Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Waveguide-enhanced Raman spectroscopy

Abstract

Waveguide-enhanced Raman spectroscopy (WERS) exploits the electromagnetic enhancement that can be achieved at the surface of suitably designed waveguides to enhance the intensity of the Raman spectra of molecules close to the waveguide surface. This Primer describes practical aspects of WERS implementation including the choice of laser, choice of waveguide material, design and fabrication of the waveguides, coupling of light into and collection of light from the waveguide, and choice of spectrometer and filters. The methods for data collection and quantitative analysis of waveguide-enhanced Raman spectra are also described, together with the applications of WERS to problems in chemistry, materials science and bioscience. Issues of spectral reproducibility and key optimization factors are discussed together with a summary of technical limitations, current challenges and perspectives for future research. In many cases the material presented is supported by further, more detailed, discussion in the accompanying Supplementary Information.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Main blocks of a typical waveguide-enhanced Raman spectroscopy apparatus exhibiting the key design and parameter considerations for each.
Fig. 2: Simulated fundamental modal intensity distribution of waveguide modes.
Fig. 3: Transmission windows for typical waveguide-enhanced Raman spectroscopy waveguide materials.
Fig. 4: Data processing steps for benzyl alcohol on a 100 nm-thick Ta2O5 on SiO2 waveguide excited at 785 nm in the transverse-electric polarization.
Fig. 5: Surface |E|2, Raman collection efficiency and waveguide scattering loss versus Raman (Stokes) shift.

Similar content being viewed by others

References

  1. Fleischmann, M., Hendra, P. J. & McQuillan, A. J. Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett. 26, 163–166 (1974).

    Article  ADS  Google Scholar 

  2. Jeanmaire, D. L. & Van Duyne, R. P. Surface Raman spectroelectrochemistry: part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J. Electroanal. Chem. 84, 1–20 (1977).

    Article  Google Scholar 

  3. Langer, J. et al. Present and future of surface-enhanced Raman scattering. ACS Nano 14, 28–117 (2019).

    Article  Google Scholar 

  4. Smith, W. Practical understanding and use of surface enhanced Raman scattering/surface enhanced resonance Raman scattering in chemical and biological analysis. Chem. Soc. Rev. 37, 955–964 (2008).

    Article  Google Scholar 

  5. Han, X. X., Rodriguez, R. S., Haynes, C. L., Ozaki, Y. & Zhao, B. Surface-enhanced Raman spectroscopy. Nat. Rev. Methods Primers 1, 87 (2022).

    Article  Google Scholar 

  6. Lee, K. S. et al. Raman microspectroscopy for microbiology. Nat. Rev. Methods Primers 1, 80 (2021).

    Article  Google Scholar 

  7. Walrafen, G. E. & Stone, J. Intensification of spontaneous Raman spectra by use of liquid core optical fibers. Appl. Spectrosc. 26, 585–589 (1972).

    Article  ADS  Google Scholar 

  8. Levy, Y., Imbert, C., Cipriani, J., Racine, S. & Dupeyrat, R. Raman-scattering of thin-films as a waveguide. Opt. Commun. 11, 66–69 (1974).

    Article  ADS  Google Scholar 

  9. Kanger, J. S., Otto, C., Slotboom, M. & Greve, J. Waveguide Raman spectroscopy of thin polymer layers and monolayers of biomolecules using high refractive index waveguides. J. Phys. Chem. 100, 3288–3292 (1996). This work is an early description of the optimization of waveguides for WERS and of WERS of biomolecular monolayers.

    Article  Google Scholar 

  10. Dhakal, A. et al. Evanescent excitation and collection of spontaneous Raman spectra using silicon nitride nanophotonic waveguides. Opt. Lett. 39, 4025–4028 (2014).

    Article  ADS  Google Scholar 

  11. Praveen, B. B., Steuwe, C., Mazilu, M., Dholakia, K. & Mahajan, S. Wavelength modulated surface enhanced (resonance) Raman scattering for background-free detection. Analyst 138, 2816–2820 (2013).

    Article  ADS  Google Scholar 

  12. Alberti, S., Datta, A. & Jagerska, J. Integrated nanophotonic waveguide-based devices for IR and Raman gas spectroscopy. Sensors 21, 7224 (2021).

    Article  ADS  Google Scholar 

  13. Raza, A. et al. High index contrast photonic platforms for on-chip Raman spectroscopy. Opt. Express 27, 23067–23079 (2019). This work describes WERS conversion efficiency and the WERS background from various waveguide materials to provide a FOM for optimized waveguides in terms of the SNR.

    Article  ADS  Google Scholar 

  14. Evans, C. C., Liu, C. & Suntivich, J. TiO2 nanophotonic sensors for efficient integrated evanescent Raman spectroscopy. ACS Photonics 3, 1662–1669 (2016).

    Article  Google Scholar 

  15. Jung, H. et al. Tantala Kerr nonlinear integrated photonics. Optica 8, 811–817 (2021).

    Article  ADS  Google Scholar 

  16. Tyndall, N. F. et al. A low-loss, broadband, nitride-only photonic integrated circuit platform. in Quantum 2.0 Conference and Exhibition QTu4B.5 (Optica Publishing Group, 2022).

  17. Le Thomas, N., Liu, Z., Lin, C., Zhao, H. & Baets, R. in Proc. SPIE Vol. 11689 (SPIE, 2021).

  18. Michon, J., Kita, D. & Hu, J. J. Sensitivity comparison of free-space and waveguide Raman for bulk sensing. J. Opt. Soc. Am. B 37, 2012–2020 (2020). This work compares conventional free-space Raman, SERS and WERS in terms of the SNR, and therefore the LoD, for bulk analytes in contrast to monolayer and thin-film analytes.

    Article  ADS  Google Scholar 

  19. Le Thomas, N., Dhakal, A., Raza, A., Peyskens, F. & Baets, R. Impact of fundamental thermodynamic fluctuations on light propagating in photonic waveguides made of amorphous materials. Optica 5, 328–336 (2018). This work proposes and characterizes thermodynamic fluctuations in amorphous waveguides as producing the WERS background which poses a fundamental limit to the WERS LoD.

    Article  ADS  Google Scholar 

  20. Makela, M. et al. Benzene derivatives analysis using aluminum nitride waveguide raman sensors. Anal. Chem. 92, 8917–8922 (2020).

    Article  Google Scholar 

  21. Dhakal, A. et al. Efficiency of evanescent excitation and collection of spontaneous Raman scattering near high index contrast channel waveguides. Opt. Express 23, 27391–27404 (2015). This work advances a theoretical model for the conversion efficiency in spontaneous WERS and applies it to various waveguide structures and materials with good experimental agreement.

    Article  ADS  Google Scholar 

  22. Osgood, R. & Meng, X. Principles of Photonic Integrated Circuits: Materials, Device Physics, Guided Wave Design (Springer International, 2021).

  23. Dhakal, A. et al. Single mode waveguide platform for spontaneous and surface-enhanced on-chip Raman spectroscopy. Interface Focus. 6, 20160015 (2016).

    Article  Google Scholar 

  24. Fourkas, J. T. et al. Grand challenges in nanofabrication: there remains plenty of room at the bottom. Front. Nanotechnol. 3, 700849 (2021).

    Article  Google Scholar 

  25. Wang, Z., Zervas, M. N., Bartlett, P. N. & Wilkinson, J. S. Surface and waveguide collection of Raman emission in waveguide-enhanced Raman spectroscopy. Opt. Lett. 41, 4146–4149 (2016).

    Article  ADS  Google Scholar 

  26. Ettabib, M. A., Liu, Z., Zervas, M. N. & Wilkinson, J. S. Optimized design for grating-coupled waveguide-enhanced Raman spectroscopy. Opt. Express 28, 37226–37235 (2020).

    Article  ADS  Google Scholar 

  27. Jones, R. R., Hooper, D. C., Zhang, L., Wolverson, D. & Valev, V. K. Raman techniques: fundamentals and frontiers. Nanoscale Res. Lett. 14, 231 (2019).

    Article  ADS  Google Scholar 

  28. Pelletier, M. J. & Pelletier, C. C. in Encyclopedia of Analytical Science 2nd edn (eds Worsfold, P., Townshend, A. & Poole, C.) 94–104 (Elsevier, 2005).

  29. IDEX Health & Science. What optical filters should you consider for Raman spectroscopy applications? IDEX Health & Science https://www.idex-hs.com/news-events/stories-and-features/detail/raman-spectroscopy-optical-filters (2023).

  30. Bishop, E. Raman Spectroscopy Identifies Disease Characteristics and In Vitro Structure. Photonics https://www.photonics.com/Articles/Raman_Spectroscopy_Identifies_Disease/a68649 (2023).

  31. Bērziņš, K., Fraser-Miller, S. J. & Gordon, K. C. Recent advances in low-frequency Raman spectroscopy for pharmaceutical applications. Int. J. Pharm. 592, 120034 (2021).

    Article  Google Scholar 

  32. Dhakal, A. Nanophotonic Waveguide Enhanced Raman Spectroscopy. Doctoral dissertation, Ghent Univ. (2016).

  33. Tuschel, D. Selecting an excitation wavelength for Raman spectroscopy. Spectroscopy 31, 14–23 (2016).

    Google Scholar 

  34. Mahajan, S. et al. Understanding the surface-enhanced Raman spectroscopy “background”. J. Phys. Chem. C. 114, 7242–7250 (2010).

    Article  Google Scholar 

  35. Kita, D. M., Michon, J. & Hu, J. A packaged, fiber-coupled waveguide-enhanced Raman spectroscopic sensor. Opt. Express 28, 14963–14972 (2020). This work reports a fibre-pigtailed WERS chip with on-chip optical filters to minimize background emission from fibres and waveguides reaching the detector.

    Article  ADS  Google Scholar 

  36. Reynkens, K. et al. Mitigation of photon background in nanoplasmonic all-on-chip Raman sensors. Opt. Express 28, 33564–33572 (2020).

    Article  ADS  Google Scholar 

  37. Tyndall, N. F., Stievater, T. H., Kozak, D. A., Pruessner, M. W. & Rabinovich, W. S. Passive photonic integration of lattice filters for waveguide-enhanced Raman spectroscopy. Opt. Express 28, 34927–34934 (2020).

    Article  ADS  Google Scholar 

  38. Dhakal, A. et al. Nanophotonic waveguide enhanced Raman spectroscopy of biological submonolayers. ACS Photonics 3, 2141–2149 (2016). This work demonstrates real-time measurements of the hybridization of DNA strands and the density of sub-monolayers of biotin−streptavidin complex using near-infrared WERS.

    Article  Google Scholar 

  39. Tyndall, N. F. et al. Figure-of-merit characterization of hydrogen-bond acidic sorbents for waveguide-enhanced Raman spectroscopy. ACS Sens. 5, 831–836 (2020). This work demonstrates the application of WERS for trace-level gas phase analyte detection using sorbent coatings.

    Article  Google Scholar 

  40. Lee, W. et al. Study on multiple waveguide platforms for waveguide integrated Raman spectroscopy. OSA Contin. 3, 1322–1333 (2020).

    Article  Google Scholar 

  41. Midwinter, J. E. On the use of optical waveguide techniques for internal reflection spectroscopy. IEEE J. Quantum Electron. 7, 339–344 (1971).

    Article  ADS  Google Scholar 

  42. Kanger, J. S. & Otto, C. Orientation effects in waveguide resonance Raman spectroscopy of monolayers. Appl. Spectrosc. 57, 1487–1493 (2003). This work is a theoretical and experimental study of polarization-resolved WERS using Raman depolarization ratios to determine molecular orientation in a monolayer at a waveguide surface.

    Article  ADS  Google Scholar 

  43. Tyndall, N. F. et al. Waveguide-enhanced Raman spectroscopy of trace chemical warfare agent simulants. Opt. Lett. 43, 4803–4806 (2018).

    Article  ADS  Google Scholar 

  44. Moskovits, M. Surface-enhanced spectroscopy. Rev. Mod. Phys. 57, 783–826 (1985).

    Article  ADS  Google Scholar 

  45. Long, D. A. The Raman Effect: A Unified Treatment of the Theory of Raman Scattering by Molecules 85–152 (Wiley, 2002).

  46. Le Ru, E. C. & Etchegoin, P. G. Principles of Surface-Enhanced Raman Spectroscopy (Elsevier, 2009).

  47. Zhao, H. L. et al. Multiplex volatile organic compound Raman sensing with nanophotonic slot waveguides functionalized with a mesoporous enrichment layer. Opt. Lett. 45, 447–450 (2020).

    Article  ADS  Google Scholar 

  48. Lasch, P. Spectral pre-processing for biomedical vibrational spectroscopy and microspectroscopic imaging. Chemom. Intel. Lab. Syst. 117, 100–114 (2012).

    Article  Google Scholar 

  49. Li, S. & Dai, L. An improved algorithm to remove cosmic spikes in Raman spectra for online monitoring. Appl. Spectrosc. 65, 1300–1306 (2011).

    Article  ADS  Google Scholar 

  50. Barton, S. J. & Hennelly, B. M. Signal to noise ratio of Raman spectra of biological samples. in Biophotonics: Photonic Solutions for Better Health Care VI (eds Popp, J., Tuchin, V.V. & Pavone, F.S.) 106854F-1–106854F-11 (SPIE, 2018).

  51. Ehrentreich, F. & Sümmchen, L. Spike removal and denoising of Raman spectra by wavelet transform methods. Anal. Chem. 73, 4364–4373 (2001).

    Article  Google Scholar 

  52. Katsumoto, Y. & Ozaki, Y. Practical algorithm for reducing convex spike noises on a spectrum. Appl. Spectrosc. 57, 317–322 (2003).

    Article  ADS  Google Scholar 

  53. Takeuchi, H., Hashimoto, S. & Harada, I. Simple and efficient method to eliminate spike noise from spectra recorded on charge-coupled device detectors. Appl. Spectrosc. 47, 129–131 (1993).

    Article  ADS  Google Scholar 

  54. Gautam, R., Vanga, S., Ariese, F. & Umapathy, S. Review of multidimensional data processing approaches for Raman and infrared spectroscopy. EPJ Tech. Instrum. 2, 1–38 (2015). This work presents an extensive overview of diverse methods employed in the processing of multidimensional data acquired through Raman and infrared spectroscopy, valuable for WERS data processing.

    Article  Google Scholar 

  55. Zhao, X., Liu, G., Sui, Y., Xu, M. & Tong, L. Denoising method for Raman spectra with low signal-to-noise ratio based on feature extraction. Spectrochim. Acta A 250, 119374 (2021).

    Article  Google Scholar 

  56. Člupek, M., Matějka, P. & Volka, K. Noise reduction in Raman spectra: finite impulse response filtration versus Savitzky–Golay smoothing. J. Raman Spectrosc. 38, 1174–1179 (2007).

    Article  ADS  Google Scholar 

  57. Chen, H., Xu, W., Broderick, N. & Han, J. An adaptive denoising method for Raman spectroscopy based on lifting wavelet transform. J. Raman Spectrosc. 49, 1529–1539 (2018).

    Article  ADS  Google Scholar 

  58. Liu, Z. et al. Iterative non-negative constrained deconvolution for waveguide enhanced Raman spectroscopy signal recovery. in SMS/EGF/Sensors/ NanoMed 2021 209 (Setcor, 2021).

  59. Xu, J. et al. High-speed diagnosis of bacterial pathogens at the single cell level by Raman microspectroscopy with machine learning filters and denoising autoencoders. ACS Chem. Biol. 17, 376–385 (2022).

    Article  Google Scholar 

  60. Shreve, A. P., Cherepy, N. J. & Mathies, R. A. Effective rejection of fluorescence interference in Raman spectroscopy using a shifted excitation difference technique. Appl. Spectrosc. 46, 707–711 (1992).

    Article  ADS  Google Scholar 

  61. Zhao, J., Carrabba, M. M. & Allen, F. S. Automated fluorescence rejection using shifted excitation Raman difference spectroscopy. App. Spectrosc. 56, 834–845 (2002).

    Article  ADS  Google Scholar 

  62. Guo, S., Bocklitz, T. & Popp, J. Optimization of Raman-spectrum baseline correction in biological application. Analyst 141, 2396–2404 (2016).

    Article  ADS  Google Scholar 

  63. Peng, J. et al. Asymmetric least squares for multiple spectra baseline correction. Anal. Chim. Acta 683, 63–68 (2010).

    Article  Google Scholar 

  64. Cai, Y., Yang, C., Xu, D. & Gui, W. Baseline correction for Raman spectra using penalized spline smoothing based on vector transformation. Anal. Methods 10, 3525–3533 (2018).

    Article  Google Scholar 

  65. Atakan, A. K., Blass, W. & Jennings, D. Elimination of baseline variations from a recorded spectrum by ultra-low frequency filtering. Appl. Spectrosc. 34, 369–372 (1980).

    Article  ADS  Google Scholar 

  66. Hu, Y. et al. A background elimination method based on wavelet transform for Raman spectra. Chemom. Intel. Lab. Syst. 85, 94–101 (2007).

    Article  Google Scholar 

  67. Schulze, G. et al. Investigation of selected baseline removal techniques as candidates for automated implementation. Appl. Spectrosc. 59, 545–574 (2005).

    Article  ADS  Google Scholar 

  68. Jirasek, A., Schulze, G., Yu, M., Blades, M. & Turner, R. Accuracy and precision of manual baseline determination. Appl. Spectrosc. 58, 1488–1499 (2004).

    Article  ADS  Google Scholar 

  69. Lórenz-Fonfría, V. A. & Padrós, E. Maximum entropy deconvolution of infrared spectra: use of a novel entropy expression without sign restriction. Appl. Spectrosc. 59, 474–486 (2005).

    Article  ADS  Google Scholar 

  70. Chan, T. F. & Wong, C.-K. Total variation blind deconvolution. IEEE Trans. Image Process. 7, 370–375 (1998).

    Article  ADS  Google Scholar 

  71. Davey, B., Lane, R. & Bates, R. Blind deconvolution of noisy complex-valued image. Opt. Commun. 69, 353–356 (1989).

    Article  ADS  Google Scholar 

  72. Liu, T., Liu, H., Zhang, Z. & Liu, S. Nonlocal low-rank-based blind deconvolution of Raman spectroscopy for automatic target recognition. Appl. Opt. 57, 6461–6469 (2018).

    Article  ADS  Google Scholar 

  73. Liu, H., Zhang, Z., Sun, J. & Liu, S. Blind spectral deconvolution algorithm for Raman spectrum with Poisson noise. Photonics Res. 2, 168–171 (2014).

    Article  Google Scholar 

  74. Liu, H., Yan, L., Chang, Y., Fang, H. & Zhang, T. Spectral deconvolution and feature extraction with robust adaptive Tikhonov regularization. IEEE Trans. Instrum. Meas. 62, 315–327 (2012).

    Article  ADS  Google Scholar 

  75. Rabolt, J. F., Santo, R., Schlotter, N. E. & Swalen, J. D. Integrated-optics and Raman-scattering - molecular-orientation in thin polymer-films and Langmuir–Blodgett monolayers. IBM J. Res. Dev. 26, 209–216 (1982).

    Article  Google Scholar 

  76. Schlotter, N. E. & Rabolt, J. F. Raman-spectroscopy in polymeric thin-film optical-waveguides. 1. Polarized measurements and orientational effects in two-dimensional films. J. Phys. Chem. 88, 2062–2067 (1984).

    Article  Google Scholar 

  77. Hu, D. B. & Qi, Z. M. Refractive-index-enhanced Raman apectroscopy and absorptiometry of ultrathin film overlaid on an optical waveguide. J. Phys. Chem. C. 117, 16175–16181 (2013).

    Article  Google Scholar 

  78. Ellahi, S. & Hester, R. E. Enhanced wave-guide Raman-spectroscopy with thin-films. Analyst 119, 491–495 (1994).

    Article  ADS  Google Scholar 

  79. Walker, D. S., Hellinga, H. W., Saavedra, S. S. & Reichert, W. M. Integrated optical wave-guide attenuated total-reflection spectrometry and resonance Raman-spectroscopy adsorbed cytochrome-c. J. Phys. Chem. 97, 10217–10222 (1993).

    Article  Google Scholar 

  80. Zhao, H. L., Clemmen, S., Raza, A. & Baets, R. Stimulated Raman spectroscopy of analytes evanescently probed by a silicon nitride photonic integrated waveguide. Opt. Lett. 43, 1403–1406 (2018).

    Article  ADS  Google Scholar 

  81. Qu, J. Y. & Shao, L. Near-infrared Raman instrument for rapid and quantitative measurements of clinically important analytes. Rev. Sci. Instrum. 72, 2717–2723 (2001).

    Article  ADS  Google Scholar 

  82. Ashok, P. C., De Luca, A. C., Mazilu, M. & Dholakia, K. Enhanced bioanalyte detection in waveguide confined Raman spectroscopy using wavelength modulation. J. Biophotonics 4, 514–518 (2011).

    Article  Google Scholar 

  83. Qi, D. H. & Berger, A. J. Quantitative concentration measurements of creatinine dissolved in water and urine using Raman spectroscopy and a liquid core optical fiber. J. Biomed. Opt. 10, 031115 (2005).

    Article  ADS  Google Scholar 

  84. Yan, D., Popp, J., Pletz, M. W. & Frosch, T. Fiber enhanced Raman sensing of levofloxacin by PCF bandgap-shifting into the visible range. Anal. Methods 10, 586–592 (2018).

    Article  Google Scholar 

  85. Holmstrom, S. A. et al. Trace gas Raman spectroscopy using functionalized waveguides. Optica 3, 891–896 (2016).

    Article  ADS  Google Scholar 

  86. Liu, Z. Y. et al. Ultra-sensitive slot-waveguide-enhanced Raman spectroscopy for aqueous solutions of non-polar compounds using a functionalized silicon nitride photonic integrated circuit. Opt. Lett. 46, 1153–1156 (2021).

    Article  ADS  Google Scholar 

  87. Ma, Y. M., Liu, H. L., Qian, K., Yang, L. B. & Liu, J. H. A displacement principle for mercury detection by optical waveguide and surface enhanced Raman spectroscopy. J. Colloid Interface Sci. 386, 451–455 (2012).

    Article  ADS  Google Scholar 

  88. Choi, J., Lee, K. S., Jung, J. H., Sung, H. J. & Kim, S. S. Integrated real-time optofluidic SERS via a liquid-core/liquid-cladding waveguide. RSC Adv. 5, 922–927 (2015).

    Article  ADS  Google Scholar 

  89. Zong, C. et al. Surface-enhanced Raman spectroscopy for bioanalysis: reliability and challenges. Chem. Rev. 118, 4946–4980 (2018).

    Article  Google Scholar 

  90. Losada, J. et al. SERS detection via individual bowtie nanoantennas integrated in Si3N4 waveguides. IEEE J. Quantum Electron. 25, 1–6 (2019).

    Article  Google Scholar 

  91. Chandler, L., Huang, B. & Mu, T. T. A smart handheld Raman spectrometer with cloud and AI deep learning algorithm for mixture analysis. in Proc. SPIE 10983, Next-Generation Spectroscopic Technologies XII (eds Crocombe, R. A., Profeta, L. T. M. & Azad A. K.) 1098308-1–1098308-9 (SPIE, 2019).

  92. Cooman, T., Trejos, T., Romero, A. H. & Arroyo, L. E. Implementing machine learning for the identification and classification of compound and mixtures in portable Raman instruments. Chem. Phys. Lett. 787, 139283 (2022).

    Article  Google Scholar 

  93. Wang, Z., Zong, S., Wu, L., Zhu, D. & Cui, Y. SERS-activated platforms for immunoassay: probes, encoding methods, and applications. Chem. Rev. 117, 7910–7963 (2017).

    Article  Google Scholar 

  94. Ettabib, M. A. et al. Grating-incoupled waveguide-enhanced Raman sensor. PLOS ONE 18, e0284058 (2023).

    Article  Google Scholar 

  95. Diez, M. et al. Direct patterning of polymer optical periodic nanostructures on CYTOP for visible light waveguiding. Opt. Mater. 82, 21–29 (2018).

    Article  ADS  Google Scholar 

  96. Kasyutich, V. L. & Markus, W. S. Optimisation of laser linewidth and cavity alignment in off-axis cavity-enhanced absorption spectroscopy. Infrared Phys. Technol. 71, 179–186 (2015).

    Article  ADS  Google Scholar 

  97. Maciel, M. P. et al. A tunable wavelength erbium doped fiber ring laser based on mechanically induced long-period fiber gratings. Photonic Fiber Cryst. Devices: Adv. Mater. Innov. Device Appl. IX 9586, 958618 (2015).

    Google Scholar 

  98. Principles of Raman spectroscopy (3) Raman spectroscopy measurements. JASCO https://www.jasco-global.com/principle/principles-of-raman-spectroscopy-3-raman-spectroscopy-measurements/ (2023).

  99. Zhang, J. X. J. & Kazunori H. Molecular Sensors and Nanodevices 2nd edn Ch. 5 231–309 (Academic Press 2019).

  100. Karlsson, H. & Illy, E. How to choose a laser: how to choose a laser for Raman spectroscopy. LaserFocusWorld https://www.laserfocusworld.com/lasers-sources/article/16555207/how-to-choose-a-laser-how-to-choose-a-laser-for-raman-spectroscopy (2018).

  101. Flack, A. Grating selection for Raman spectroscopy. Edinburgh Instruments https://www.edinst.com/technical-note-grating-selection-for-raman-spectroscopy/ (2021).

  102. Blumenthal, D. J. Photonic integration for UV to IR applications. APL. Photonics 5, 020903 (2020).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the UK Engineering and Physical Sciences Research Council (EPSRC) (EP/R011230/1). J.S.W. also acknowledges support from the UK EPSRC (EP/S03109X/1 and EP/V047663/1 (MISSION)) and from the European Research Council (ERC) (WIPFAB 291216).

Author information

Authors and Affiliations

Authors

Contributions

Introduction (P.N.B.); Experimentation (M.A.E. and J.S.W.); Results (J.S.W., Z.L., M.A.E. and M.N.Z.); Applications (P.N.B. and M.N.Z.); Reproducibility and data deposition (J.S.W.); Limitations and optimizations (J.S.W. and M.N.Z.); Outlook (J.S.W. and P.N.B.); Overview of the Primer (J.S.W. and P.N.B.).

Corresponding author

Correspondence to James S. Wilkinson.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Methods Primers thanks Bing Zhao and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ettabib, M.A., Liu, Z., Zervas, M.N. et al. Waveguide-enhanced Raman spectroscopy. Nat Rev Methods Primers 4, 5 (2024). https://doi.org/10.1038/s43586-023-00281-4

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s43586-023-00281-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing