Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Muography

Abstract

Muography takes advantage of the specific properties of cosmic-ray muons, relativistic leptons that are much heavier than electrons. Cosmic-ray muons have strong penetrating power and a relativistic nature, which means they can be used in a range of technologies, including imagery; positioning, navigation, timing (PNT); and secured communication in environments where conventional techniques are unavailable. As cosmic-ray muons are universally present on Earth, muographic measurements can be conducted in the same manner across the globe. Similar results have been produced independent of where measurements were taken. This has enabled the muographic field to grow and develop into a powerful tool for investigating natural phenomena, cultural heritage and PNT. This Primer is intended as an introductory article that introduces new and established muographic techniques. Case studies are provided, with examples from recent interdisciplinary advances. Data reproducibility and limitations are discussed, before finishing with an outlook of future developments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Examples of imaging, positioning, navigation and timing, and cryptographic technologies in muography.
Fig. 2: Instrumentation used for muographic imagery.
Fig. 3: Instrumentation used for muometric positioning, navigation and timing and cryptography.
Fig. 4: Muometric positioning, navigation, timing and cryptography.
Fig. 5: Applications of muographic imagery.
Fig. 6: Applications of muometric cryptography.

Similar content being viewed by others

References

  1. Tanaka, H. K. M. Particle geophysics. Ann. Rev. Earth Planet. Sci. 42, 535–549 (2014).

    ADS  Google Scholar 

  2. Tanaka, H. K. M. Muometric positioning system (μPS) with cosmic muons as a new underwater and underground positioning technique. Sci. Rep. 10, 18896 (2020). To our knowledge, this work is the first proposal of muPS and demonstration of the laboratory-scale muPS.

    ADS  Google Scholar 

  3. Tanaka, H. K. M. Wireless muometric navigation system. Sci. Rep. 12, 10114 (2022).

    ADS  Google Scholar 

  4. Tanaka, H. K. M. et al. First navigation with wireless muometric navigation system (MuWNS) in indoor and underground environments. iScience 26, 107000 (2023). To our knowledge, this work is the first demonstration of wireless navigation based on muPS in the GPS-denied environment.

    ADS  Google Scholar 

  5. Tanaka, H. K. M. Cosmic time synchronizer (CTS) for wireless and precise time synchronization using extended air showers. Sci. Rep. 12, 7078 (2022). To our knowledge, this work is the first proposal of <100 ns time synchronization with the EAS.

    ADS  Google Scholar 

  6. Tanaka, H. K. M., Cerretto, G. & Gnesi, I. Cosmic time synchronization (CTS): first experimental results for a wireless, precise, and perpetual time synchronization system with extended air shower particles. iScience 26, 106595 (2023). To our knowledge, this work is the first successful demonstration of <100 ns time synchronization with the EAS.

    ADS  Google Scholar 

  7. Tanaka, H. K. M. Cosmic time calibrator for wireless sensor network. Sci. Rep. 13, 5951 (2023).

    ADS  Google Scholar 

  8. Tanaka, H. K. M. Cosmic coding and transfer for ultra high security near-field communications. iScience 26, 105897 (2023). To our knowledge, this work is the first proposal and demonstration of encryption key generation and transfer with cosmic-ray muons.

    ADS  Google Scholar 

  9. Tanaka, H. K. M. Cosmic coding and transfer storage (COSMOCATS) for invincible key storage. Sci. Rep. 13, 8746 (2023).

    ADS  Google Scholar 

  10. Particle Data Group. Review of particle physics. Prog. Theor. Exp. Phys. 2022, 083C01 (2022).

  11. Oláh, L., Tanaka, H. K. M. & Varga, D. Muography: exploring earth’s subsurface with elementary particles. Geophys. Monogr. 270, 1–306 (2022).

    Google Scholar 

  12. Giammanco, A. et al. Muon imaging present status and emerging applications. International Atomic Enrgy Agency https://www.iaea.org/publications/15182/muon-imaging (2022).

  13. Scampoli, P. & Ariga, A. Cosmic Ray Muography (eds Scampoli, P. & Ariga, A.) 1–308 (World Scientific, 2023).

  14. Engel, R., Gaisser, T. K. & Stanev, T. The flux of atmospheric muons. Proc. ICRC 2001, 1029–1032 (2001).

    Google Scholar 

  15. Conversi, M. Experiments on cosmic-ray mesons and protons at several altitudes and latitudes. Phys. Rev. 79, 749 (1950).

    ADS  Google Scholar 

  16. Allkofer, O. C., Clausen, K. & Dau, W. D. The low-momentum muon spectrum near the equator. Lett. Nuovo Cim. 12, 107–110 (1975).

    ADS  Google Scholar 

  17. Groom, D. E. et al. Muon stopping-power and range tables: 10 MeV–100 TeV. At. Data Nucl. Data Tables 78, 183–356 (2001).

    ADS  Google Scholar 

  18. Tanaka, H. K. M. et al. Development of the cosmic-ray muon detection system for probing internal-structure of a volcano. Hyper. Inter. 138, 521–526 (2001).

    ADS  Google Scholar 

  19. Taira, H. & Tanaka, H. K. M. A potential space- and power-effective muon sensor module for imaging a volcano. Earth Planet. Space 62, 179–186 (2010).

    ADS  Google Scholar 

  20. Anastasio, A. et al. The MU-RAY detector for muon radiography of volcanoes. Nucl. Instr. Meth. Phys. Res. A 732, 423–426 (2013).

    ADS  Google Scholar 

  21. Lo Presti, D. et al. Development of a scintillation-fiber detector for real-time particle tracking. J. Instr. 8, P04015 (2013).

    Google Scholar 

  22. Bross A. Tomographic muon imaging of the great pyramid of giza. J. Adv. Instr. Sci. 2022, 1–9 (2022).

    Google Scholar 

  23. Marteau, J. et al. Muon tomography applied to geosciences and volcanology. Nucl. Instr. Meth. Phys. Res. A 695, 23–28 (2012).

    ADS  Google Scholar 

  24. D’Errico, M. et al. The muraves experiment: a study of the vesuvius great cone with muon radiography. J. Adv. Instr. Sci. 2022, 273 (2022).

    Google Scholar 

  25. Charpak, G., Bouclier, R., Bressani, T., Favier, J. & Zupancic, C. The use of multiwire proportional counters to select and localize charged particles. Nucl. Instr. Meth. Phys. Res. A 62, 262–268 (1968).

    ADS  Google Scholar 

  26. Blum, W. & Rolandi, L. Particle Detection with Drift Chambers (Springer-Verlag, 1993).

  27. Varga, D., Nyitrai, G., Hamar, G. & Oláh, L. High efficiency gaseous tracking detector for cosmic muon radiography. Adv. High. Energy Phys. 2016, 1962317 (2016).

    Google Scholar 

  28. Oláh, L., Tanaka, H. K. M., Ohminato, T. & Varga, D. High-definition and low-noise muography of the Sakurajima volcano with gaseous tracking detectors. Sci. Rep. 8, 3207 (2018).

    ADS  Google Scholar 

  29. Bouteille, S. et al. A micromegas-based telescope for muon tomography: the WatTo experiment. Nucl. Instr. Meth. Phys. Res. A 834, 223–228 (2016).

    ADS  Google Scholar 

  30. Nyitrai, G., Hamar, G. & Varga, D. Toward low gas consumption of muographic tracking detectors in field applications. J. Appl. Phys. 129, 244901 (2021).

    ADS  Google Scholar 

  31. Gera, Á., Nyitrai, G., Surányi, G., Hamar, G. & Varga, D. Gaseous detectors for field applications: quality control, thermal and mechanical stability. Instruments 6, 74 (2022).

    Google Scholar 

  32. Lázaro Roche, I. A compact muon tracker for dynamic tomography of density based on a thin time projection chamber with micromegas readout. Particles 4, 333–342 (2021).

    Google Scholar 

  33. Aharonian, F. A., Hofmann, W., Konopelko, A. K. & Völk, H. J. The potential of ground based arrays of imaging atmospheric Cherenkov telescopes. I. Determination of shower parameters. Astrop. Phys. 6, 343–368 (1997).

    ADS  Google Scholar 

  34. Compagnino, A. A. et al. Evaluating the night sky background directly from the signal images detected by the ASTRI telescopes. Exp. Astron. 53, 1017–1035 (2022).

    ADS  Google Scholar 

  35. Barkas, W. H. Nuclear Research Emulsion (Academic, 1973).

  36. Niwa, K. et al. Auto scanning and measuring system for the emulsion chamber. Proc. Int. Cosmic Ray Symp. High. Energy Phenomena, Cosmic Ray Lab. Univ. Tokyo 1974, 149 (1974).

    Google Scholar 

  37. Aoki, S. et al. Fully automated emulsion analysis system. Nucl. Instrum. Meth. B 51, 466 (1990).

    ADS  Google Scholar 

  38. Fukuda, T. et al. Automatic scanning of nuclear emulsions with wide-angle acceptance for nuclear fragment detection. J. Instr. 8, P01023 (2013).

    Google Scholar 

  39. Armenise, N. et al. High-speed particle tracking in nuclear emulsion by last-generation automatic microscopes. Nucl. Instr. Meth Phys. Res. A 551, 261–270 (2005).

    ADS  Google Scholar 

  40. Arrabito, L. et al. Hardware performance of a scanning system for high speed analysis of nuclear emulsions. Nucl. Instr. Meth Phys. Res. A 568, 578–587 (2006).

    ADS  Google Scholar 

  41. Bozza C. Final version of SySal2000. Zenodo https://doi.org/10.5281/zenodo.4271673 (2000).

  42. Bozza, C. et al. An integrated system for large scale scanning of nuclear emulsions. Nucl. Instr. Meth Phys. Res. A 703, 204–212 (2013).

    ADS  Google Scholar 

  43. Morishima, K. & Nakano, T. Development of a new automatic nuclear emulsion scanning system, S-UTS, with continuous 3D tomographic image read-out. J. Inst. 5, P04011 (2010).

    ADS  Google Scholar 

  44. Bozza C. et al. GPU-based quasi-real-time track recognition in imaging devices: from raw data to particle tracks. DESY Library https://doi.org/10.3204/DESY-PROC-2014-05/2 (2014).

  45. Alexandrov, A. A new generation scanning system for the high-speed analysis of nuclear emulsions. J. Inst. 11, P06002 (2016).

    Google Scholar 

  46. Yoshimoto, M. et al. Hyper-track selector nuclear emulsion readout system aimed at scanning an area of one thousand square meters. Prog. Theor. Exp. Phys. 10, 103H01 (2017).

    Google Scholar 

  47. D. Heck et al. CORSIKA: a Monte Carlo code to simulate extensive air showers. Forschungszentrum Karlsruhe GmbH https://publikationen.bibliothek.kit.edu/270043064/3813660 (1998).

  48. Hagmann C. et al. Cosmic-ray shower generator (CRY) for Monte Carlo transport codes. IEEE Xplore https://ieeexplore.ieee.org/document/4437209 (2007).

  49. Cillis, A. N. & Sciutto, S. J. Extended air showers and muon interactions. Phys. Rev. D. 64, 013010 (2001).

    ADS  Google Scholar 

  50. Agostinelli, S. et al. GEANT4 — a simulation toolkit. Nucl. Inst. Methods A 506, 250–303 (2003).

    ADS  Google Scholar 

  51. Niess, V. et al. Backward Monte-Carlo applied to muon transport. Comput. Phys. Comm. 229, 54 (2018).

    ADS  MathSciNet  MATH  Google Scholar 

  52. Baccani, G. et al. The MIMA project. Design, construction and performances of a compact hodoscope for muon radiography applications in the context of archaeology and geophysical prospections. J. Instrum. 13, P11001 (2018).

    Google Scholar 

  53. Lázaro Roche, I. et al. MUon survey tomography based on micromegas detectors for unreachable sites technology (MUST2): overview and outlook. J. Phys. 1498, 012048 (2020).

    Google Scholar 

  54. Chaiwongkhot, K. et al. Development of a portable muography detector for infrastructure degradation investigation. IEEE Trans. Nucl. Sci. 65, 2316 (2018).

    ADS  Google Scholar 

  55. Hamar, G. et al. Underground muography with portable gaseous detectors. J. Phys. 2374, 012186 (2022).

    Google Scholar 

  56. Gamage, R. M. I. D. et al. A portable muon telescope for multidisciplinary applications. J. Instr. 17, C01051 (2022).

    Google Scholar 

  57. Yifan, Z. et al. Discrimination of drugs and explosives in cargo inspections by applying machine learning in muon tomography. High. Power Laser Part. Beams 30, 086002 (2018).

    Google Scholar 

  58. Mahon, D. et al. First-of-a-kind muography for nuclear waste characterization. Philos. Trans. R. Soc. London, Ser. A 377, 2137 20180048 (2019).

    Google Scholar 

  59. Barnes, S. et al. Cosmic-ray tomography for border security. Instruments 7, 13 (2023).

    Google Scholar 

  60. Bikit, I. et al. Novel approach to imaging by cosmic-ray muons. EPL 113, 58001 (2016).

    ADS  Google Scholar 

  61. Tanaka, H. K. M. Muometric positioning system (muPS) utilizing direction vectors of cosmic-ray muons for wireless indoor navigation at a centimeter-level accuracy. Sci. Rep. 13, 15272 (2023).

    ADS  Google Scholar 

  62. Ahlen, S. P. et al. Arrival time distributions of very high energy cosmic ray muons in MACRO. Nucl. Phys. B 370, 432–444 (1992).

    ADS  Google Scholar 

  63. Kim, K. et al. Massively parallel ultrafast random bit generation with a chip-scale laser. Science 371, 948–952 (2021).

    ADS  Google Scholar 

  64. Rivest, R. L. et al. A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM. 21, 120–126 (1978).

    MathSciNet  MATH  Google Scholar 

  65. Gisin, N. et al. Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002).

    ADS  MATH  Google Scholar 

  66. Schouten, D. & Ledru, P. Muon tomography applied to a dense uranium deposit at the McArthur River mine. J. Geophys. Res. Solid. Earth 123, 8637–8652 (2018).

    ADS  Google Scholar 

  67. George, E. P. Cosmic rays measure overburden of tunnel. Commonw. Eng. 1955, 455–457 (1955).

    Google Scholar 

  68. Nishiyama, R. et al. First measurement of ice–bedrock interface of alpine glaciers by cosmic muon radiography. Geophys. Res. Lett. 44, 6244–6251 (2017).

    ADS  Google Scholar 

  69. Nagamine, K. et al. Probing the inner structure of blast furnaces by cosmic-ray muon radiography. Proc. Jpn. Acad. Ser. B 81, 275–260 (2005).

    Google Scholar 

  70. Procureur, S. et al. 3D imaging of a nuclear reactor using muography measurements. Sci. Adv. 9, eabq8431 (2023).

    ADS  Google Scholar 

  71. Morishima, K. Visualization of molten debris of Fukushima Daiichi nuclear power plant by cosmic ray muon radiography. Oyo Butsuri 86, 950–955 (2017).

    Google Scholar 

  72. Thompson, L. F. et al. Muon tomography for railway tunnel imaging. Phys. Rev. Res. 2, 023017 (2020).

    Google Scholar 

  73. Oláh, L. et al. The first prototype of an MWPC-based borehole-detector and its application for muography of an underground pillar. Butsuri-Tansa 71, 161–168 (2018).

    Google Scholar 

  74. Durham, J. M. et al. Tests of cosmic ray radiography for power industry applications. AIP Adv. 5, 067111 (2015).

    ADS  Google Scholar 

  75. Morishima, K. et al. Discovery of a big void in Khufu’s Pyramid by observation of cosmic-ray muons. Nature 552, 386–390 (2017). This work presents the muographic measurement that has led to discovery of a new chamber inside the Cheops Pyramid. To our knowledge, the first discovery in 189 years.

    ADS  Google Scholar 

  76. Procureur, S. et al. Precise characterization of a corridor-shaped structure in Khufu’s Pyramid by observation of cosmic-ray muons. Nat. Commun. 14, 1144 (2023).

    ADS  Google Scholar 

  77. Nagamine, K. et al. Method of probing inner-structure of geophysical substance with the horizontal cosmic-ray muons and possible application to volcanic eruption. Nucl. Instr. Meth. A. 356, 585–595 (1995).

    ADS  Google Scholar 

  78. Caffau, E. et al. Underground cosmic-ray measurement for morphological reconstruction of the “Grotta Gigante” natural cave. Nucl. Instr. Meth. A. 385, 480–488 (1997).

    ADS  Google Scholar 

  79. Tanaka, H. K. M. et al. High resolution imaging in the inhomogeneous crust with cosmic-ray muon radiography: the density structure below the volcanic crater floor of Mt. Asama, Japan. Earth Planet. Sci. Lett. 263, 104–113 (2007). To our knowledge, this work presents the first successful muographic experiments ever to find an unknown structure inside a gigantic object (a volcano).

    ADS  Google Scholar 

  80. Kusagaya, T. & Tanaka, H. K. M. Muographic imaging with a multi-layered telescope and its application to the study of the subsurface structure of a volcano. Proc. Jpn. Acad. Ser. B 91, 501–510 (2015).

    ADS  Google Scholar 

  81. Tanaka, H. K. M., Uchida, T., Tanaka, M., Shinohara, H. & Taira, H. Cosmic-ray muon imaging of magma in conduit: degassing process of Satsuma-Iwojima Volcano, Japan. Geophys. Res. Lett. 36, L01304 (2009).

    ADS  Google Scholar 

  82. Tanaka, H. K. M. et al. Three-dimensional computational axial tomography scan of a volcano with cosmic ray muon radiography. J. Geophys. Res. 115, B12332 (2010).

    ADS  Google Scholar 

  83. Tanaka, H. Muographic mapping of the subsurface density structures in Miura, Boso and Izu peninsulas, Japan. Sci. Rep. 5, 8305 (2015).

    ADS  Google Scholar 

  84. Miyamoto, S. et al. A muographic study of a scoria cone from 11 directions using nuclear emulsion cloud chambers. Geosci. Instrum. Method. Data Syst. 11, 127–147 (2022).

    ADS  Google Scholar 

  85. Tanaka, H. K. M. Instant snapshot of the internal structure of Unzen lava dome, Japan with airborne muography. Sci. Rep. 6, 39741 (2016).

    ADS  Google Scholar 

  86. Kusagaya, T. & Tanaka, H. K. M. Development of the very long-range cosmic-ray muon radiographic imaging technique to explore the internal structure of an erupting volcano, Shinmoe-dake, Japan. Geosci. Instrum. Method. Data Syst. 4, 215–226 (2015).

    ADS  Google Scholar 

  87. Oláh, L. & Tanaka, H. K. M. Machine learning with muographic images as input: an application to volcano eruption forecasting. Geophys. Monogr. 270, 43–54 (2022).

    Google Scholar 

  88. Oláh, L. et al. Muon imaging of volcanic conduit explains link between eruption frequency and ground deformation. Geophys. Res. Lett. 50, e2022GL101170 (2023).

    ADS  Google Scholar 

  89. Tanaka, H. K. M. et al. Cosmic-ray muon imaging of magma in a conduit: degassing process of Satsuma-Iwojima volcano, Japan. Geophys. Res. Lett. 36, L01304 (2009).

    ADS  Google Scholar 

  90. Tanaka, H., Kusagaya, T. & Shinohara, H. Radiographic visualization of magma dynamics in an erupting volcano. Nat. Commun. 5, 3381 (2014). To our knowledge, this work presents the first successful muographic image capturing of ascent and descent of the magma column inside an erupting volcano.

    ADS  Google Scholar 

  91. Lesparre, N. et al. Density muon radiography of La Soufrière of Guadeloupe volcano: comparison with geological, electrical resistivity and gravity data. Geophys. J. Inter. 190, 1008–1019 (2012).

    ADS  Google Scholar 

  92. Ambrosino, F. et al. Joint measurement of the atmospheric muon flux through the Puy de Dôme volcano with plastic scintillators and resistive plate chambers detectors. J. Geophys. Res. 120, 7290–7307 (2015).

    ADS  Google Scholar 

  93. Lo Presti, D. et al. Muographic monitoring of the volcano-tectonic evolution of Mount Etna. Sci. Rep. 10, 11351 (2020).

    Google Scholar 

  94. Tioukov, V. et al. First muography of Stromboli volcano. Sci. Rep. 9, 6695 (2019).

    ADS  Google Scholar 

  95. Jourde, K. et al. Muon dynamic radiography of density changes induced by hydrothermal activity at the La Soufrière of Guadeloupe volcano. Sci. Rep. 6, 33406 (2016).

    ADS  Google Scholar 

  96. Oláh, L., Tanaka, H. K. M. & Hamar, G. Muographic monitoring of hydrogeomorphic changes induced by post-eruptive lahars and erosion of Sakurajima volcano. Sci. Rep. 11, 17729 (2021).

    ADS  Google Scholar 

  97. Okubo, S. & Tanaka, H. K. M. Imaging the density profile of a volcano interior with cosmic-ray muon radiography combined with classical gravimetry. Meas. Sci. Technol. 23, 042001 (2012).

    ADS  Google Scholar 

  98. Nishiyama, R. et al. Integrated processing of muon radiography and gravity anomaly data toward the realization of high-resolution 3-D density structural analysis of volcanoes: case study of Showa-Shinzan lava dome, Usu, Japan. J. Geophys. Res. 119, 699–710 (2014).

    ADS  Google Scholar 

  99. Rosas‐Carbajal, M. et al. Three‐dimensional density structure of La Soufrière de Guadeloupe lava dome from simultaneous muon radiographies and gravity data. Geophys. Res. Lett. 44, 6743–6751 (2017).

    ADS  Google Scholar 

  100. Le Gonidec, Y. et al. Abrupt changes of hydrothermal activity in a lava dome detected by combined seismic and muon monitoring. Sci. Rep. 9, 3079 (2019).

    ADS  Google Scholar 

  101. Leone, G. et al. Muography as a new complementary tool in monitoring volcanic hazard: implications for early warning systems. Proc. R. Soc. A 477, 20210320 (2021).

    ADS  Google Scholar 

  102. Shinohara, H. & Tanaka, H. K. M. Conduit magma convection of a rhyolitic magma: constraints from cosmic-ray muon radiography of Iwodake, Satsuma-Iwojima volcano, Japan. Earth Planet. Sci. Lett. 349–350, 87–97 (2012).

    ADS  Google Scholar 

  103. Alvarez, L. W. et al. Search for hidden chambers in the pyramid. Science 167, 832–739 (1970).

    ADS  Google Scholar 

  104. Tanaka, H. K. M., Sumiya, K. & Oláh, L. Muography as a new tool to study the historic earthquakes recorded in ancient burial mounds. Geosci. Instrum. Method. Data Syst. 9, 357–364 (2020).

    ADS  Google Scholar 

  105. Liu, G. et al. High-precision muography in archaeogeophysics: a case study on Xi’an defensive walls. J. Appl. Phys. 133, 014901 (2023).

    ADS  Google Scholar 

  106. Hanazato, T. et al. Muon radiography monitoring for structural survey of the Prambanan World Heritage Temple. Japan Geoscience Union https://www2.jpgu.org/meeting/2014/session/PDF/U-02/U02-07.pdf (2014).

  107. Saracino, G. et al. Imaging of underground cavities with cosmic-ray muons from observations at Mt. Echia (Naples). Sci. Rep. 7, 1181 (2017).

    ADS  Google Scholar 

  108. Cimmino, L. et al. 3D muography for the search of hidden cavities. Sci. Rep. 9, 2974 (2019).

    ADS  Google Scholar 

  109. Elkarmoty, M. et al. Localization and shape determination of a hidden corridor in the Great Pyramid of giza using non-destructive testing. NDT&E Int. 123, 102809 (2023).

    Google Scholar 

  110. Tanaka, H. K. M. & Ohshiro, M. Muographic data analysis method for medium-sized rock overburden inspections. Geosci. Instrum. Method. Data Syst. 5, 427–435 (2016).

    ADS  Google Scholar 

  111. Klauss, R. Lifting work and building time at the 4th dynasty pyramids. Trabajos de. Egiptol. 12, 85–111 (2021).

    Google Scholar 

  112. Tanaka, H. K. M. et al. Cosmic muon imaging of hidden seismic fault zones: rainwater permeation into the mechanical fractured zones in Itoigawa–Shizuoka Tectonic Line, Japan. Earth Planet. Sci. Lett. 306, 156–162 (2011).

    ADS  Google Scholar 

  113. Lázaro Roche, I. et al. Water resource management: the multi-technique approach of the low background noise underground research laboratory and its muon detection projects. Geophys. Monogr. 270, 137–152 (2022).

    Google Scholar 

  114. Holma, M., Zhang, Z.-X., Kuusiniemi, P., Loo, K. & Enqvist, T. Future prospects of muography for geological research and geotechnical and mining engineering. Geophys. Monogr. 270, 199–219 (2022).

    Google Scholar 

  115. Zhang, Z.-X., Enqvist, T., Holma, M. & Kuusiniemi, P. Muography and its potential applications to mining and rock engineering. Rock. Mech. Rock Eng. 53, 4893–4907 (2022).

    Google Scholar 

  116. Marteau, J. et al. Development of scintillator-based muon detectors for muography. Geophys. Monogr. 270, 237–252 (2022).

    Google Scholar 

  117. Tanaka, H. K. M. et al. Atmospheric muography for imaging and monitoring tropic cyclones. Sci. Rep. 12, 16710 (2022). To our knowledge, this work presents the first successful muographic experiments to image the atmosphere (a cyclone).

    ADS  Google Scholar 

  118. Tanaka, H. K. M. et al. Periodic sea-level oscillation in Tokyo Bay detected with the Tokyo-Bay seafloor hyper-kilometric submarine deep detector (TS-HKMSDD). Sci. Rep. 12, 6097 (2022). To our knowledge, this work presents the first successful muographic application to the sea and the first detection of tsunami with muography.

    ADS  Google Scholar 

  119. Tanaka, H. K. et al. First results of undersea muography with the Tokyo-Bay seafloor hyper-kilometric submarine deep detector. Sci. Rep. 11, 19485 (2021).

    ADS  Google Scholar 

  120. Tanaka, H. K. M. Muography for a dense tide monitoring network. Sci. Rep. 12, 6725 (2022).

    ADS  Google Scholar 

  121. Verlaan, M. et al. Operational storm surge forecasting in the Netherlands: developments in the last decade. Philos. Trans. R. Soc. A 363, 1441–1453 (2005).

    ADS  Google Scholar 

  122. Tomassini, L. The interaction between moist convection and the atmospheric circulation in the tropics. Bull. Am. Meteorol. Soc. 101, E1378–E1396 (2022).

    Google Scholar 

  123. Leone, G., Ahrens, C., Calabrese, G., Tanaka, H. K. M. & D’Incecco, P. in Mars: A Volcanic World (ed. Leone, G.) 309–323 (Springer International, 2021).

  124. Holma, M., Joutsenvaara, J. & Kuusiniemi, P. Astroparticle physics obtaining more attention from a new type of audience. J. Phys. Conf. Ser. 2156, 12178 (2021).

    Google Scholar 

  125. Tanaka, H. K. M. Monte-Carlo simulations of atmospheric muon production: implication of the past martian environment. Icarus 191, 603–615 (2007).

    ADS  Google Scholar 

  126. Kedar, S. et al. Muon radiography for exploration of Mars geology. Geosci. Instr. Methods Data Syst. 2, 157–164 (2013).

    ADS  Google Scholar 

  127. Azua-Bustos, A., González-Silva, C. & Fairén, A. G. The atacama desert in northern Chile as an analog model of Mars. Front. Astron. Sp. Sci. 8, 242 (2022).

    ADS  Google Scholar 

  128. Chierici, F. et al. A new method to assess long-term sea-bottom vertical displacement in shallow water using a bottom pressuresensor: application to Campi Flegrei, southern Italy. J. Geophys. Res. 121, 7775–7789 (2016).

    ADS  Google Scholar 

  129. Chadwick, W. W., Nooner, S. L., Butterfield, D. A. & Lilley, M. D. Seafloor deformation and forecasts of the April 2011 eruption at Axial Seamount. Nat. Geosc. 5, 474–477 (2012).

    ADS  Google Scholar 

  130. Gagnon, K., Chadwell, C. D. & Norabuena, E. Measuring the onset of locking in the Peru–Chile trench with GPS and acoustic measurements. Nature 434, 205–208 (2005).

    ADS  Google Scholar 

  131. Kosaka, A. & Kak, A. C. Fast vision-guided mobile robot navigation using model-based reasoning and prediction of uncertainties. Comput. Vis. Image. Underst. 56, 271–329 (1992).

    MATH  Google Scholar 

  132. Lu, F. & Milios, E. Robot pose estimation in unknown environments by matching 2D range scans. J. Intell. Robot. Syst. 18, 249–275 (1997).

    Google Scholar 

  133. Motomura, A. et al. Real-time self-localization method by using measurements of directions of two landmarks and dead reckoning. J. Robot. Soc. Jpn. 23, 39–48 (2005).

    Google Scholar 

  134. El-hakim, S. et al. A mobile system for indoors 3-D mapping and positioning. in Optical 3-D Measurement Techniques https://www.academia.edu/20708330/A_mobile_system_for_indoors_3_D_mapping_and_positioning (1997).

  135. Sertatil, C. et al. A novel acoustic indoor localization system employing CDMA. Digit. Sig. Process. 22, 506–517 (2012).

    Google Scholar 

  136. Hahnel, D. et al. Learning compact 3D models of indoor and outdoor environments with a mobile robot. Rob. Auton. Syst. 44, 15–27 (2003).

    Google Scholar 

  137. Kelly, A. in Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180) https://ieeexplore.ieee.org/document/976357 (IEEE, 2001).

  138. Crowley, J. L. in Proceedings, 1989 International Conference on Robotics and Automation https://ieeexplore.ieee.org/document/100156 (IEEE, 1989).

  139. Kataria, S. et al. Survey paper on wireless underground positioning system. Int. J. Comp. Appl. 130, 1–4 (2015).

    Google Scholar 

  140. Chow, J. F. et al. Toward underground localization: lidar inertial odometry enabled aerial robot navigation. arXiv 1910, 13085v1 (2019).

    Google Scholar 

  141. Varga, D. & Tanaka, H. K. M. Developments of a centimeter-level precise muometric wireless navigation system (MuWNS-V) and its first demonstration using directional information from tracking detectors. arXiv 2308, 10108 (2023).

    ADS  Google Scholar 

  142. Seguel, F. et al. Underground mine positioning: a review. IEEE Sens. J. 22, 4755–4771 (2022).

    ADS  Google Scholar 

  143. Panfilo, G. & Arias, F. The coordinated universal time. Metrologia 56, 042001 (2019).

    ADS  Google Scholar 

  144. Cerretto, G. et al. Extensive cosmic showers detection: the importance of timing and the role of GPS in the EEE experiment. GPS Solut. 25, 125 (2021).

    Google Scholar 

  145. Directive 2014/65/EU of the European Parliament and of the Council of 15 May 2014 on markets in financial instruments and amending Directive 2002/92/EC and Directive 2011/61/EU (recast) Text with EEA relevance. EUR-Lex https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A32014L0065 (2014).

  146. Smotlacha, V. et al. On calibration of network time services. Metrologia 45, S51 (2008).

    Google Scholar 

  147. Mkacher F. & Duda A. in 2019 IEEE International Symposium on Precision Clock Synchronization for Measurement, Control, and Communication (ISPCS) https://ieeexplore.ieee.org/document/888664 (IEEE, 2019).

  148. Petit, G. & Jiang, Z. GPS all in view time transfer for TAI computation. Metrologia 45, 35 (2008).

    ADS  Google Scholar 

  149. Jiang, Z. & Petit, G. Combination of TWSTFT and GNSS for accurate UTC time transfer. Metrologia 46, 305 (2009).

    ADS  Google Scholar 

  150. Merrill, W. et al. Autonomous position location in distributed, embedded, wireless systems. Sensoria https://web.archive.org/web/20200709212914/https://descanso.jpl.nasa.gov/symposia/ieee_cas2002/full/merrill.pdf (2002).

  151. Cerpa, A. et al. Habitat monitoring: application driver for wireless communications technology. in Proc. SIGCOMM LA '01: Workshop on Data communication in Latin America and the Caribbean https://doi.org/10.1145/371626.371720 (2001).

  152. Sazonov, E. et al. Wireless intelligent sensor and actuator network — a scalable platform for time synchronous applications of structural health monitoring. Struct. Health Monitor. 9, 465–476 (2010).

    Google Scholar 

  153. Padgette, J. & Scarfone, K. NIST special publication 800-121 revision 1, guide to Bluetooth security (National Institute of Standards and Technology, 2012).

  154. Zhang, Z. et al. Improvement of electromagnetic compatibility of motor drives using hybrid chaotic pulse width modulation. IEEE Trans. Magn. 47, 4018–4021 (2011).

    ADS  Google Scholar 

  155. Ye, S. & Chau, K. T. Chaoization of DC motors for industrial mixing. IEEE Trans. Ind. Electron. 54, 2024–2032 (2007).

    Google Scholar 

  156. Prajapati, P. & Shah, P. A review on secure data deduplication: cloud storage security issue. J. King Saud. Univ. Comput. Inf. Sci. 34, 3996–4007 (2022).

    Google Scholar 

  157. National Institute of Standards and Technology. Cryptographic key management issues & challenges in cloud services. NIST Technical Series Publications https://nvlpubs.nist.gov/nistpubs/ir/2013/nist.ir.7956.pdf (2013).

  158. Lin, H.-Y. & Tzeng, W.-G. A secure erasure code-based cloud storage system with secure data forwarding. IEEE Trans. Parallel Distrib. Syst. 23, 995–1003 (2012).

    Google Scholar 

  159. National Cyber Security Centre. Quantum security technologies. National Cyber Security Centre https://www.ncsc.gov.uk/whitepaper/quantum-security-technologies (2016).

  160. Battistoni, G. et al. Overview of the FLUKA code. Ann. Nucl. Energy 82, 10–18 (2015).

    Google Scholar 

  161. Kudryavtsev, V. A. Muon simulation codes MUSIC and MUSUN for underground physics. Comput. Phys. Commun. 180, 339–346 (2009).

    ADS  MATH  Google Scholar 

  162. Cockett, R. et al. SimPEG: an open source framework for simulation and gradient based parameter estimation in geophysical applications. Comput. Geosci. 85, 142–154 (2015).

    ADS  Google Scholar 

  163. Rücker, C. et al. An open-source library for modelling and inversion in geophysics. Comput. Geosci. 109, 106–123 (2017).

    ADS  Google Scholar 

  164. Pla-Dalmau, A. et al. Low-cost extruded plastic scintillator. Nucl. Instr. Meth. Phys. Res. A 466, 482–491 (2001).

    ADS  Google Scholar 

  165. Isozumi, Y. et al. High‐temperature proportional counter and its application to resonance–electron Mössbauer spectroscopy. Sci. Instrum. 52, 413 (1981).

    ADS  Google Scholar 

  166. Oláh, L. et al. Development of machine learning-assisted spectra analyzer for the newcut muon spectrometer. J. Adv. Instrum. Sci. 2022, JAIS–264 (2022).

    Google Scholar 

  167. Insero, G. et al. Measuring molecular frequencies in the 1–10 μm range at 11-digits accuracy. Sci. Rep. 7, 12780 (2017).

    ADS  Google Scholar 

  168. Tominaga, T. & Kubo, N. Adaptive estimation of measurement noise to improve the performance of GNSS single point positioning in dense urban environment. J. IPNT 8, 1–8 (2017).

    ADS  Google Scholar 

  169. Angrisano, A. et al. Adaptive estimation of measurement noise to improve the performance of GNSS single point positioning in dense urban environment. Acta. Geod. Geophys. 48, 149–161 (2013).

    Google Scholar 

  170. Liddell, H. G. et al. A Greek–English Lexicon (Clarendon, 1996).

Download references

Author information

Authors and Affiliations

Authors

Contributions

H.K.M.T., C.B., A.B., O.C., G.C., A.G., M.H., I.L.R., G.L., Z.L. D.L.P., J. Marteau, L.O., S.S.V.S.R., S.S. and D.V. wrote the text. H.K.M.T., C.B., A.B., O.C., Z.L., J. Marteau, L.O. and K.S. prepared the figures. All authors reviewed the manuscript.

Corresponding author

Correspondence to Hiroyuki K. M. Tanaka.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Methods Primers thanks Stylianos Chatzidakis, Luigi Cimmino and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

AquaMuography Research Facility: https://aqualine.muographers.org

Definition of radiography: https://dictionary.cambridge.org/dictionary/english/radiography

Facility for High Timing Accuracy for Fundamental Physics Experiments of the Italian National Metrological Institute: https://fraternise.inrim.it/fraternise-english

Introductory videos: https://www.youtube.com/@MUOGRAPHIX/videos

MUODIM: https://muodim.com/

MUOGRAPHIX: https://news.muographix.u-tokyo.ac.jp/

News article about the hidden corridor: https://www.bbc.co.uk/news/world-middle-east-64825526

Oven-controlled crystal oscillators: https://www.microtron.be/media/c78fa7db61fd72aec4c52d1a2ae40826/thunderbolt-ptp-grandmaster-clock-ptp-gm200.pdf

Rubidium CSAC (SPARKX SPX 14830): https://www.sparkfun.com/products/14830

US Department of Homeland Security PNT Program: https://www.dhs.gov/science-and-technology/pnt-program

UTokyo–Wigner Joint Laboratory: https://muography-tkp.wigner.hu/newcut/

White Rabbit: https://white-rabbit.web.cern.ch/

Glossary

Cosmic time calibration

(CTC). A decametric-scale wireless clock network resynchronization scheme with approximately nanosecond precision. Cosmic-ray muons are used instead of radiofrequency signals.

Cosmic time synchronization

(CTS). A hectometric to kilometric-scale wireless clock network resynchronization scheme with precision of 10–100 ns. Extended air shower (EAS) particles are used instead of radiofrequency signals.

Secondary particles

Secondary cosmic rays generated by interaction between primary cosmic rays and atmospheric nuclei, including various kinds of particles such as mesons, muons and neutrinos.

True random numbers

(TRNs). Random numbers that are not affected by external factors, intentions, signs or biases. It is impossible to predict what number will come next, even if the generation mechanism is known.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanaka, H.K.M., Bozza, C., Bross, A. et al. Muography. Nat Rev Methods Primers 3, 88 (2023). https://doi.org/10.1038/s43586-023-00270-7

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s43586-023-00270-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing