Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Astronomical radio interferometry

Abstract

Radio interferometry and its application to arrays of element antennas enable sensitive studies of celestial objects with angular resolutions comparable with, or surpassing, optical imaging at wavelengths thousands of times shorter. The aperture synthesis technique offers the advantage of improving the angular resolution by effectively creating a telescope as large as the greatest separation between array elements. This Primer introduces radio interferometry systems that receive cosmic electromagnetic signals at submillimetre to metre wavelengths. First, the concept of aperture synthesis, the basic instrumental components and the calibration of data are described with an overview of currently operational astronomical arrays. The process of image synthesis and the factors that need to be considered in producing a radio astronomy image are described and common data formats and software applications for processing observation data are introduced. Various factors that limit the capabilities and/or optimization of arrays are outlined. Future plans for radio interferometry are presented to close the Primer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: (u, v) plane of a radio interferometric array.
Fig. 2: Simple astronomical radio interferometers.
Fig. 3: Synthesis imaging of an actual interferometric array of the Atacama Large Millimeter/submillimeter Array.
Fig. 4: Synthesis imaging with the CLEAN deconvolution (robust weighting with a robustness parameter of 1.0).
Fig. 5: Interferometric images for celestial objects.

Similar content being viewed by others

Data availability

Data described in this Primer are available from the Atacama Large Millimeter/submillimeter Array (ALMA) Science Archive. ALMA data of ADS/JAO.ALMA 2011.0.00011.SV (target source: VY CMa) were used for Figs. 3 and 4, and ADS/JAO.ALMA 2011.0.00015.SV (target source: HL Tau) for Fig. 5a.

References

  1. van Cittert, P. H. Die Wahrscheinliche Schwingungsverteilung in Einer von Einer Lichtquelle Direkt Oder Mittels Einer Linse Beleuchteten Ebene [German]. Physica 1, 201–210 (1934).

    Article  ADS  MATH  Google Scholar 

  2. Zernike, F. The concept of degree of coherence and its application to optical problems. Physica 5, 785–795 (1938).

    Article  ADS  Google Scholar 

  3. Thompson, A. R., Moran, J. M. & Swenson, G. W. Interferometry and Synthesis in Radio Astronomy 3rd edn (Springer, 2017). This textbook provides a comprehensive description of the principles, theories and practical techniques of radio interferometric observations.

  4. Beevers, C. A. & Lipson, H. A brief history of Fourier methods in crystal-structure determination. Aust. J. Phys. 38, 263 (1985).

    Article  ADS  Google Scholar 

  5. Peters, T. M. From radio-astronomy to medical imaging. Australas. Phys. Eng. Sci. Med. 14, 185–188 (1991).

    Google Scholar 

  6. Kawabe, R. et al. in Ground-based and Airborne Telescopes VI Vol. 9906 (eds Hall, H. J., Gilmozzi, R. & Marshall, H. K.) 990626 (SPIE, 2016).

  7. Klaassen, P. D. et al. in Ground-based and Airborne Telescopes VIII Vol. 114452 (eds Marshall, H. K., Spyromilio, J. & Usuda, T.) 114452F (SPIE, 2020).

  8. Ryle, M. The New Cambridge Radio Telescope. Nature 194, 517–518 (1962).

    Article  ADS  Google Scholar 

  9. Ryle, M. Radio telescopes of large resolving power. Science 188, 1071–1079 (1975).

    Article  ADS  Google Scholar 

  10. Iguchi, S. & Saito, M. in Ground-based and Airborne Telescopes VI Vol. 9906 (eds Hall, H. J., Gilmozzi, R. & Marshall, H. K.) 99062T (SPIE, 2016).

  11. Pospieszalski, M. W. in 2018 22nd Int. Microwave and Radar Conf. (MIKON) (eds Jędrzejewski, K. & Weinmann, F.) 1–6 (IEEE, 2018).

  12. Iguchi, S. Radio interferometer sensitivities for three types of receiving systems: DSB, SSB, and 2SB systems. PASJ 57, 643–677 (2005).

    Article  ADS  Google Scholar 

  13. Chenu, J.-Y. et al. The front-end of the noema interferometer. IEEE Trans. Terahertz Sci. Technol. 6, 223–237 (2016).

    Article  ADS  Google Scholar 

  14. Thome, F., Schäfer, F., Türk, S., Yagoubov, P. & Leuther, A. A 67–116-GHz cryogenic low-noise amplifier in a 50-nm InGaAs metamorphic HEMT technology. IEEE Microw. Wirel. Compon. Lett. 32, 430–433 (2022).

    Article  Google Scholar 

  15. Fey, A. L. et al. The second realization of the International Celestial Reference Frame by Very Long Baseline Interferometry. AJ 150, 58 (2015).

    Article  ADS  Google Scholar 

  16. Gordon, D. in Int. VLBI Service for Geodesy and Astrometry 2004 General Meeting Proc. (eds Vandenberg, N. R. & Baver, K. D.) 265 (NASA, 2004).

  17. Gwinn, C. R. et al. Interstellar optics. ApJ 505, 928–940 (1998).

    Article  ADS  Google Scholar 

  18. Kellermann, K. I., Bouton, E. N. & Brandt, S. S. Open Skies; The National Radio Astronomy Observatory and Its Impact on US Radio Astronomy (Springer, 2020).

  19. Napier, P. J. et al. The Very Long Baseline Array. IEEE Proc. 82, 658–672 (1994).

    Article  ADS  Google Scholar 

  20. Herring, T. A. et al. Geodesy by radio interferometry: evidence for contemporary plate motion. J. Gepphys. Res. 91, 8341–8347 (1986).

    Article  ADS  Google Scholar 

  21. Levy, G. S. et al. Very long baseline interferometric observations made with an orbiting radio telescope. Science 234, 187–189 (1986).

    Article  ADS  Google Scholar 

  22. Hirabayashi, H. et al. The VLBI Space Observatory Programme and the Radio-Astronomical Satellite HALCA. PASJ 52, 955–L965 (2000). This paper presents the first space VLBI dedicated mission VSOP and describes the orbiting space radio telescope to achieve the first international space VLBI project.

    Article  ADS  Google Scholar 

  23. Kardashev, N. S. et al. “RadioAstron” — a telescope with a size of 300 000 km: main parameters and first observational results. Astron. Rep. 57, 153–194 (2013).

    Article  ADS  Google Scholar 

  24. Zakhvatkin, M. V. et al. RadioAstron orbit determination and evaluation of its results using correlation of space-VLBI observations. Adv. Space Res. 65, 798–812 (2020).

    Article  ADS  Google Scholar 

  25. Treuhaft, R. N. & Lanyi, G. E. The effect of the dynamic wet troposphere on radio interferometric measurements. Radio Sci. 22, 251–265 (1987).

    Article  ADS  Google Scholar 

  26. Carilli, C. L. & Holdaway, M. A. Tropospheric phase calibration in millimeter interferometry. Radio Sci. 34, 817–840 (1999).

    Article  ADS  Google Scholar 

  27. Matsushita, S. et al. ALMA long baseline campaigns: phase characteristics of atmosphere at long baselines in the millimeter and submillimeter wavelengths. PASP 129, 035004 (2017).

    Article  ADS  Google Scholar 

  28. Maud, L. T. et al. Updates to ALMA site properties: using the ESO-Allegro Phase RMS database — ALMA Memo 624. Preprint at https://doi.org/10.48550/arXiv.2304.08318 (2023).

  29. Hobiger, T., Kondo, T. & Schuh, H. Very long baseline interferometry as a tool to probe the ionosphere. Radio Sci. 41, RS1006 (2006).

    Article  ADS  Google Scholar 

  30. Ma, C. et al. The International Celestial Reference Frame as realized by very long baseline interferometry. Astron. J. 116, 516–546 (1998).

    Article  ADS  Google Scholar 

  31. Beasley, A. J. & Conway, J. E. in Very Long Baseline Interferometry and the VLBA Vol. 82 (eds Zensus, J. A., Diamond, P. J. & Napier, P. J.) 327 (Astronomical Society of the Pacific, 1995).

  32. Rioja, M. J. & Dodson, R. Precise radio astrometry and new developments for the next-generation of instruments. AARv 28, 6 (2020). This paper presents a technique-led review of precise radio astrometry using radio interferometry systems and covers the developments that enable high accuracy and precision astrometry to be achieved using the phase referencing technique.

    ADS  Google Scholar 

  33. Asaki, Y. et al. Verification of the effectiveness of VSOP-2 phase referencing with a newly developed simulation tool, ARIS. PASJ 59, 397–418 (2007).

    Article  ADS  Google Scholar 

  34. Maud, L. T. et al. ALMA high-frequency long-baseline campaign in 2017: a comparison of the band-to-band and in-band phase calibration techniques and phase-calibrator separation angles. ApJS 250, 18 (2020).

    Article  ADS  Google Scholar 

  35. Reid, M. J. Techniques for measuring parallax and proper motion with VLBI. PASP 134, 123001 (2022).

    Article  ADS  Google Scholar 

  36. Goddi, C., Moscadelli, L., Sanna, A., Cesaroni, R. & Minier, V. Associations of H2O and CH3OH masers at milli-arcsec angular resolution in two high-mass YSOs. AA 461, 1027–1035 (2007).

    Article  ADS  Google Scholar 

  37. Maud, L. T. et al. ALMA high-frequency long-baseline campaign in 2019: band 9 and 10 in-band and band-to-band observations using ALMA’s longest baselines. ApJS 267, 24 (2023).

    Article  ADS  Google Scholar 

  38. Matsushita, S., Matsuo, H., Pardo, J. R. & Radford, S. J. E. FTS measurements of submillimeter-wave atmospheric opacity at Pampa la Bola II: supra-terahertz windows and model fitting. PASJ 51, 603 (1999).

    Article  ADS  Google Scholar 

  39. Pardo, J. R. et al. Extremely high spectral resolution measurements of the 450 μm atmospheric window at Chajnantor with APEX. Astron. Astrophys. 664, A153 (2022).

    Article  Google Scholar 

  40. Wilson, T. L. & Hüttemeister, S.Tools of Radio Astronomy — Problems and Solutions (Springer, 2018).

  41. Hajian, A. et al. The Atacama Cosmology Telescope: calibration with the Wilkinson Microwave Anisotropy Probe using cross-correlations. ApJ 740, 86 (2011).

    Article  ADS  Google Scholar 

  42. Butler, B. Flux density models for Solar system bodies in CASA. ALMA Memo 594. National Radio Astronomy Observatory https://library.nrao.edu/public/memos/alma/memo594.pdf (2012).

  43. van Kempen, T. et al. The ALMA Calibrator database I: measurements taken during the commissioning phase of ALMA. ALMA Memo 599. National Radio Astronomy Observatory https://science.nrao.edu/facilities/alma/aboutALMA/Technology/ALMA_Memo_Series/alma599/memo599.pdf/view (2014).

  44. Fomalont, E. et al. The calibration of ALMA using radio sources. Messenger 155, 19–22 (2014).

    ADS  Google Scholar 

  45. Perley, R. A. & Butler, B. J. An accurate flux density scale from 50 MHz to 50 GHz. ApJS 230, 7 (2017).

    Article  ADS  Google Scholar 

  46. Farren, G. S. et al. Confirming the calibration of ALMA using Planck observations. ApJS 256, 19 (2021).

    Article  ADS  Google Scholar 

  47. Bonato, M. et al. ALMA photometry of extragalactic radio sources. MNRAS 485, 1188–1195 (2019).

    Article  ADS  Google Scholar 

  48. Barnes, D. G., Briggs, F. H. & Calabretta, M. R. Postcorrelation ripple removal and radio frequency interference rejection for Parkes Telescope survey data. Radio Sci. 40, RS5S13 (2005).

    Article  Google Scholar 

  49. Yamaki, H., Kameno, S., Beppu, H., Mizuno, I. & Imai, H. Optimization by smoothed bandpass calibration in radio spectroscopy. PASJ 64, 118 (2012).

    Article  ADS  Google Scholar 

  50. van Haarlem, M. P. et al. LOFAR: the LOw-Frequency ARray. Astron. Astrophys. 556, A2 (2013).

    Article  Google Scholar 

  51. Baars, J. W. M. & Hooghoudt, B. G. The Synthesis Radio Telescope at Westerbork. General lay-out and mechanical aspects. Astron. Astrophys. 31, 323 (1974).

    ADS  Google Scholar 

  52. Casse, J. L. & Muller, C. A. The Synthesis Radio Telescope at Westerbork. The 21 CM continuum receiver system. Astron. Astrophys. 31, 333 (1974).

    ADS  Google Scholar 

  53. Hogbom, J. A. & Brouw, W. N. The Synthesis Radio Telescope at Westerbork. Principles of operation, performance and data reduction. Astron. Astrophys. 33, 289 (1974).

    ADS  Google Scholar 

  54. Ananthakrishnan, S. in 29th Int. Cosmic Ray Conf. (ICRC29) Vol. 10 (eds Acharya, B. S. et al.) 125 (ICRC, 2005).

  55. Gupta, Y. et al. The upgraded GMRT: opening new windows on the radio universe. Current Science 113, 707–714 (2017).

    Article  ADS  Google Scholar 

  56. Hotan, A. W. et al. Australian Square Kilometre Array Pathfinder: I. System description. PASA 38, e009 (2021).

    Article  ADS  Google Scholar 

  57. Jonas, J. & MeerKAT Team. in MeerKAT Science: On the Pathway to the SKA (Proceedings of Science, 2016).

  58. Napier, P. J., Thompson, A. R. & Ekers, R. D. The Very Large Array: design and performance of a modern synthesis radio telescope. IEEE Proc. 71, 1295–1320 (1983).

    Article  ADS  Google Scholar 

  59. Perley, R. et al. The Expanded Very Large Array. IEEE Proc. 97, 1448–1462 (2009).

    Article  ADS  Google Scholar 

  60. Perley, R. A., Chandler, C. J., Butler, B. J. & Wrobel, J. M. The Expanded Very Large Array: a new telescope for new science. ApJL 739, L1 (2011).

    Article  ADS  Google Scholar 

  61. Corder, S. & Cox, P. in Ground-based and Airborne Telescopes V Vol. 9145 (eds Stepp, L. M., Gilmozzi, R. & Hall, H. J.) 91451V (SPIE, 2014).

  62. Iguchi, S. et al. The Atacama Compact Array (ACA). PASJ 61, 1–12 (2009).

    Article  ADS  Google Scholar 

  63. Booth, R. S. The European VLBI network. Adv. Space Res. 11, 397–401 (1991).

    Article  ADS  Google Scholar 

  64. Szomoru, A. in Proc. 9th European VLBI Network Symp. The role of VLBI in the Golden Age for Radio Astronomy Vol. 9 40 (Sissa Medialab srl, 2009).

  65. Doi, A. et al. in Proc. 8th European VLBI Network Symp. (ed. Marecki, A.) 472–474 (Sissa Medialab srl, 2006).

  66. Jung, T., Sohn, B. W. & Byun, D.-Y. & KVN Group. Recent VLBI activities at the Korean VLBI Network. Mem. Societa Astronomica Italiana 83, 978 (2012).

    ADS  Google Scholar 

  67. Li, J. L., Guo, L. & Zhang, B. in A Giant Step: From Milli- to Micro-arcsecond Astrometry Vol. 248 (eds Jin, W. J., Platais, I. & Perryman, M. A. C.) 182–185 (Cambridge Univ. Press, 2008).

  68. Akiyama, K. et al. Overview of the observing system and initial scientific accomplishments of the East Asian VLBI Network (EAVN). Galaxies 10, 113 (2022).

    Article  ADS  Google Scholar 

  69. Edwards, P. G. & Phillips, C. The Long Baseline Array. Public. Korean Astron. Soc. 30, 659–661 (2015).

    ADS  Google Scholar 

  70. Hodgson, J. A. et al. in Proc. 12th European VLBI Network Symposium & Users Meeting (eds Tarchi, A., Giroletti, M. & Feretti, L.) (Sissa Medialab srl, 2016).

  71. Event Horizon Telescope Collaboration et al. First M87 Event Horizon Telescope results. II. Array and instrumentation. ApJL 875, L2 (2019).

    Article  ADS  Google Scholar 

  72. Event Horizon Telescope Collaboration et al. First M87 Event Horizon Telescope results. I. The shadow of the supermassive black hole. ApJL 875, L1 (2019). This paper reports a direct study of the event horizon shadow of the supermassive black hole M87* observed with the EHT millimetre-wave VLBI network.

    Article  ADS  Google Scholar 

  73. Event Horizon Telescope Collaboration et al. First Sagittarius A* Event Horizon Telescope results. I. The shadow of the supermassive black hole in the center of the Milky Way. ApJL 930, L12 (2022).

    Article  ADS  Google Scholar 

  74. Matthews, L. D. et al. The ALMA phasing system: a beamforming capability for ultra-high-resolution science at (sub)millimeter wavelengths. PASP 130, 015002 (2018).

    Article  ADS  Google Scholar 

  75. Goddi, C. et al. Calibration of ALMA as a phased array. ALMA observations during the 2017 VLBI campaign. PASP 131, 075003 (2019).

    Article  ADS  Google Scholar 

  76. Event Horizon Telescope Collaboration et al. First M87 Event Horizon Telescope results. IV. Imaging the central supermassive black hole. ApJL 875, L4 (2019).

    Article  ADS  Google Scholar 

  77. Carilli, C. L. & Thyagarajan, N. Hybrid mapping of the black hole shadow in M87. Astrophys. J. 924, 125 (2022).

    Article  ADS  Google Scholar 

  78. Miyoshi, M., Kato, Y. & Makino, J. The jet and resolved features of the central supermassive black hole of M87 observed with the Event Horizon Telescope (EHT). Astrophys. J. 933, 36 (2022).

    Article  ADS  Google Scholar 

  79. Patel, R. et al. Reproducibility of the first image of a black hole in the galaxy M87 from the Event Horizon Telescope Collaboration. Comput. Sci. Eng. 24, 42–52 (2022).

    Article  Google Scholar 

  80. Linfield, R. P. et al. 15 GHz Space VLBI observations using an antenna on a TDRSS satellite. Astrophys. J. 358, 350 (1990).

    Article  ADS  Google Scholar 

  81. Hirabayashi, H. et al. Overview and initial results of the Very Long Baseline Interferometry Space Observatory Programme. Science 281, 1825 (1998).

    Article  ADS  Google Scholar 

  82. Kardashev, N. S. et al. RadioAstron science program five years after launch: main science results. Sol. Syst. Res. 51, 535–554 (2017).

    Article  ADS  Google Scholar 

  83. Asaki, Y. et al. ALMA high-frequency long baseline campaign in 2017: band-to-band phase referencing in submillimeter waves. ApJS 247, 23 (2020).

    Article  ADS  Google Scholar 

  84. Cortes, P. C. et al. ALMA Cycle 9 technical handbook (ALMA doc. 9.3, ver. 1.0). ALMA https://almascience.eso.org/documents-and-tools/cycle9/alma-technical-handbook (2022).

  85. Briggs, D. S., Schwab, F. R. & Sramek, R. A. in Synthesis Imaging in Radio Astronomy II (eds Taylor, G. B., Carilli, C. L. & Perley, R. A.) 127 (Astronomical Society of the Pacific, 1999).

  86. Briggs, D. S. High Fidelity Interferometric Imaging: Robust Weighting and NNLS Deconvolution. PhD Thesis, The New Mexico Institute of Mining and Technology (1995). This paper presents a new idea of the density weighting in the image synthesis of radio interferometry, bridging the natural and uniform density weighting schemes.

  87. Cornwell, T., Braun, R. & Briggs, D. S. in Synthesis Imaging in Radio Astronomy II (eds Taylor, G. B., Carilli, C. L. & Perley, R. A.) 151 (Astronomical Society of the Pacific, 1999).

  88. Högbom, J. A. Aperture synthesis with a non-regular distribution of interferometer baselines. AAS 15, 417 (1974). This paper introduces the CLEAN deconvolution algorithm in the image synthesis of radio interferometry.

    ADS  Google Scholar 

  89. Cornwell, T. J. & Evans, K. F. A simple maximum entropy deconvolution algorithm. Astron. Astrophys. 143, 77–83 (1985).

    ADS  Google Scholar 

  90. Pearson, T. J. & Readhead, A. C. S. Image formation by self-calibration in radio astronomy. ARAA 22, 97–130 (1984). This paper introduces the self-calibration algorithm for visibility data calibration.

    Article  ADS  Google Scholar 

  91. Cornwell, T. & Fomalont, E. B. in Synthesis Imaging in Radio Astronomy II (eds Taylor, G. B., Carilli, C. L. & Perley, R. A.) 187 (Astronomical Society of the Pacific, 1999).

  92. Bajaja, E. & van Albada, G. D. Complementing aperture synthesis radio data by short spacing components from single dish observations. Astron. Astrophys. 75, 251–254 (1979).

    ADS  Google Scholar 

  93. McClure-Griffiths, N. M. et al. The Southern Galactic Plane Survey: H I observations and analysis. ApJS 158, 178–187 (2005).

    Article  ADS  Google Scholar 

  94. Rau, U., Naik, N. & Braun, T. A joint deconvolution algorithm to combine single-dish and interferometer data for wideband multiterm and mosaic imaging. Astron. J. 158, 3 (2019).

    Article  ADS  Google Scholar 

  95. Koda, J., Teuben, P., Sawada, T., Plunkett, A. & Fomalont, E. Total Power Map to Visibilities (TP2VIS): joint deconvolution of ALMA 12 m, 7 m, and total power array data. PASP 131, 054505 (2019).

    Article  ADS  Google Scholar 

  96. McGuire, B. A. 2021 Census of Interstellar, Circumstellar, Extragalactic, Protoplanetary Disk, and Exoplanetary Molecules. ApJS 259, 30 (2022).

    Article  ADS  Google Scholar 

  97. Draine, B. T. Interstellar dust grains. ARAA 41, 241–289 (2003).

    Article  ADS  Google Scholar 

  98. ALMA Partnership et al. The 2014 ALMA long baseline campaign: first results from high angular resolution observations toward the HL Tau region. ApJL 808, L3 (2015). This paper reveals millimetre-wave dust emission from the proto-planetary disk surrounding the young star HL Tau observed with the ALMA.

    Article  ADS  Google Scholar 

  99. Heald, G. et al. Magnetism science with the Square Kilometre Array. Galaxies 8, 53 (2020).

    Article  ADS  Google Scholar 

  100. Wood, C. M. et al. Time-dependent visibility modelling of a relativistic jet in the X-ray binary MAXI J1803-298. MNRAS 522, 70–89 (2023).

    Article  ADS  Google Scholar 

  101. Condon, J. J. Confusion and flux-density error distributions. Astrophys. J. 188, 279–286 (1974).

    Article  ADS  Google Scholar 

  102. Zensus, J. A. Parsec-scale jets in extragalactic radio sources. ARAA 35, 607–636 (1997).

    Article  ADS  Google Scholar 

  103. Walker, R. C., Hardee, P. E., Davies, F. B., Ly, C. & Junor, W. The structure and dynamics of the subparsec jet in M87 based on 50 VLBA observations over 17 years at 43 GHz. Astrophys. J. 855, 128 (2018). This paper reports the results of a 17-year monitoring programme with the VLBA of the nucleus of the galaxy M87, tracing the evolution of the sub-parsec-scale plasma jet.

    Article  ADS  Google Scholar 

  104. Astrophysical Masers: Unlocking the Mysteries of the Universe Vol. 336 (eds Tarchi, A., Reid, M. J. & Castangia, P.) (Cambridge Univ. Press, 2018).

  105. Pesce, D. W. et al. The Megamaser Cosmology Project. XIII. Combined Hubble constant constraints. ApJL 891, L1 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  106. Loi, S. T. et al. Real-time imaging of density ducts between the plasmasphere and ionosphere. GRL 42, 3707–3714 (2015).

    Article  ADS  Google Scholar 

  107. Hare, B. M. et al. Radio emission reveals inner meter-scale structure of negative lightning leader steps. PRL 124, 105101 (2020).

    Article  ADS  Google Scholar 

  108. Schellart, P. et al. Detecting cosmic rays with the LOFAR radio telescope. Astron. Astrophys. 560, A98 (2013).

    Article  Google Scholar 

  109. Mondal, S., Oberoi, D. & Vourlidas, A. Estimation of the physical parameters of a CME at high coronal heights using low-frequency radio observations. Astrophys. J. 893, 28 (2020).

    Article  ADS  Google Scholar 

  110. Prabu, S., Hancock, P. J., Zhang, X. & Tingay, S. J. The development of non-coherent passive radar techniques for space situational awareness with the Murchison Widefield Array. PASA 37, e010 (2020).

    Article  ADS  Google Scholar 

  111. Charlot, P. et al. The third realization of the International Celestial Reference Frame by Very Long Baseline Interferometry. Astron. Astrophys. 644, A159 (2020).

    Article  Google Scholar 

  112. Malkin, Z. M. Statistical analysis of the results of 20 years of activity of the International VLBI Service for Geodesy and Astrometry. Astron. Rep. 64, 168–188 (2020).

    Article  ADS  Google Scholar 

  113. Gaia Collaboration et al. Gaia Early Data Release 3. The celestial reference frame (Gaia-CRF3). Astron. Astrophys. 667, A148 (2022).

    Article  Google Scholar 

  114. Plavin, A. V., Kovalev, Y. Y. & Petrov, L. Y. Dissecting the AGN disk-jet system with joint VLBI–Gaia analysis. Astrophys. J. 871, 143 (2019).

    Article  ADS  Google Scholar 

  115. Shapiro, I. I. et al. Submilliarcsecond astrometry via VLBI. I. Relative position of the radio sources 3C 345 and NRAO 512. Astron. J. 84, 1459–1469 (1979).

    Article  ADS  Google Scholar 

  116. Bartel, N., Herring, T. A., Ratner, M. I., Shapiro, I. I. & Corey, B. E. VLBI limits on the proper motion of the ‘core’ of the superluminal quasar 3C345. Nature 319, 733–738 (1986).

    Article  ADS  Google Scholar 

  117. Gwinn, C. R., Taylor, J. H., Weisberg, J. M. & Rawley, L. A. Measurement of pulsar parallaxes by VLBI. Astron. J. 91, 338–342 (1986).

    Article  ADS  Google Scholar 

  118. Lestrade, J. F. et al. Phase-reference VLBI observations of weak radio sources. Milliarcsecond position of Algol. Astron. J. 99, 1663 (1990).

    Article  ADS  Google Scholar 

  119. Reid, M. J., Readhead, A. C. S., Vermeulen, R. C. & Treuhaft, R. N. The proper motion of Sagittarius A*. I. First VLBA results. Astrophys. J. 524, 816–823 (1999).

    Article  ADS  Google Scholar 

  120. Zhang, B., Reid, M. J., Menten, K. M. & Zheng, X. W. Distance and kinematics of the red hypergiant VY CMa: Very Long Baseline Array and Very Large Array astrometry. Astrophys. J. 744, 23 (2012).

    Article  ADS  Google Scholar 

  121. Asaki, Y., Imai, H., Sobolev, A. M. & Parfenov, S. Y. Distance and proper motion measurement of water masers in Sharpless 269 IRS 2w. Astrophys. J. 787, 54 (2014).

    Article  ADS  Google Scholar 

  122. Quiroga-Nuñez, L. H., Immer, K., van Langevelde, H. J., Reid, M. J. & Burns, R. A. Resolving the distance controversy for Sharpless 269. A possible kink in the outer arm. Astron. Astrophys. 625, A70 (2019).

    Article  Google Scholar 

  123. Reid, M. J. et al. Trigonometric parallaxes of high-mass star-forming regions: our view of the Milky Way. Astrophys. J. 885, 131 (2019). This paper reviews VLBI astrometry for galactic masers to measure their annual parallax, proper motions and line-of-sight velocities, revealing the structure and kinematics of the Milky Way.

    Article  ADS  Google Scholar 

  124. VERA Collaboration et al. The first VERA astrometry catalog. PASJ 72, 50 (2020).

    Article  ADS  Google Scholar 

  125. Jones, D. L. et al. Very Long Baseline Array astrometric observations of the Cassini Spacecraft at Saturn. Astron. J. 141, 29 (2011).

    Article  ADS  Google Scholar 

  126. Takeuchi, H. et al. in 2011 XXXth URSI General Assembly and Scientific Symposium (IEEE, 2011).

  127. Hellerschmied, A., McCallum, L., McCallum, J., Böhm, J. & Sun, J. in International VLBI Service for Geodesy and Astrometry 2018 General Meeting Proceedings: Global Geodesy and the Role of VGOS — Fundamental to Sustainable Development (eds Armstrong, K. L., Baver, K. D. & Behrend, D.) 259–263 (NASA, 2019).

  128. Huang, Y. et al. Orbit determination of Chang’E-3 and positioning of the lander and the rover. Chinese Sci. Bull. 59, 3858–3867 (2014).

    Article  ADS  Google Scholar 

  129. Jones, D. L. et al. in 2019 IEEE Aerospace Conf. (IEEE, 2019).

  130. Duev, D. A. et al. Spacecraft VLBI and Doppler tracking: algorithms and implementation. Astron. Astrophys. 541, A43 (2012).

    Article  Google Scholar 

  131. Pence, W. D., Chiappetti, L., Page, C. G., Shaw, R. A. & Stobie, E. Definition of the Flexible Image Transport System (FITS), version 3.0. Astron. Astrophys. 524, A42 (2010).

    Article  ADS  Google Scholar 

  132. Diamond, P. J. et al. FITS Format for Interferometry Data Interchange, VLBA Correlator Memo 108. National Radio Astronomy Observatory https://library.nrao.edu/public/memos/vlba/corr/VLBAC_108.pdf (1997).

  133. Hamaker, J. P., Bregman, J. D. & Sault, R. J. Understanding radio polarimetry. I. Mathematical foundations. AAS 117, 137–147 (1996).

    ADS  Google Scholar 

  134. Janssen, M., Radcliffe, J. F. & Wagner, J. Software and techniques for VLBI data processing and analysis. Universe 8, 527 (2022).

    Article  ADS  Google Scholar 

  135. Greisen, E. W. in Information Handling in Astronomy — Historical Vistas (ed. Heck, A.) 109 (Springer, 2003).

  136. Shepherd, M. C. in Astronomical Data Analysis Software and Systems VI (eds Hunt, G. & Payne, H.) 77 (Astronomical Society of the Pacific, 1997).

  137. McMullin, J. P., Waters, B., Schiebel, D., Young, W. & Golap, K. in Astronomical Data Analysis Software and Systems XVI (eds Shaw, R. A., Hill, F. & Bell, D. J.) 127 (Astronomical Society of the Pacific, 2007).

  138. CASA Team et al. CASA, the Common Astronomy Software Applications for radio astronomy. PASP 134, 114501 (2022). This paper presents the interferometric data reduction application CASA and describes the main functions for analysing ALMA and VLA data.

    Article  ADS  Google Scholar 

  139. van Bemmel, I. M. et al. CASA on the fringe-development of VLBI processing capabilities for CASA. PASP 134, 114502 (2022).

    Article  ADS  Google Scholar 

  140. Janssen, M. et al. rPICARD: a CASA-based calibration pipeline for VLBI data. Calibration and imaging of 7 mm VLBA observations of the AGN jet in M87. Astron. Astrophys. 626, A75 (2019).

    Article  Google Scholar 

  141. Cotton, W. D. in Very Long Baseline Interferometry and the VLBA (eds Zensus, J. A., Diamond, P. J. & Napier, P. J.) 189 (Astronomical Society of the Pacific, 1995).

  142. Petrov, L., Kovalev, Y. Y., Fomalont, E. B. & Gordon, D. The Very Long Baseline Array Galactic Plane Survey — VGaPS. Astron. J. 142, 35 (2011).

    Article  ADS  Google Scholar 

  143. Pety, J. in SF2A-2005: Semaine de l’Astrophysique Francaise (eds Casoli, F., Contini, T., Hameury, J. M. & Pagani, L.) 721 (EdP-Sciences, 2005).

  144. Hurley-Walker, N. et al. A long-period radio transient active for three decades. Nature 619, 487–490 (2023).

    Article  ADS  Google Scholar 

  145. Pardo, J., Cernicharo, J. & Serabyn, E. Atmospheric transmission at microwaves (atm): an improved model for millimeter/submillimeter applications. IEEE Trans. Antennas Propag. 49, 1683–1694 (2001).

    Article  ADS  Google Scholar 

  146. Cornwell, T. J., Holdaway, M. A. & Uson, J. M. Radio-interferometric imaging of very large objects: implications for array design. Astron. Astrophys. 271, 697 (1993).

    ADS  Google Scholar 

  147. Morita, K.-I. & Holdaway, M. A. in Ground-based and Airborne Telescopes II Vol. 7012 (eds Stepp, L. M. & Gilmozzi, R.) 70120O (SPIE, 2008).

  148. Cornwell, T. J., Golap, K. & Bhatnagar, S. in Astronomical Data Analysis Software and Systems XIV (eds Shopbell, P., Britton, M. & Ebert, R.) 86 (Astronomical Society of the Pacific, 2005).

  149. Staveley-Smith, L., Sault, R. J., Hatzidimitriou, D., Kesteven, M. J. & McConnell, D. An HI aperture synthesis mosaic of the Small Magellanic Cloud. MNRAS 289, 225–252 (1997).

    Article  ADS  Google Scholar 

  150. Carpenter, J., Brogan, C. L., Iono, D. & Mroczkowski, T. The ALMA2030 wideband sensitivity upgrade. Preprint at https://doi.org/10.48550/arXiv.2211.00195 (2022). This report introduces the future upgrade plan for the ALMA to widen the bandwidth of the data processing by the year 2030.

  151. Raymond, A. W. et al. Evaluation of new submillimeter VLBI sites for the Event Horizon Telescope. ApJS 253, 5 (2021).

    Article  ADS  Google Scholar 

  152. Crew, G. B. et al. A characterization of the ALMA phasing system at 345 GHz. PASP 135, 025002 (2023).

    Article  ADS  Google Scholar 

  153. Murphy, E. J. et al. in Science with a Next Generation Very Large Array (ed. Murphy, E.) 3 (Astronomical Society of the Pacific, 2018). This report describes the main science goals to be achieved with the ngVLA and their requirements for the array design.

  154. National Academies of Sciences, Engineering, and Medicine. Pathways to Discovery in Astronomy and Astrophysics for the 2020s (National Academies of Sciences, Engineering, and Medicine, 2021).

  155. Novikov, I. D. et al. Objectives of the Millimetron Space Observatory science program and technical capabilities of its realization. Phys. Uspekhi 64, 386–419 (2021).

    Article  ADS  Google Scholar 

  156. Fromm, C. M. et al. Using space-VLBI to probe gravity around Sgr A*. Astron. Astrophys. 649, A116 (2021).

    Article  Google Scholar 

  157. Roelofs, F. et al. Black hole parameter estimation with synthetic very long baseline interferometry data from the ground and from space. Astron. Astrophys. 650, A56 (2021). This paper reports the results of feasibility studies of future space VLBI missions at millimetre wavelengths targeting supermassive black holes in the centres of galaxies.

    Article  Google Scholar 

  158. Kurczynski, P. et al. in Space Telescopes and Instrumentation 2022: Optical, Infrared, and Millimeter Wave Vol. 12180 (eds Coyle, L. E., Matsuura, S. & Perrin, M. D.) 121800M (SPIE, 2022).

  159. Gurvits, L. I. et al. THEZA: TeraHertz Exploration and Zooming-in for Astrophysics. Exp. Astron. 51, 559–594 (2021).

    Article  ADS  Google Scholar 

  160. MacDowall, R. J. et al. in Enabling Sensor and Platform Technologies for Spaceborne Remote Sensing (eds Komar, G. J., Wang, J. & Kimura, T.) 284–292 (SPIE, 2005).

  161. Li, C. et al. Overview of the chang’E-4 mission: opening the frontier of scientific exploration of the lunar far side. Space Sci. Rev. 217, 35 (2021).

    Article  ADS  Google Scholar 

  162. Burns, J. et al. A lunar farside low radio frequency array for dark ages 21-cm comsmology. Preprint at https://doi.org/10.48550/arXiv.2103.08623 (2021).

  163. Hallinan, G. et al. FARSIDE: A Low Radio Frequency Interferometric Array on the Lunar Farside. BAAS 53, 379 (2021).

  164. Klein Wolt, M. et al. in URSI GASS 2021 J02 https://www.ursi.org/proceedings/procGA21/papers/URSIGASS2021-Th-J02-AM1-3.pdf (URSI, 2021).

Download references

Acknowledgements

This Primer makes use of the following Atacama Large Millimeter/submillimeter Array (ALMA) data: ADS/JAO.ALMA 2011.0.00011.SV and ADS/JAO.ALMA 2011.0.00015.SV. ALMA is a partnership of the European Southern Observatory (ESO) (representing its member states), the National Science Foundation (NSF) (USA) and the National Institutes of Natural Sciences (NINS) (Japan), together with the National Research Council (NRC) (Canada), the Ministry of Science and Technology (MOST) and the Academia Sinica Institute of Astronomy and Astrophysics (ASIAA) (Taiwan), and the Korea Astronomy and Space Science Institute (KASI) (Republic of Korea), in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by the ESO, the AUI/National Radio Astronomy Observatory (NRAO) and the National Astronomical Observatory of Japan (NAOJ). The authors thank their colleagues for useful discussions.

Author information

Authors and Affiliations

Authors

Contributions

Introduction (Y.A. and P.G.E.); Experimentation (Y.A., P.G.E., S.I. and E.J.M.); Results (Y.A. and P.G.E.); Applications (Y.A. and P.G.E.); Reproducibility and data deposition (B.A.P.); Limitations and optimizations (E.J.M.); Outlook (P.G.E. and E.J.M.); Overview of the Primer (all authors).

Corresponding author

Correspondence to Yoshiharu Asaki.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Methods Primers thanks Ciriaco Goddi, Violette Impellizzeri and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Astronomical Image Processing System (AIPS): http://www.aips.nrao.edu/

Common Astronomy Software Applications (CASA): https://casa.nrao.edu

Grenoble Image and Line Data Analysis System (GILDAS): https://www.iram.fr/IRAMFR/GILDAS/

PIMA: http://astrogeo.org/pima/

Glossary

Active galactic nuclei

(AGNs). The central regions of a distant extragalactic galaxy or quasar, which emit enormous energy in the frequency range from radio to γ-ray. It is believed that the energy output is powered by accretion towards a supermassive black hole at the centre of the AGN.

Atomic maser frequency standard

The accurate frequency generated from the atomic maser clock. There are several atomic species commercially used. The most popular is the hydrogen maser, which has the best frequency precision in time ranges shorter than 103 s. Caesium atomic clocks are also widely used because the precision for longer timescales is better than the other species. Rubidium frequency standards are not as precise, but can be sufficient for lower frequency observations.

Flux density

The energy flow rate, or spectral irradiance, of electromagnetic waves, measured as energy per unit time per unit area per unit frequency (W m−2 Hz−1). In radio astronomy, radio telescopes usually receive tiny power of signals per unit time, and a modified unit of jansky (1 Jy = 10−26 W m−2 Hz−1) is often used.

High electron-mobility transistor

A microwave device that makes use of a field-effect transistor incorporating a junction between two materials with different band gaps as the channel instead of a doped region. For a front-end device, it is often required to be cooled to suppress the receiver noise.

Maser

Microwave amplification by stimulated emission of radiation — the naturally occurring microwave analogue of a laser.

Radio window

The frequency region in metre to submillimetre wavelengths where Earth’s atmospheric opacity allows observing from the ground. This is greatly affected by the water vapour content in the Earth’s atmosphere.

Single-dish

A parabolic radio telescope antenna. A single-dish observation is a retronym for a non-interferometric observation.

Superconductor–insulator–superconductor

A device that converts millimetre/submillimetre waves to a lower frequency by mixing a local frequency signal using superconductor–insulator–superconductor tunnel junctions. Superconductor–insulator–superconductor devices must be cryogenically cooled to operate effectively.

Visibility

Output from an interferometer with amplitude and phase generated in the cross-correlation between two antennas. In the data reduction, the visibility is often treated as a complex number for simplifying calculations for the calibration and image synthesis using a two-dimensional (2D) Fourier transform.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asaki, Y., Alcalde Pampliega, B., Edwards, P.G. et al. Astronomical radio interferometry. Nat Rev Methods Primers 3, 89 (2023). https://doi.org/10.1038/s43586-023-00273-4

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s43586-023-00273-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing