Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Near-unity Raman β-factor of surface-enhanced Raman scattering in a waveguide

Abstract

The Raman scattering of light by molecular vibrations is a powerful technique to fingerprint molecules through their internal bonds and symmetries. Since Raman scattering is weak1, methods to enhance, direct and harness it are highly desirable, and this has been achieved using optical cavities2, waveguides3,4,5,6 and surface-enhanced Raman scattering (SERS)7,8,9. Although SERS offers dramatic enhancements2,6,10,11 by localizing light within vanishingly small hot-spots in metallic nanostructures, these tiny interaction volumes are only sensitive to a few molecules, yielding weak signals12. Here we show that SERS from 4-aminothiophenol molecules bonded to a plasmonic gap waveguide is directed into a single mode with >99% efficiency. Although sacrificing a confinement dimension, we find a SERS enhancement of ~103 times across a broad spectral range enabled by the waveguide’s larger sensing volume and non-resonant waveguide mode. Remarkably, this waveguide SERS is bright enough to image Raman transport across the waveguides, highlighting the role of nanofocusing13,14,15 and the Purcell effect16. By analogy to the β-factor from laser physics10,17,18,19,20, the near-unity Raman β-factor we observe exposes the SERS technique to alternative routes for controlling Raman scattering. The ability of waveguide SERS to direct Raman scattering is relevant to Raman sensors based on integrated photonics7,8,9 with applications in gas sensing and biosensing.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Illustration of plasmonic gap waveguides, their linear characterization and observation of W-SERS.
Fig. 2: Imaging and spectroscopy of W-SERS.
Fig. 3: Imaging of Raman-scattering transport in W-SERS.
Fig. 4: Experimental evaluation of the Raman β-factor.

Similar content being viewed by others

Data availability

The data that support the findings of this study have been deposited in the Research Data Repository of Imperial College London and are available online at https://doi.org/10.14469/hpc/10981. Any additional materials and data are available from the corresponding author upon reasonable request.

References

  1. Camp, C. H. Jr & Cicerone, M. T. Chemically sensitive bioimaging with coherent Raman scattering. Nat. Photonics 9, 295–305 (2015).

    Article  CAS  Google Scholar 

  2. Hümmer, T. et al. Cavity-enhanced Raman microscopy of individual carbon nanotubes. Nat. Commun. 7, 12155 (2016).

    Article  Google Scholar 

  3. Dhakal, A. et al. Nanophotonic waveguide enhanced Raman spectroscopy of biological submonolayers. ACS Photonics 3, 2141–2149 (2016).

    Article  CAS  Google Scholar 

  4. Holmstrom, S. A. et al. Trace gas Raman spectroscopy using functionalized waveguides. Optica 3, 891–896 (2016).

    Article  CAS  Google Scholar 

  5. Eslami, S. & Palomba, S. Integrated enhanced Raman scattering: a review. Nano Converg. 8, 41 (2021).

    Article  CAS  Google Scholar 

  6. Ettabib, M. A. et al. Waveguide enhanced Raman spectroscopy for biosensing: a review. ACS Sens. 6, 2025–2045 (2021).

    Article  CAS  Google Scholar 

  7. Wong, H. M. K., Dezfouli, M. K., Sun, L., Hughes, S. & Helmy, A. S. Nanoscale plasmonic slot waveguides for enhanced Raman spectroscopy. Phys. Rev. B 98, 085124 (2018).

    Article  CAS  Google Scholar 

  8. Turk, N. et al. Comparison of free-space and waveguide-based SERS platforms. Nanomaterials (Basel) 9, 1401 (2019).

    Article  CAS  Google Scholar 

  9. Raza, A. et al. ALD assisted nanoplasmonic slot waveguide for on-chip enhanced Raman spectroscopy. APL Photonics 3, 116105 (2018).

    Article  Google Scholar 

  10. van Exter, M. P., Nienhuis, G. & Woerdman, J. P. Two simple expressions for the spontaneous emission factor β. Phys. Rev. A 54, 3553–3558 (1996).

    Article  Google Scholar 

  11. Schlücker, S. Surface-enhanced Raman spectroscopy: concepts and chemical applications. Angew. Chem. Int. Ed. 53, 4756–4795 (2014).

    Article  Google Scholar 

  12. Wang, D., Zhu, W., Best, M. D., Camden, J. P. & Crozier, K. B. Directional Raman scattering from single molecules in the feed gaps of optical antennas. Nano Lett. 13, 2194–2198 (2013).

    Article  CAS  Google Scholar 

  13. Stockman, M. I. Nanofocusing of optical energy in tapered plasmonic waveguides. Phys. Rev. Lett. 93, 137404 (2004).

    Article  Google Scholar 

  14. Nielsen, M. P. et al. Adiabatic nanofocusing in hybrid gap plasmon waveguides on the silicon-on-insulator platform. Nano Lett. 16, 1410–1414 (2016).

    Article  CAS  Google Scholar 

  15. Nielsen, M. P., Shi, X., Dichtl, P., Maier, S. A. & Oulton, R. F. Giant nonlinear response at a plasmonic nanofocus drives efficient four-wave mixing. Science 358, 1179–1181 (2017).

    Article  CAS  Google Scholar 

  16. Purcell, E. M. Spontaneous emission probabilities at radio frequencies. Phys. Rev. 69, 681 (1946).

    Google Scholar 

  17. Sorger, V. J. et al. Strongly enhanced molecular fluorescence inside a nanoscale waveguide gap. Nano Lett. 11, 4907–4911 (2011).

    Article  CAS  Google Scholar 

  18. Arcari, M. et al. Near-unity coupling efficiency of a quantum emitter to a photonic crystal waveguide. Phys. Rev. Lett. 113, 093603 (2014).

    Article  CAS  Google Scholar 

  19. Ma, R.-M. & Oulton, R. F. Applications of nanolasers. Nat. Nanotechnol. 14, 12–22 (2019).

    Article  CAS  Google Scholar 

  20. Azzam, S. I. et al. Ten years of spasers and plasmonic nanolasers. Light Sci. Appl. 9, 90 (2020).

    Article  CAS  Google Scholar 

  21. Hartschuh, A., Sánchez, E. J., Xie, X. S. & Novotny, L. High-resolution near-field Raman microscopy of single-walled carbon nanotubes. Phys. Rev. Lett. 90, 095503 (2003).

    Article  Google Scholar 

  22. Langer, J. et al. Present and future of surface-enhanced Raman scattering. ACS Nano 14, 28–117 (2020).

    Article  CAS  Google Scholar 

  23. Fleischmann, M., Hendra, P. J. & McQuillan, A. J. Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett. 26, 163–166 (1974).

    Article  CAS  Google Scholar 

  24. Jeanmaire, D. L. & Van Duyne, R. P. Surface Raman spectroelectrochemistry: part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J. Electroanal. Chem. Interfacial Electrochem. 84, 1–20 (1977).

    Article  CAS  Google Scholar 

  25. Kühler, P. et al. Plasmonic DNA-origami nanoantennas for surface-enhanced Raman spectroscopy. Nano Lett. 14, 2914–2919 (2014).

    Article  Google Scholar 

  26. Peyskens, F., Dhakal, A., Van Dorpe, P., Le Thomas, N. & Baets, R. Surface enhanced Raman spectroscopy using a single mode nanophotonic-plasmonic platform. ACS Photonics 3, 102–108 (2016).

    Article  CAS  Google Scholar 

  27. Chen, C. et al. Focusing plasmons in nanoslits for surface-enhanced Raman scattering. Small 5, 2876–2882 (2009).

    Article  CAS  Google Scholar 

  28. Lim, D.-K. et al. Highly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap. Nat. Nanotechnol. 6, 452–460 (2011).

    Article  CAS  Google Scholar 

  29. Peyskens, F., Wuytens, P., Raza, A., Dorpe, P. V. & Baets, R. Waveguide excitation and collection of surface-enhanced Raman scattering from a single plasmonic antenna. Nanophotonics 7, 1299–1306 (2018).

    Article  CAS  Google Scholar 

  30. Itoh, T., Yamamoto, Y. S., Kitahama, Y. & Balachandran, J. One-dimensional plasmonic hotspots located between silver nanowire dimers evaluated by surface-enhanced resonance Raman scattering. Phys. Rev. B 95, 115441 (2017).

    Article  Google Scholar 

  31. Yoon, I. et al. Single nanowire on a film as an efficient SERS-active platform. J. Am. Chem. Soc. 131, 758–762 (2009).

    Article  CAS  Google Scholar 

  32. Alberti, S., Datta, A. & Jágerská, J. Integrated nanophotonic waveguide-based devices for IR and Raman gas spectroscopy. Sensors 21, 7224 (2021).

    Article  CAS  Google Scholar 

  33. Zhang, C. et al. Chemical mapping of a single molecule by plasmon-enhanced Raman scattering. Nature 498, 82–86 (2013).

    Article  CAS  Google Scholar 

  34. De Angelis, F. et al. Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons. Nat. Nanotechnol. 5, 67–72 (2010).

    Article  Google Scholar 

  35. Hartschuh, A., Sánchez, E. J., Xie, X. S. & Novotny, L. High-resolution near-field Raman microscopy of single-walled carbon nanotubes. Phys. Rev. Lett. 90, 095503 (2003).

    Article  Google Scholar 

  36. Kriesch, A. et al. Functional plasmonic nanocircuits with low insertion and propagation losses. Nano Lett. 13, 4539–4545 (2013).

    Article  CAS  Google Scholar 

  37. Geisler, P. et al. Multimode plasmon excitation and in situ analysis in top-down fabricated nanocircuits. Phys. Rev. Lett. 111, 183901 (2013).

    Article  Google Scholar 

  38. Huang, K. C. Y. et al. Electrically driven subwavelength optical nanocircuits. Nat. Photonics 8, 244–249 (2014).

    Article  CAS  Google Scholar 

  39. Andryieuski, A. et al. Direct characterization of plasmonic slot waveguides and nanocouplers. Nano Lett. 14, 3925–3929 (2014).

    Article  CAS  Google Scholar 

  40. Huang, J.-S., Feichtner, T., Biagioni, P. & Hecht, B. Impedance matching and emission properties of nanoantennas in an optical nanocircuit. Nano Lett. 9, 1897–1902 (2009).

    Article  CAS  Google Scholar 

  41. Schörner, C., Adhikari, S. & Lippitz, M. A single-crystalline silver plasmonic circuit for visible quantum emitters. Nano Lett. 19, 3238–3243 (2019).

    Article  Google Scholar 

  42. Wen, J., Romanov, S. & Peschel, U. Excitation of plasmonic gap waveguides by nanoantennas. Opt. Express 17, 5925–5932 (2009).

    Article  CAS  Google Scholar 

  43. Lai, C.-H. et al. Near infrared surface-enhanced Raman scattering based on star-shaped gold/silver nanoparticles and hyperbolic metamaterial. Sci. Rep. 7, 5446 (2017).

    Article  Google Scholar 

  44. Afridi, A. & Kocabaş, Ş. E. Beam steering and impedance matching of plasmonic horn nanoantennas. Opt. Express 24, 25647–25652 (2016).

    Article  Google Scholar 

  45. Foerster, B. et al. Chemical interface damping depends on electrons reaching the surface. ACS Nano 11, 2886–2893 (2017).

    Article  CAS  Google Scholar 

  46. Brown, B. S. & Hartland, G. V. Chemical interface damping for propagating surface plasmon polaritons in gold nanostripes. J. Chem. Phys. 152, 024707 (2020).

    Article  Google Scholar 

  47. Jones, R. R., Hooper, D. C., Zhang, L., Wolverson, D. & Valev, V. K. Raman techniques: fundamentals and frontiers. Nanoscale Res. Lett. 14, 231 (2019).

    Article  Google Scholar 

  48. Khurgin, J. B. & Noginov, M. A. How do the Purcell factor, the Q-factor, and the beta factor affect the laser threshold? Laser Photonics Rev. 15, 2000250 (2021).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the EPSRC Reactive Plasmonics Programme (EP/M013812/1, R.F.O. and S.A.M.), the EPSRC Catalysis Plasmonics Programme (EP/W017075/1, R.F.O. and S.A.M.) and the Leverhulme Trust (RPG-2016-064, R.F.O. and S.A.M.). In addition, S.A.M. acknowledges the Lee-Lucas Chair in Physics. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under a Marie Skłodowska-Curie Fellowship (grant agreement no. 844591, M.F.). M.F. thanks R. Hoggarth for his support on laser maintenance and alignment. N.A.G. thanks the German National Academy of Sciences Leopoldina for their support via the Leopoldina Postdoc Fellowship (LPDS2020-12).

Author information

Authors and Affiliations

Authors

Contributions

M.F., M.P.dS.P.M., N.A.G. and R.F.O. developed the idea and designed the experiments. M.P.dS.P.M., N.A.G. and X.X. designed and simulated the waveguide structures and their mode properties. A.J., X.X. and Y.L. fabricated the waveguides and performed the structural characterization. M.F., M.P.dS.P.M. and Y.L. prepared samples with 4-ATP molecules. M.F., M.P.dS.P.M., Y.C. and H.X. conducted the experiments and analysed the data. A.R. and R.F.O. developed the waveguide Raman model and analysed this in the context of the experimental data. All authors contributed to the writing of the manuscript.

Corresponding author

Correspondence to Rupert F. Oulton.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks Jeremy Baumberg, Reuven Gordon and Jacob Khurgin for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary discussion, Figs. 1–10 and Table 1.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, M., Mota, M.P.d.P., Xiao, X. et al. Near-unity Raman β-factor of surface-enhanced Raman scattering in a waveguide. Nat. Nanotechnol. 17, 1251–1257 (2022). https://doi.org/10.1038/s41565-022-01232-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-022-01232-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing