Abstract
Gene expression models, which are key towards understanding cellular regulatory response, underlie observations of single-cell transcriptional dynamics. Although RNA expression data encode information on gene expression models, existing computational frameworks do not perform simultaneous Bayesian inference of gene expression models and parameters from such data. Rather, gene expression models—composed of gene states, their connectivities and associated parameters—are currently deduced by pre-specifying gene state numbers and connectivity before learning associated rate parameters. Here we propose a method to learn full distributions over gene states, state connectivities and associated rate parameters, simultaneously and self-consistently from single-molecule RNA counts. We propagate noise from fluctuating RNA counts over models by treating models themselves as random variables. We achieve this within a Bayesian non-parametric paradigm. We demonstrate our method on the Escherichia coli lacZ pathway and the Saccharomyces cerevisiae STL1 pathway, and verify its robustness on synthetic data.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$99.00 per year
only $8.25 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout






Code availability
Our custom MATLAB code is available at ref. 114.
References
Xu, H., Skinner, S. O., Sokac, A. M. & Golding, I. Stochastic kinetics of nascent RNA. Phys. Rev. Lett. 117, 128101 (2016).
Symmons, O. & Raj, A. What’s luck got to do with it: single cells, multiple fates, and biological nondeterminism. Mol. Cell 62, 788–802 (2016).
Kumar, R. M. et al. Deconstructing transcriptional heterogeneity in pluripotent stem cells. Nature 516, 56–61 (2014).
Emert, B. L. et al. Variability within rare cell states enables multiple paths toward drug resistance. Nature Biotechnol. 39, 865–876 (2021).
Mutryn, M. F., Brannick, E. M., Fu, W., Lee, W. R. & Abasht, B. Characterization of a novel chicken muscle disorder through differential gene expression and pathway analysis using RNA-sequencing. BMC Genomics 16, 1–19 (2015).
Garrett-Bakelman, F. E. & Melnick, A. M. Mutant IDH: a targetable driver of leukemic phenotypes linking metabolism, epigenetics and transcriptional regulation. Epigenomics 8, 945–957 (2016).
Lee, T. I. & Young, R. A. Transcriptional regulation and its misregulation in disease. Cell 152, 1237–1251 (2013).
Neuert, G. et al. Systematic identification of signal-activated stochastic gene regulation. Science 339, 584–587 (2013).
Cvekl, A. & Duncan, M. K. Genetic and epigenetic mechanisms of gene regulation during lens development. Prog. Retin. Eye Res. 26, 555–597 (2007).
Georgiadi, A. & Kersten, S. Mechanisms of gene regulation by fatty acids. Adv. Nutr. 3, 127–134 (2012).
Femino, A. M., Fay, F. S., Fogarty, K. & Singer, R. H. Visualization of single RNA transcripts in situ. Science 280, 585–590 (1998).
Kalisky, T. & Quake, S. R. Single-cell genomics. Nat. Methods 8, 311–314 (2011).
Dattani, J. & Barahona, M. Stochastic models of gene transcription with upstream drives: exact solution and sample path characterization. J. R. Soc. Interface 14, 20160833 (2017).
Cao, Y., Terebus, A. & Liang, J. State space truncation with quantified errors for accurate solutions to discrete chemical master equation. Bull. Math. Biol. 78, 617–661 (2016).
Klindziuk, A. & Kolomeisky, A. B. Theoretical investigation of transcriptional bursting: a multistate approach. J. Phys. Chem. B 122, 11969–11977 (2018).
Golding, I., Paulsson, J., Zawilski, S. M. & Cox, E. C. Real-time kinetics of gene activity in individual bacteria. Cell 123, 1025–1036 (2005).
So, L.-H. et al. General properties of transcriptional time series in Escherichia coli. Nat. Genet. 43, 554–560 (2011).
Shaffer, S. M. et al. Memory sequencing reveals heritable single-cell gene expression programs associated with distinct cellular behaviors. Cell 182, 947–959 (2020).
Junker, J. P. & van Oudenaarden, A. Every cell is special: genome-wide studies add a new dimension to single-cell biology. Cell 157, 8–11 (2014).
Raj, A., Peskin, C. S., Tranchina, D., Vargas, D. Y. & Tyagi, S. Stochastic mRNA synthesis in mammalian cells. PLoS Biol. 4, e309 (2006).
Cao, Z. & Grima, R. Analytical distributions for detailed models of stochastic gene expression in eukaryotic cells. Proc. Natl Acad. Sci. USA 117, 4682–4692 (2020).
Fujita, K., Iwaki, M. & Yanagida, T. Transcriptional bursting is intrinsically caused by interplay between RNA polymerases on DNA. Nat. Commun. 7, 1–10 (2016).
Suter, D. M. et al. Mammalian genes are transcribed with widely different bursting kinetics. Science 332, 472–474 (2011).
Sepúlveda, L. A., Xu, H., Zhang, J., Wang, M. & Golding, I. Measurement of gene regulation in individual cells reveals rapid switching between promoter states. Science 351, 1218–1222 (2016).
Xu, H., Sepúlveda, L. A., Figard, L., Sokac, A. M. & Golding, I. Combining protein and mRNA quantification to decipher transcriptional regulation. Nat. Methods 12, 739–742 (2015).
Vo, H. D., Fox, Z., Baetica, A. & Munsky, B. Bayesian estimation for stochastic gene expression using multifidelity models. J. Phys. Chem. B 123, 2217–2234 (2019).
Munsky, B., Neuert, G. & Van Oudenaarden, A. Using gene expression noise to understand gene regulation. Science 336, 183–187 (2012).
Braichenko, S., Holehouse, J. & Grima, R. Distinguishing between models of mammalian gene expression: telegraph-like models versus mechanistic models. J. R. Soc. Interface 18, 20210510 (2021).
Kuha, J. AIC and BIC: comparisons of assumptions and performance. Sociol. Methods Res. 33, 188–229 (2004).
Vrieze, S. Model selection and psychological theory: a discussion of the differences between the Akaike information criterion (AIC) and the Bayesian information criterion (BIC). Psychol. Methods 17, 228–243 (2012).
Sanchez, A. & Golding, I. Genetic determinants and cellular constraints in noisy gene expression. Science 342, 1188–1193 (2013).
Kandhavelu, M., Häkkinen, A., Yli-Harja, O. & Ribeiro, A. Single-molecule dynamics of transcription of the lar promoter. Phys. Biol. 9, 026004 (2012).
Figueroa-López, J. E. & Levine, M. Nonparametric regression with rescaled time series errors. J. Time Ser. Anal. 34, 345–361 (2013).
Dahl, C. M. & Levine, M. Nonparametric estimation of volatility models with serially dependent innovations. Stat. Probab. Lett. 76, 2007–2016 (2006).
Cai, T. T., Levine, M. & Wang, L. Variance function estimation in multivariate nonparametric regression with fixed design. J. Multivar. Anal. 100, 126–136 (2009).
Liu, L., Levine, M. & Zhu, Y. A functional EM algorithm for mixing density estimation via nonparametric penalized likelihood maximization. J. Comput. Graph. Stat. 18, 481–504 (2009).
Wang, L., Brown, L. D., Cai, T. T. & Levine, M. Effect of mean on variance function estimation in nonparametric regression. Ann. Stat. 36, 646–664 (2008).
Brown, L. D. & Levine, M. Variance estimation in nonparametric regression via the difference sequence method. Ann. Stat. 35, 2219–2232 (2007).
Levine, M. Bandwidth selection for a class of difference-based variance estimators in the nonparametric regression: a possible approach. Comput. Stat. Data Anal. 50, 3405–3431 (2006).
Zhou, X., Wang, X. & Dougherty, E. R. Gene selection using logistic regressions based on AIC, BIC and MDL criteria. New Math. Nat. Comput. 01, 129–145 (2005).
Lin, Y. T. & Buchler, N. E. Exact and efficient hybrid Monte Carlo algorithm for accelerated Bayesian inference of gene expression models from snapshots of single-cell transcripts. J. Chem. Phys. 151, 024106 (2019).
Fröhlich, F. et al. Multi-experiment nonlinear mixed effect modeling of single-cell translation kinetics after transfection. npj Syst. Biol. Appl. 4, 1–12 (2018).
Jones, D. & Elf, J. Bursting onto the scene? Exploring stochastic mRNA production in bacteria. Curr. Opin. Microbiol. 45, 124–130 (2018).
Boeger, H., Griesenbeck, J. & Kornberg, R. D. Nucleosome retention and the stochastic nature of promoter chromatin remodeling for transcription. Cell 133, 716–726 (2008).
Weber, L., Raymond, W. & Munsky, B. Identification of gene regulation models from single-cell data. Phys. Biol. 15, 055001 (2018).
Vo, H. D., Fox, Z., Baetica, A. & Munsky, B. Bayesian estimation for stochastic gene expression using multifidelity models. J. Phys. Chem. B 123, 2217–2234 (2019).
Munsky, B., Li, G., Fox, Z. R., Shepherd, D. P. & Neuert, G. Distribution shapes govern the discovery of predictive models for gene regulation. Proc. Natl Acad. Sci. USA 115, 7533–7538 (2018).
Mugler, A., Walczak, A. M. & Wiggins, C. H. Spectral solutions to stochastic models of gene expression with bursts and regulation. Phys. Rev. E 80, 041921 (2009).
Zhou, T. & Zhang, J. Analytical results for a multistate gene model. SIAM J. Appl. Math. 72, 789–818 (2012).
Khanin, R. & Higham, D. J. Chemical master equation and langevin regimes for a gene transcription model. Theor. Comput. Sci. 408, 31–40 (2008).
Fox, Z., Neuert, G. & Munsky, B. Finite state projection based bounds to compare chemical master equation models using single-cell data. J. Chem. Phys. 145, 074101 (2016).
Gómez-Schiavon, M., Chen, L.-F., West, A. E. & Buchler, N. E. Bayfish: Bayesian inference of transcription dynamics from population snapshots of single-molecule RNA fish in single cells. Genome Biol. 18, 1–12 (2017).
Cao, Z. & Grima, R. Accuracy of parameter estimation for auto-regulatory transcriptional feedback loops from noisy data. J. R. Soc. Interface 16, 20180967 (2019).
Jazani, S., Sgouralis, I. & Pressé, S. A method for single molecule tracking using a conventional single-focus confocal setup. J. Chem. Phys. 150, 114108 (2019).
Pressé, S., Lee, J. & Dill, K. A. Extracting conformational memory from single-molecule kinetic data. J. Phys. Chem. B 117, 495–502 (2013).
Pressé, S. et al. Single molecule conformational memory extraction: P5ab RNA hairpin. J. Phys. Chem. B 118, 6597–6603 (2014).
Ferguson, T. A Bayesian analysis of some nonparametric problems. Ann. Stat. 1, 209 (1973).
Hjort, N. Nonparametric Bayes estimators based on beta processes in models for life history data. Ann. Stat. 18, 1259–1294 (1990).
Bryan IV, J. S., Sgouralis, I. & Pressé, S. Diffraction-limited molecular cluster quantification with Bayesian nonparametrics. Nat. Comput. Sci. 2, 102–111 (2022).
Fox, E., Sudderth, E., Jordan, M. & Willsky, A. Bayesian nonparametric methods for learning Markov switching processes. IEEE Signal Process. Mag. 27, 43–54 (2010).
Sgouralis, I. & Pressé, S. An introduction to infinite HMMs for single-molecule data analysis. Biophys. J. 112, 2021–2029 (2017).
Wang, M., Zhang, J., Xu, H. & Golding, I. Measuring transcription at a single gene copy reveals hidden drivers of bacterial individuality. Nat. Microbiol. 4, 2118–2127 (2019).
Li, G. & Neuert, G. Multiplex RNA single molecule FISH of inducible mRNAs in single yeast cells. Sci. Data 6, 1–9 (2019).
Munsky, B. & Khammash, M. The finite state projection algorithm for the solution of the chemical master equation. J. Chem. Phys. 124, 044104 (2006).
Munsky, B., Fox, Z. & Neuert, G. Integrating single-molecule experiments and discrete stochastic models to understand heterogeneous gene transcription dynamics. Methods 85, 12–21 (2015).
Fei, J. et al. Determination of in vivo target search kinetics of regulatory noncoding RNA. Science 347, 1371–1374 (2015).
Kilic, Z., Sgouralis, I. & Pressé, S. Generalizing HMMs to continuous time for fast kinetics: hidden Markov jump processes. Biophys. J. 120, 409–423 (2021).
Tavakoli, M. et al. Pitching single-focus confocal data analysis one photon at a time with Bayesian nonparametrics. Phys. Rev. X 10, 011021 (2020).
Skinner, S. O., Sepúlveda, L. A., Xu, H. & Golding, I. Measuring mRNA copy number in individual Escherichia coli cells using single-molecule fluorescent in situ hybridization. Nat. Protoc. 8, 1100–1113 (2013).
Wang, G., Moffitt, J. R. & Zhuang, X. Multiplexed imaging of high-density libraries of RNAs with MERFISH and expansion microscopy. Sci. Rep. 8, 1–13 (2018).
Kramer, A., Calderhead, B. & Radde, N. Hamiltonian Monte Carlo methods for efficient parameter estimation in steady state dynamical systems. BMC Bioinform. 15, 253 (2014).
Berger, M. & ten Wolde, P. R. Robust replication initiation from coupled homeostatic mechanisms. Preprint at https://arxiv.org/abs/2106.03674 (2021).
Foreman, R. & Wollman, R. Mammalian gene expression variability is explained by underlying cell state. Mol. Syst. Biol. 16, e9146 (2020).
Ietswaart, R., Rosa, S., Wu, Z., Dean, C. & Howard, M. Cell-size-dependent transcription of FLC and its antisense long non-coding RNA COOLAIR explain cell-to-cell expression variation. Cell Syst. 4, 622–635 (2017).
Kau, T. R. & Silver, P. A. Nuclear transport as a target for cell growth. Drug Discov. Today 8, 78–85 (2003).
Komeili, A. & O’Shea, E. K. Nuclear transport and transcription. Curr. Opin. Cell Biol. 12, 355–360 (2000).
Wheat, J. C. et al. Single-molecule imaging of transcription dynamics in somatic stem cells. Nature 583, 431–436 (2020).
Lubeck, E., Coskun, A. F., Zhiyentayev, T., Ahmad, M. & Cai, L. Single-cell in situ RNA profiling by sequential hybridization. Nat. Methods 11, 360–361 (2014).
Chen, K. H., Boettiger, A. N., Moffitt, J. R., Wang, S. & Zhuang, X. Spatially resolved, highly multiplexed RNA profiling in single cells. Science 348, aaa6090 (2015).
Vo, H. & Sidje, R. B. Improved Krylov-FDP method for solving the chemical master equation. In Proc. World Congress on Engineering and Computer Science 2016 Vol II 521–526 (WCECS, 2016).
Vo, H. D. & Munsky, B. E. A parallel implementation of the finite state projection algorithm for the solution of the chemical master equation. Preprint at bioRxiv https://www.biorxiv.org/content/10.1101/2020.06.30.180273v2 (2020).
Dufera, T. T. Deep neural network for system of ordinary differential equations: vectorized algorithm and simulation. Mach. Learn. Appl. 5, 100058 (2021).
Kazeev, V., Khammash, M., Nip, M. & Schwab, C. Direct solution of the chemical master equation using quantized tensor trains. PLoS Comput. Biol. 10, e1003359 (2014).
Jiang, Q. et al. Neural network aided approximation and parameter inference of non-Markovian models of gene expression. Nat. Commun. 12, 1–12 (2021).
Öcal, K., Gutmann, M. U., Sanguinetti, G. & Grima, R. Inference and uncertainty quantification of stochastic gene expression via synthetic models. J. R. Soc. Interface 19, 20220153 (2022).
Öcal, K., Grima, R. & Sanguinetti, G. Parameter estimation for biochemical reaction networks using Wasserstein distances. J. Phys. A 53, 034002 (2019).
Kilic, Z. et al. Extraction of rapid kinetics from smfret measurements using integrative detectors. Cell Rep. Phys. Sci. 2, 100409 (2021).
Tanouchi, Y. et al. Long-term growth data of escherichia coli at a single-cell level. Sci. Data 4, 1–5 (2017).
Jia, C. & Grima, R. Frequency domain analysis of fluctuations of mrna and protein copy numbers within a cell lineage: theory and experimental validation. Phys. Rev. X 11, 021032 (2021).
Johansson, H. E., Liljas, L. & Uhlenbeck, O. C. in Seminars in Virology Vol. 8, 176–185 (Elsevier, 1997).
Bertrand, E. et al. Localization of ASH1 mRNA particles in living yeast. Mol. Cell 2, 437–445 (1998).
Morisaki, T. et al. Real-time quantification of single rna translation dynamics in living cells. Science 352, 1425–1429 (2016).
Corrigan, A. M., Tunnacliffe, E., Cannon, D. & Chubb, J. R. A continuum model of transcriptional bursting. Elife 5, e13051 (2016).
Donovan, B. T. et al. Live-cell imaging reveals the interplay between transcription factors, nucleosomes, and bursting. EMBO J. 38, e100809 (2019).
Liu, J. et al. Real-time single-cell characterization of the eukaryotic transcription cycle reveals correlations between rna initiation, elongation, and cleavage. PLoS Comput. Biol. 17, e1008999 (2021).
Zechner, C., Unger, M., Pelet, S., Peter, M. & Koeppl, H. Scalable inference of heterogeneous reaction kinetics from pooled single-cell recordings. Nat. Methods 11, 197–202 (2014).
Liu, B. et al. Influence of fluorescent protein maturation on fret measurements in living cells. ACS Sens. 3, 1735–1742 (2018).
Dong, G. Q. & McMillen, D. R. Effects of protein maturation on the noise in gene expression. Phys. Rev. E 77, 021908 (2008).
Hebisch, E., Knebel, J., Landsberg, J., Frey, E. & Leisner, M. High variation of fluorescence protein maturation times in closely related escherichia coli strains. PLoS ONE 8, e75991 (2013).
Balleza, E., Kim, J. M. & Cluzel, P. Systematic characterization of maturation time of fluorescent proteins in living cells. Nat. Methods 15, 47–51 (2018).
Elf, J. & Barkefors, I. Single-molecule kinetics in living cells. Annu. Rev. Biochem. 88, 635–659 (2019).
Cialek, C. A., Koch, A. L., Galindo, G. & Stasevich, T. J. Lighting up single-mrna translation dynamics in living cells. Curr. Opin. Genet. Dev. 61, 75–82 (2020).
Boka, A. P., Mukherjee, A. & Mir, M. Single-molecule tracking technologies for quantifying the dynamics of gene regulation in cells, tissue and embryos. Development 148, dev199744 (2021).
Li, W., Maekiniemi, A. & Singer, R. H. Imaging mRNAs with corrected RNA stability. FASEB J. https://doi.org/10.1096/fasebj.2022.36.S1.0R370 (2022).
Hammar, P. et al. Direct measurement of transcription factor dissociation excludes a simple operator occupancy model for gene regulation. Nat. Genet. 46, 405–408 (2014).
Schuh, L. et al. Gene networks with transcriptional bursting recapitulate rare transient coordinated high expression states in cancer. Cell Syst. 10, 363–378.e12 (2020).
Gillespie, D. Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81, 2340 (1977).
Cheng, Y., Li, D. & Jiang, W. The exact inference of Beta process and Beta Bernoulli process from finite observations. Comput. Model. Eng. Sci. 121, 49–82 (2019).
Thibaux, R. & Jordan, M. I. Hierarchical beta processes and the Indian buffet process. In Proc. Eleventh International Conference on Artificial Intelligence and Statistics (eds Lawrence, N. & Reid, M.) 564–571 (MLResearch Press, 2007).
Green, P. J. Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika 82, 711–732 (1995).
Christen, J. A. & Fox, C. Markov chain Monte Carlo using an approximation. J. Comput. Graph. Stat. 14, 795–810 (2005).
Hastings, W. Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57, 97–109 (1970).
Smith, A. & Roberts, G. Bayesian computation via the Gibbs sampler and related Markov chain Monte Carlo methods. J. R. Stat. Soc. B 55, 3–23 (1993).
mcschweiger Labpresse/gene_exp_nonpara: tnitial release. Zenodo https://doi.org/10.5281/zenodo.7425217 (2022).
Gillespie, D. A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. Comput. Phys. 22, 403–434 (1976).
Stephens, M. Dealing with label switching in mixture models. J. R. Stat. Soc. Ser. B 62, 795–809 (2000).
Cao, Y. Munkres assignment algorithm. MATLAB Central File Exchange https://www.mathworks.com/matlabcentral/fileexchange/20328-munkres-assignment-algorithm (2022).
Acknowledgements
We thank I. Golding for providing the experimental data analyzed herein. We thank I. Sgouralis, Z. Fox and B. Munsky for interesting discussions and insights. D.S. acknowledges support from the NIH NHLBI (R01HL068702) and NIH BRAIN (RF1MH128867), and S.P. acknowledges support from NIH NIGMS (R01GM130745) and NIH NIGMS (R01GM134426).
Author information
Authors and Affiliations
Contributions
Z.K. and C.M. developed the Bayesian non-parametric inference algorithm and software with input from D.S. and S.P. M.S. further developed the existing analysis software and analyzed the data. M.S. created all the figures in the paper with input from all authors. All authors wrote the manuscript. Z.K., M.S., C.M. and S.P. conceived the research, and D.S. and S.P. oversaw all aspects of the project.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Computational Science thanks the anonymous reviewers for their contribution to the peer review of this work. Primary Handling Editor: Ananya Rastogi, in collaboration with the Nature Computational Science team.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Extended data
Extended Data Fig. 1 Robustness analysis: transcription rate.
Shown are posterior distributions over: production rates βl, and transition rates \({k}_{{\sigma }_{l}\to {\sigma }_{{l}^{{\prime} }}}\). Across columns, the breadth of the distributions is comparable for a model containing two gene states, under various maximum ground-truth production rates. Again, the posterior maximum closely matches the ground truth, demonstrating the method’s robustness under quantitative changes in RNA count distribution. As before, each data point was generated using the Gillespie stochastic simulation algorithm, with weak limit set to L = 8 (as per Fig. 2). Rates in each column are inferred for 600 cells observed per time point with 20 collection times at [0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 120, 180, 240, 360, 480, 600, 1200, 3600] (s).
Extended Data Fig. 2 Robustness analysis: various kinetic rates.
Shown are posterior distributions over rates for two-state gene expression models obeying a variety of qualitative behaviors. a) illustrates important examples of the qualitative behaviors in the RNA count distribution we wish to probe. b) depicts posterior histograms of rates, with each column arising from distinct data, as indicated in a). As before, each data point was generated using the Gillespie stochastic simulation algorithm, and the weak limit is set to L = 8 (as per Fig. 2). Rates in each column are inferred for 2000 cells observed per time point with 20 collection times at [0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 120, 180, 240, 360, 480, 600, 1200, 3600] (s).
Supplementary information
Supplementary Information
Supplementary information and Figs. 1–18.
Source data
Source Data Fig. 2
Statistical source data.
Source Data Fig. 3
Statistical source data.
Source Data Fig. 4
Statistical source data.
Source Data Fig. 5
Statistical source data.
Source Data Fig. 6
Statistical source data.
Source Data Extended Data Fig. 1
Statistical source data.
Source Data Extended Data Fig. 2
Statistical source data.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Kilic, Z., Schweiger, M., Moyer, C. et al. Gene expression model inference from snapshot RNA data using Bayesian non-parametrics. Nat Comput Sci 3, 174–183 (2023). https://doi.org/10.1038/s43588-022-00392-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s43588-022-00392-0
This article is cited by
-
Gene regulation meets Bayesian non-parametrics
Nature Computational Science (2023)