabilized oxides: results from density functional theory calculations. J. Appl. Phys. 120, 095105 (2016).

    Article  Google Scholar 

  113. Osenciat, N. et al. Charge compensation mechanisms in Li‐substituted high‐entropy oxides and influence on Li superionic conductivity. J. Am. Ceram. Soc. 102, 6156–6162 (2019).

    Article  Google Scholar 

  114. Zakutayev, A. et al. Cation off-stoichiometry leads to high p-type conductivity and enhanced transparency in Co2ZnO4 and Co2NiO4 thin films. Phys. Rev. B 85, 085204 (2012).

    Article  Google Scholar 

  115. Kang, J. Phonon-assisted hopping through defect states in MoS2: a multiscale simulation. J. Phys. Chem. Lett. 11, 3615–3622 (2020).

    Article  Google Scholar 

  116. Perrenoud, J. et al. A comprehensive picture of Cu doping in CdTe solar cells. J. Appl. Phys. 114, 174505 (2013).

    Article  Google Scholar 

  117. Zhu, J., Liu, F., Stringfellow, G. B. & Wei, S.-H. Strain-enhanced doping in semiconductors: effects of dopant size and charge state. Phys. Rev. Lett. 105, 195503 (2010).

    Article  Google Scholar 

  118. Ma, J. & Wei, S.-H. Bowing of the defect formation energy in semiconductor alloys. Phys. Rev. B 87, 241201 (2013).

    Article  Google Scholar 

  119. Yan, X., Li, P., Wei, S.-H. & Huang, B. Universal theory and basic rules of strain-dependent doping behaviors in semiconductors. Chin. Phys. Lett. 38, 087103 (2021).

    Article  Google Scholar 

  120. Shen, J.-X. et al. Calcium as a nonradiative recombination center in InGaN. Appl. Phys. Express 10, 021001 (2017).

    Article  Google Scholar 

  121. Delange, P. et al. Large effects of subtle electronic correlations on the energetics of vacancies in α-Fe. Phys. Rev. B 94, 100102 (2016).

    Article  Google Scholar 

  122. Gambino, D. & Alling, B. Lattice relaxations in disordered Fe-based materials in the paramagnetic state from first principles. Phys. Rev. B 98, 064105 (2018).

    Article  Google Scholar 

  123. Hegde, O. et al. Atomic relaxation around defects in magnetically disordered materials computed by atomic spin constraints within an efficient Lagrange formalism. Phys. Rev. B 102, 144101 (2020).

    Article  Google Scholar 

  124. Li, K., Fu, C.-C. & Schneider, A. Effects of magnetic excitations and transitions on vacancy formation: cases of fcc Fe and Ni compared to bcc Fe. Phys. Rev. B 104, 104406 (2021).

    Article  Google Scholar 

  125. Körmann, F., Dick, A., Grabowski, B., Hickel, T. & Neugebauer, J. Atomic forces at finite magnetic temperatures: phonons in paramagnetic iron. Phys. Rev. B 85, 125104 (2012).

    Article  Google Scholar 

  126. Körmann, F. et al. Temperature dependent magnon–phonon coupling in bcc Fe from theory and experiment. Phys. Rev. Lett. 113, 165503 (2014).

    Article  Google Scholar 

  127. Gallop, N. P. et al. Rotational cation dynamics in metal halide perovskites: effect on phonons and material properties. J. Phys. Chem. Lett. 9, 5987–5997 (2018).

    Article  Google Scholar 

  128. Munson, K. T., Swartzfager, J. R. & Asbury, J. B. Lattice anharmonicity: a double-edged sword for 3D perovskite-based optoelectronics. ACS Energy Lett. 4, 1888–1897 (2019).

    Article  Google Scholar 

  129. Bechtel, J. S., Thomas, J. C. & Van der Ven, A. Finite-temperature simulation of anharmonicity and octahedral tilting transitions in halide perovskites. Phys. Rev. Mater. 3, 113605 (2019).

    Article  Google Scholar 

  130. Ferreira, A. C. et al. Direct evidence of weakly dispersed and strongly anharmonic optical phonons in hybrid perovskites. Commun. Phys. 3, 48 (2020).

    Article  Google Scholar 

  131. Debnath, T. et al. Coherent vibrational dynamics reveals lattice anharmonicity in organic–inorganic halide perovskite nanocrystals. Nat. Commun. 12, 2629 (2021).

    Article  Google Scholar 

  132. Cohen, A. et al. Diverging expressions of anharmonicity in halide perovskites. Adv. Mater. 34, 2107932 (2022).

  133. Zhang, X., Shen, J.-X., Turiansky, M. E. & Van de Walle, C. G. Minimizing hydrogen vacancies to enable highly efficient hybrid perovskites. Nat. Mater. 20, 971–976 (2021).

    Article  Google Scholar 

  134. Marcus, R. A. Electron transfer reactions in chemistry. Theory and experiment. Rev. Mod. Phys. 65, 599–610 (1993).

    Article  Google Scholar 

  135. Zhang, X., Turiansky, M. E., Shen, J.-X. & Van de Walle, C. G. Iodine interstitials as a cause of nonradiative recombination in hybrid perovskites. Phys. Rev. B 101, 140101 (2020).

    Article  Google Scholar 

  136. Whalley, L. D. et al. Giant Huang–Rhys factor for electron capture by the iodine intersitial in perovskite solar cells. J. Am. Chem. Soc. 143, 9123–9128 (2021).

    Article  Google Scholar 

  137. Zhang, X., Turiansky, M. E. & Van de Walle, C. G. Correctly assessing defect tolerance in halide perovskites. J. Phys. Chem. C. 124, 6022–6027 (2020).

    Article  Google Scholar 

  138. Zhang, F. X. et al. Local structure and short-range order in a NiCoCr solid solution alloy. Phys. Rev. Lett. 118, 205501 (2017).

    Article  Google Scholar 

  139. Zhang, R. et al. Short-range order and its impact on the CrCoNi medium-entropy alloy. Nature 581, 283–287 (2020).

    Article  Google Scholar 

  140. Chen, X. et al. Direct observation of chemical short-range order in a medium-entropy alloy. Nature 592, 712–716 (2021).

    Article  Google Scholar 

  141. Yin, B., Yoshida, S., Tsuji, N. & Curtin, W. A. Yield strength and misfit volumes of NiCoCr and implications for short-range-order. Nat. Commun. 11, 2507 (2020).

    Article  Google Scholar 

  142. Singh, P. et al. Tuning phase stability and short-range order through Al doping in (CoCrFeMn)100−xAlx high-entropy alloys. Phys. Rev. Mater. 3, 075002 (2019).

    Article  Google Scholar 

  143. Medvedeva, J. E. et al. Origin of high carrier concentration in amorphous wide-bandgap oxides: role of disorder in defect formation and electron localization in In2O3−x. J. Appl. Phys. 127, 175701 (2020).

    Article  Google Scholar 

  144. Wickramaratne, D. et al. Defect identification based on first-principles calculations for deep level transient spectroscopy. Appl. Phys. Lett. 113, 192106 (2018).

    Article  Google Scholar 

  145. Qiao, S. et al. Temperature effect on charge-state transition levels of defects in semiconductors. Phys. Rev. B 105, 115201 (2022).

    Article  Google Scholar 

  146. Millican, S. L., Clary, J. M., Musgrave, C. B. & Lany, S. Redox defect thermochemistry of FeAl2O4 hercynite in water splitting from first-principles methods. Chem. Mater. 34, 519–528 (2022).

    Article  Google Scholar 

  147. Dragoni, D., Daff, T. D., Csányi, G. & Marzari, N. Achieving DFT accuracy with a machine-learning interatomic potential: thermomechanics and defects in bcc ferromagnetic iron. Phys. Rev. Mater. 2, 013808 (2018).

    Article  Google Scholar 

  148. Goryaeva, A. M. et al. Efficient and transferable machine learning potentials for the simulation of crystal defects in bcc Fe and W. Phys. Rev. Mater. 5, 103803 (2021).

    Article  Google Scholar 

  149. Cai, X., Luo, J.-W., Li, S.-S., Wei, S.-H. & Deng, H.-X. Overcoming the doping limit in semiconductors via illumination. Phys. Rev. B 106, 214102 (2022).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant numbers 12088101, 11991060, 52172136, 12074029 and U2230402).

Author information

Authors and Affiliations

Authors

Contributions

S.-H.W. led the preparation, writing and editing of this Perspective. X.Z., J.K. and S.-H.W. wrote and edited the paper together.

Corresponding author

Correspondence to Su-Huai Wei.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Computational Science thanks Elif Ertekin, Stephan Lany and Shengbai Zhang for their contribution to the peer review of this work. Primary Handling Editor: Jie Pan, in collaboration with the Nature Computational Science team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Kang, J. & Wei, SH. Defect modeling and control in structurally and compositionally complex materials. Nat Comput Sci 3, 210–220 (2023). https://doi.org/10.1038/s43588-023-00403-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43588-023-00403-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing