Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Materials under extreme conditions using large X-ray facilities

Abstract

Active research is ongoing that investigates the properties of matter under extreme pressure. Such condensed matter is found inside planets at millions of atmospheres and thousands of degrees kelvin. Extreme pressures coupled with high temperatures can also be used to synthesize new materials with advanced properties. This Primer outlines how a new generation of X-ray user facilities are essential to measure the microscopic properties of matter under such conditions, with scattering and absorption methods being the most used. This article explains how extreme thermodynamic states can be achieved, either by dynamic laser shock or static diamond anvil cell compression, and how the high-brilliance X-ray beams produced at synchrotrons and hard X-ray free electron lasers can be utilized to investigate very dense matter with a high level of detail and accuracy at the microscopic level. Cross-fertilization between the static and dynamic communities has led to new approaches, bridging timescales and opening new perspectives to understanding dynamic processes at high pressure. To illustrate this, two examples are highlighted: iron and carbon. Reproducibility issues and some limitations are discussed, ending with an evaluation of future opportunities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Graph of the radius versus the mass of planets.
Fig. 2: Diamond anvil cell layout and principles.
Fig. 3: Representation of laser-driven dynamic compression principles.
Fig. 4: Synchrotron and X-ray free-electron laser sources.
Fig. 5: X-ray diffraction, X-ray absorption spectroscopy and X-ray emission spectroscopy.
Fig. 6: Pressure–temperature phase diagrams of iron and carbon.
Fig. 7: High-pressure X-ray diffraction comparison of graphite and diamond samples.

Similar content being viewed by others

References

  1. Eremets, M. I., Gavriliuk, A. G., Trojan, I. A., Dzivenko, D. A. & Boehler, R. Single-bonded cubic form of nitrogen. Nat. Mater. 3, 558–563 (2004).

    Article  ADS  Google Scholar 

  2. Laniel, D., Weck, G., Gaiffe, G., Garbarino, G. & Loubeyre, P. High-pressure synthesized lithium pentazolate compound metastable under ambient conditions. J. Phys. Chem. Lett. 9, 1600–1604 (2018).

    Article  Google Scholar 

  3. Wang, Y. et al. Stabilization of hexazine rings in potassium polynitride at high pressure. Nat. Chem. 14, 794–800 (2022).

    Article  Google Scholar 

  4. Pépin, C., Geneste, G., Dewaele, A., Mezouar, M. & Loubeyre, P. Synthesis of FeH5: a layered structure with atomic hydrogen slabs. Science 357, 382–385 (2017).

    Article  ADS  Google Scholar 

  5. Duan, D. et al. Structure and superconductivity of hydrides at high pressures. Natl Sci. Rev. 4, 121–135 (2017).

    Article  Google Scholar 

  6. Drozdov, A. P. et al. Superconductivity at 250 K in lanthanum hydride under high pressures. Nature 569, 528–531 (2019).

    Article  ADS  Google Scholar 

  7. Somayazulu, M. et al. Evidence for superconductivity above 260 K in lanthanum superhydride at megabar pressures. Phys. Rev. Lett. 122, 027001 (2019).

    Article  ADS  Google Scholar 

  8. Caussé, M., Geneste, G. & Loubeyre, P. Superionicity of Hδ− in LaH10 superhydride. Phys. Rev. B 107, L060301 (2023).

    Article  ADS  Google Scholar 

  9. Benedetti, L. et al. Dissociation of CH4 at high pressures and temperatures: diamond formation in giant planet interiors? Science 286, 100–102 (1999).

    Article  ADS  Google Scholar 

  10. Kraus, D. et al. Formation of diamonds in laser-compressed hydrocarbons at planetary interior conditions. Nat. Astron. 1, 606–611 (2017).

    Article  ADS  Google Scholar 

  11. Miao, M. S. & Hoffmann, R. High pressure electrides: a predictive chemical and physical theory. Acc. Chem. Res. 47, 1311–1317 (2014).

    Article  Google Scholar 

  12. Polsin, D. N. et al. Structural complexity in ramp-compressed sodium to 480 GPa. Nat. Commun. 13, 2534 (2022).

    Article  ADS  Google Scholar 

  13. Gorman, M. G. et al. Experimental observation of open structures in elemental magnesium at terapascal pressures. Nat. Phys. 18, 1307–1311 (2022).

    Article  Google Scholar 

  14. Boehler, R. Temperatures in the Earth’s core from melting-point measurements of iron at high static pressures. Nature 363, 534–536 (1993).

    Article  ADS  Google Scholar 

  15. Anzellini, S., Dewaele, A., Mezouar, M., Loubeyre, P. & Morard, G. Melting of iron at Earth’s inner core boundary based on fast x-ray diffraction. Science 340, 464–466 (2013). Accurate measurements of the melting curve of Fe using time-resolved synchrotron XRD for a microscopic signature of bulk melting.

    Article  ADS  Google Scholar 

  16. Singh, S. et al. A structural study of hcp and liquid iron under shock compression up to 275 GPa. Preprint at https://doi.org/10.48550/arXiv.2304.07933 (2023).

  17. Murakami, M., Hirose, K., Kawamura, K., Sata, N. & Ohishi, Y. Post-perovskite phase transition in MgSiO3. Science 304, 855–858 (2004).

    Article  ADS  Google Scholar 

  18. Oganov, A. R. & Ono, S. Theoretical and experimental evidence for a post-perovskite phase of MgSiO3 in Earth’s D″ layer. Nature 430, 445–448 (2004).

    Article  ADS  Google Scholar 

  19. Brygoo, S. et al. Evidence of hydrogen−helium immiscibility at Jupiter-interior conditions. Nature 593, 517–521 (2021).

    Article  ADS  Google Scholar 

  20. Chau, R., Hamel, S. & Nellis, W. J. Chemical processes in the deep interior of Uranus. Nat. Commun. 2, 203 (2011).

    Article  ADS  Google Scholar 

  21. Millot, M. et al. Nanosecond X-ray diffraction of shock-compressed superionic water ice. Nature 569, 251–255 (2019).

    Article  ADS  Google Scholar 

  22. Weck, G. et al. Evidence and stability field of fcc superionic water ice using static compression. Phys. Rev. Lett. 128, 165701 (2022).

    Article  ADS  Google Scholar 

  23. Mao, H. K., Chen, X. J., Ding, Y., Li, B. & Wang, L. Solids, liquids, and gases under high pressure. Rev. Mod. Phys. 90, 015007 (2018).

    Article  ADS  Google Scholar 

  24. Smith, R. F. et al. Ramp compression of diamond to five terapascals. Nature 511, 330–333 (2014). The highest pressure generated on a solid. It opened the multi-TPa domain through laser ramp compression.

    Article  ADS  Google Scholar 

  25. Sévelin-Radiguet, N. et al. Towards a dynamic compression facility at the ESRF. J. Synchrotron Radiat. 29, 167–179 (2022).

    Article  Google Scholar 

  26. Broege, D. et al. The dynamic compression sector laser: a 100-J UV laser for dynamic compression research. Rev. Sci. Instrum. 90, 053001 (2019).

    Article  ADS  Google Scholar 

  27. Brennan Brown, S. et al. Shock drive capabilities of a 30-Joule laser at the matter in extreme conditions hutch of the Linac Coherent Light Source. Rev. Sci. Instrum. 88, 105113 (2017).

    Article  ADS  Google Scholar 

  28. Zastrau, U. et al. The high energy density scientific instrument at the European XFEL. J. Synchrotron Radiat. 28, 1393–1416 (2021).

    Article  Google Scholar 

  29. Eremets, M. I. High Pressure Experimental Methods (Oxford Univ. Press, 1996).

  30. Nellis, W. J. Ultracondensed Matter by Dynamic Compression (Cambridge Univ. Press, 2017).

  31. Weir, C. E., Lippincott, E. R., Van Valkenburg, A. & Bunting, E. N. Infrared studies in the 1- to -15-micron region to 30,000 atmospheres. J. Res. Natl Bur. Stand. A Phys. Chem. 63A, 55–62 (1959).

    Article  Google Scholar 

  32. Jamieson, J. C., Lawson, A. W. & Nachtrieb, N. D. New device for obtaining x-ray diffraction patterns from substances exposed to high pressure. Rev. Sci. Instrum. 30, 1016–1019 (1959).

    Article  ADS  Google Scholar 

  33. Bassett, W. A. Diamond anvil cell, 50th birthday. High Press. Res. 29, 163–186 (2009).

    Article  ADS  Google Scholar 

  34. LeToullec, R., Pinceaux, J. P. & Loubeyre, P. The membrane diamond anvil cell: a new device for generating continuous pressure and temperature variations. High Press. Res. 1, 77–90 (1988).

    Article  ADS  Google Scholar 

  35. Sinogeikin, S. V. et al. Online remote control systems for static and dynamic compression and decompression using diamond anvil cell. Rev. Sci. Instrum. 86, 072209 (2015).

    Article  ADS  Google Scholar 

  36. Evans, W. J. et al. Dynamic diamond anvil cell (dDAC): a novel device for studying the dynamic-pressure properties of materials. Rev. Sci. Instrum. 78, 073904 (2007). Introducing the concept of piezo-dynamical DAC. It offered the possibility of modulating the compression timescale from 0.1 ms to s. It bridges the gap between static and shock compression.

    Article  ADS  Google Scholar 

  37. Jenei, Z. et al. New dynamic diamond anvil cells for tera-pascal per second fast compression x-ray diffraction experiments. Rev. Sci. Instrum. 90, 065114 (2019).

    Article  ADS  Google Scholar 

  38. O’Bannon, E. F. III, Jenei, Z., Cynn, H., Lipp, M. J. & Jeffries, J. R. Contributed Review: culet diameter and the achievable pressure of a diamond anvil cell: implications for the upper pressure limit of a diamond anvil cell. Rev. Sci. Instrum. 89, 111501 (2018).

    Article  ADS  Google Scholar 

  39. Li, B. et al. Diamond anvil cell behavior up to 4 Mbar. Proc. Natl Acad. Sci. USA 115, 1713–1717 (2018).

    Article  ADS  Google Scholar 

  40. Dubrovinskaia, N. et al. Terapascal static pressure generation with ultrahigh yield strength nanodiamond. Sci. Adv. 2, e1600341 (2016). The concept of double-stage DAC. It shows that the TPa range is accessible to static compression.

    Article  ADS  Google Scholar 

  41. Dewaele, A., Loubeyre, P., Occelli, F., Marie, O. & Mezouar, M. Toroidal diamond anvil cell for detailed measurements under extreme static pressures. Nat. Commun. 9, 2913 (2018). A novel design of the diamond tip enabling to go over the 400 GPa limit in the standard DAC. It opens access to the TPa range, while keeping all the possibilities of the standard DAC for a detailed characterization.

    Article  ADS  Google Scholar 

  42. Jenei, Z. et al. Single crystal toroidal diamond anvils for high pressure experiments beyond 5 megabar. Nat. Commun. 9, 3563 (2018).

    Article  ADS  Google Scholar 

  43. Dubrovinsky, L. et al. Materials synthesis at terapascal static pressures. Nature 605, 274–278 (2022).

    Article  ADS  Google Scholar 

  44. Boehler, R. & De Hantsetters, K. New anvil designs in diamond-cells. High Press. Res. 24, 391–396 (2004).

    Article  ADS  Google Scholar 

  45. Angel, R. J., Bujak, M., Zhao, J., Diego Gatta, G. D. & Jacobsen, S. D. Effective hydrostatic limits of pressure media for high-pressure crystallographic studies. J. Appl. Crystallogr. 40, 26–32 (2007).

    Article  Google Scholar 

  46. Klotz, S., Chervin, J.-C., Munsch, P. & Le Marchand, G. Hydrostatic limits of 11 pressure transmitting media. J. Phys. D Appl. Phys. 42, 075413 (2009).

    Article  ADS  Google Scholar 

  47. Dewaele, A. & Loubeyre, P. Pressurizing conditions in helium-pressure-transmitting medium. High Press. Res. 27, 419–429 (2007).

    Article  ADS  Google Scholar 

  48. Merkel, S. & Yagi, T. X-ray transparent gasket for diamond anvil cell high pressure experiments. Rev. Sci. Instrum. 76, 046109 (2005).

    Article  ADS  Google Scholar 

  49. Dong, W. et al. Fe0.79Si0.07B0.14 metallic glass gaskets for high-pressure research beyond 1 Mbar. J. Synchrotron Radiat. 29, 1167–1179 (2022).

    Article  Google Scholar 

  50. Méndez, A. S. J. et al. A resistively-heated dynamic diamond anvil cell (RHdDAC) for fast compression x-ray diffraction experiments at high temperatures. Rev. Sci. Instrum. 91, 073906 (2020).

    Article  ADS  Google Scholar 

  51. Weck, G. et al. Determination of the melting curve of gold up to 110 GPa. Phys. Rev. B 101, 014106 (2020). A complex sample assembly with focused ion beam-machined absorbers allows to perform well-controlled accurate measurements at high pressure and temperature, here with the determination of the melting curve of gold using XRD.

    Article  ADS  Google Scholar 

  52. Liermann, H. P. in X-Ray Diffraction: Modern Experimental Techniques (eds Murphy, B. & Seeck, O. H.) (Pan Stanford Publishing, 2014).

  53. Liermann, H. P. et al. Novel experimental setup for megahertz X-ray diffraction in a diamond anvil cell at the High Energy Density (HED) instrument of the European X-ray Free-Electron Laser (EuXFEL). J. Synchrotron Radiat. 28, 688–706 (2021).

    Article  Google Scholar 

  54. Prakapenka, V. B. et al. Advanced flat top laser heating system for high pressure research at GSECARS: application to the melting behavior of germanium. High Press. Res. 28, 225–235 (2008).

    Article  ADS  Google Scholar 

  55. Mezouar, M. et al. Methodology for in situ synchrotron X-ray studies in the laser-heated diamond anvil cell. High Press. Res. 37, 170–180 (2017).

    Article  ADS  Google Scholar 

  56. Anzellini, S. & Boccato, S. A practical review of the laser-heated diamond anvil cell for university laboratories and synchrotron applications. Crystals 10, 459 (2020).

    Article  Google Scholar 

  57. Goncharov, A. F. et al. X-ray diffraction in the pulsed laser heated diamond anvil cell. Rev. Sci. Instrum. 81, 113902 (2010).

    Article  ADS  Google Scholar 

  58. Aprilis, G. et al. Comparative study of the influence of pulsed and continuous wave laser heating on the mobilization of carbon and its chemical reaction with iron in a diamond anvil cell. J. Appl. Phys. 125, 095901 (2019).

    Article  ADS  Google Scholar 

  59. Bykova, E. et al. Single-crystal diffractometer coupled with double-sided laser heating system at the Extreme Conditions Beamline P02.2 at PETRAIII. Rev. Sci. Instrum. 90, 073907 (2019).

    Article  ADS  Google Scholar 

  60. Endo, S. & Mitsui, T. High-pressure x-ray-diffraction at liquid-helium temperature. Rev. Sci. Instrum. 47, 1275–1278 (1976).

    Article  ADS  Google Scholar 

  61. Benedetti, L. R. & Loubeyre, P. Temperature gradients, wavelength dependent emissivity and accuracy of high and very-high temperatures measured in the laser-heated diamond cell. High. Press. Res. 24, 423–445 (2004).

    Article  ADS  Google Scholar 

  62. Datchi, F., LeToullec, R. & Loubeyre, P. Improved calibration of the SrB4O7:Sm2+ optical pressure gauge: advantages at very high pressures and high temperatures. J. Appl. Phys. 81, 3333–3339 (1997).

    Article  ADS  Google Scholar 

  63. Syassen, K. Ruby under pressure. High Press. Res. 28, 75–126 (2008).

    Article  ADS  Google Scholar 

  64. Shen, G. et al. Toward an international practical pressure scale: a proposal for an IPPS ruby gauge. High Press. Res. 40, 299–314 (2020). The construction of the pressure scale through high-pressure static and dynamic community efforts.

    Article  ADS  Google Scholar 

  65. Akahama, Y. & Kawamura, H. Pressure calibration of diamond anvil Raman gauge to 310 GPa. J. Appl. Phys. 100, 043516 (2006).

    Article  ADS  Google Scholar 

  66. Eremets, M. I. et al. Universal diamond edge Raman scale to 0.5 terapascal and implications for the metallization of hydrogen. Nat. Commun. 14, 907 (2023).

    Article  ADS  Google Scholar 

  67. Pépin, C. et al. Kinetics and structural changes in dynamically compressed bismuth. Phys. Rev. B 100, 060101 (2019).

    Article  ADS  Google Scholar 

  68. Loubeyre, P. et al. Coupling static and dynamic compressions: first measurements in dense hydrogen. High Press. Res. 24, 25–31 (2004).

    Article  ADS  Google Scholar 

  69. Jeanloz, R. et al. Achieving high density states through shock-wave loading of pre-compressed samples. Proc. Natl Acad. Sci. USA 104, 9172–9177 (2007).

    Article  ADS  Google Scholar 

  70. Zel’dovich, Y. B. & Raizer, Y. P. Physics of Shock Waves and High-temperature Hydrodynamic Phenomena (Courier Corp., 2002).

  71. Duffy, T. S. & Smith, R. F. Ultra-high pressure dynamic compression of geological materials. Front. Earth Sci. 7, 23 (2019).

    Article  ADS  Google Scholar 

  72. Smith, R. F. et al. Time-dependence of the alpha to epsilon phase transformation in iron. J. Appl. Phys. 114, 223507 (2013).

    Article  ADS  Google Scholar 

  73. Gorman, M. G. et al. Measurement of shock roughness due to phase plate speckle imprinting relevant for x-ray diffraction experiments on 3rd and 4th generation light sources. J. Appl. Phys. 132, 175902 (2022).

    Article  ADS  Google Scholar 

  74. Swift, D. C. et al. Shock formation and the ideal shape of ramp compression waves. Phys. Rev. E 78, 066115 (2008).

    Article  ADS  Google Scholar 

  75. Celliers, P. M. et al. Line-imaging velocimeter for shock diagnostics at the OMEGA laser facility. Rev. Sci. Instrum. 75, 4916–4929 (2004).

    Article  ADS  Google Scholar 

  76. Kerley, G.I. Calculation of release adiabats and shock impedance matching. Preprint at https://doi.org/10.48550/arXiv.1306.6913 (2013).

  77. Celliers, P. M., Collins, G. W., Hicks, D. G. & Eggert, J. H. Systematic uncertainties in shock-wave impedance-match analysis and the high-pressure equation of state of Al. J. Appl. Phys. 98, 113529 (2005).

    Article  ADS  Google Scholar 

  78. Fratanduono, D. E. Establishing gold and platinum standards to 1 terapascal using shockless compression. Science 372, 1063–1068 (2021). Use of shockless compression to measure accurate EOS of pressure standards up to the TPa range.

    Article  ADS  Google Scholar 

  79. Rastogi, V. et al. Femtosecond diffraction studies of the sodium chloride phase diagram under laser shock compression. J. Appl. Phys. 132, 085901 (2022).

    Article  ADS  Google Scholar 

  80. Coppari, F. et al. X-ray diffraction measurements and pressure determination in nanosecond compression of solids up to 600 GPa. Phys. Rev. B 106, 134105 (2022).

    Article  ADS  Google Scholar 

  81. Larsen, J. T. & Lane, S. M. HYADES — A plasma hydrodynamics code for dense plasma studies. J. Quant. Spectrosc. Radiat. Transf. 51, 179–186 (1994).

    Article  ADS  Google Scholar 

  82. Colombier, J. P., Combis, P., Bonneau, F., LeHarzic, R. & Audouard, E. Hydrodynamic simulations of metal ablation by femtosecond laser irradiation. Phys. Rev. B 71, 165406 (2005).

    Article  ADS  Google Scholar 

  83. Gregor, M. C. et al. Absolute calibration of the OMEGA streaked optical pyrometer for temperature measurements of compressed materials. Rev. Sci. Instrum. 87, 114903 (2016).

    Article  ADS  Google Scholar 

  84. Descamps, A. et al. An approach for the measurement of the bulk temperature of single crystal diamond using an X-ray free electron laser. Sci. Rep. 10, 14564 (2020).

    Article  ADS  Google Scholar 

  85. Ping, Y. et al. Solid iron compressed up to 560 GPa. Phys. Rev. Lett. 111, 065501 (2013).

    Article  ADS  Google Scholar 

  86. Murphy, W. J., Higginbotham, A., Wark, J. S. & Park, N. Molecular dynamics simulations of the Debye-Waller effect in shocked copper. Phys. Rev. B 78, 014109 (2008).

    Article  ADS  Google Scholar 

  87. Meza-Galvez, J. et al. Thermomechanical response of thickly tamped targets and diamond anvil cells under pulsed hard x-ray irradiation. J. Appl. Phys. 127, 195902 (2020).

    Article  ADS  Google Scholar 

  88. Pace, E. J. et al. Intense reactivity in sulfur-hydrogen mixtures at high pressure under x-ray irradiation. J. Phys. Chem. Lett. 11, 1828–1834 (2020).

    Article  Google Scholar 

  89. Hwang, H. et al. X-ray free electron laser-induced synthesis of ε-iron nitride at high pressures. J. Phys. Chem. Lett. 12, 3246–3252 (2021).

    Article  Google Scholar 

  90. Kirkpatrick, P. & Baez, A. V. Formation of optical images by X-rays. J. Opt. Soc. Am. 38, 766–774 (1948).

    Article  ADS  Google Scholar 

  91. Snigirev, A., Kohn, V., Snigireva, I., Souvorov, A. & Lengeler, B. Focusing high-energy x rays by compound refractive lenses. Appl. Opt. 37, 653–662 (1998).

    Article  ADS  Google Scholar 

  92. Seiboth, F. et al. Perfect X-ray focusing via fitting corrective glasses to aberrated optics. Nat. Commun. 8, 14623 (2017).

    Article  ADS  Google Scholar 

  93. Bergamaschi, A., Mozzanica, A. & Schmitt, B. XFEL detectors. Nat. Rev. Phys. 2, 335–336 (2020).

    Article  Google Scholar 

  94. Dewaele, A. et al. The α-ω phase transformation in zirconium followed with ms-scale-time-resolved X-ray absorption spectroscopy. High Press. Res. 36, 237–249 (2016).

    Article  ADS  Google Scholar 

  95. Olbinado, M. P. et al. Ultra high-speed x-ray imaging of laser-driven shock compression using synchrotron light. J. Phys. D Appl. Phys. 51, 055601 (2018).

    Article  ADS  Google Scholar 

  96. Tateno, S., Hirose, K., Ohishi, Y. & Tatsumi, Y. The structure of iron in Earth’s inner core. Science 330, 359–361 (2010).

    Article  ADS  Google Scholar 

  97. Gleason, A. E. et al. Ultrafast visualization of crystallization and grain growth in shock-compressed SiO2. Nat. Commun. 6, 8191 (2015).

    Article  ADS  Google Scholar 

  98. Briggs, R. et al. Measurement of body-centered cubic gold and melting under shock compression. Phys. Rev. Lett. 123, 045701 (2019).

    Article  ADS  Google Scholar 

  99. Coleman, A. L. et al. Identification of phase transitions and metastability in dynamically compressed antimony using ultrafast X-ray diffraction. Phys. Rev. Lett. 122, 255704 (2019).

    Article  ADS  Google Scholar 

  100. McBride, E. E. et al. Phase transition lowering in dynamically compressed silicon. Nat. Phys. 15, 89–94 (2019).

    Article  Google Scholar 

  101. Albertazzi, B. et al. Dynamic fracture of tantalum under extreme tensile stress. Sci. Adv. 3, e1602705 (2017).

    Article  ADS  Google Scholar 

  102. Morard, G. et al. Solving controversies on the iron phase diagram under high pressure. Geophys. Res. Lett. 45, 11074–11082 (2018).

    Article  ADS  Google Scholar 

  103. Harmand, M. et al. X-ray absorption spectroscopy of iron at multimegabar pressures in laser shock experiment. Phys. Rev. B 92, 024108 (2015).

    Article  ADS  Google Scholar 

  104. Torchio, R. et al. Probing local and electronic structure in warm dense matter: single pulse synchrotron x-ray absorption spectroscopy on shocked Fe. Sci. Rep. 6, 26402 (2016). Demonstrates that single bunch synchrotron XAS coupled to laser shock allows to measure the microscopic properties of warm, dense Fe.

    Article  ADS  Google Scholar 

  105. Torchio, R. et al. X-ray magnetic circular dichroism measurements in Ni up to 200 GPa: resistant ferromagnetism. Phys. Rev. Lett. 107, 237202 (2011).

    Article  ADS  Google Scholar 

  106. Ishimatsu, N. et al. Glitch-free X-ray absorption spectrum under high pressure obtained using nano-polycrystalline diamond anvil. J. Synchrotron Radiat. 19, 768–772 (2012).

    Article  Google Scholar 

  107. Wilhelm, F. et al. High pressure XANES and XMCD in the tender X-ray energy range. High Press. Res. 36, 445–457 (2016).

    Article  ADS  Google Scholar 

  108. Badro, J. et al. Iron partitioning in Earth’s mantle: toward a deep lower mantle discontinuity. Science 300, 789–791 (2003).

    Article  ADS  Google Scholar 

  109. Preston, T. R. et al. Design and performance characterization of the HAPG von Hámos Spectrometer at the High Energy Density Instrument of the European XFEL. J. Instrum. 15, P11033 (2020).

    Article  Google Scholar 

  110. Rueff, J.-P. & Shukla, A. Inelastic x-ray scattering by electronic excitations under high pressure. Rev. Mod. Phys. 82, 847 (2010).

    Article  ADS  Google Scholar 

  111. Mao, W. L. et al. Bonding changes in compressed superhard graphite. Science 302, 425–427 (2003).

    Article  ADS  Google Scholar 

  112. Petitgirard, S. et al. Magma properties at deep Earth’s conditions from electronic structure of silica. Geochem. Perspect. Lett. 9, 32–37 (2019).

    Article  Google Scholar 

  113. Fiquet, G., Badro, J., Guyot, F., Requardt, H. & Krisch, M. Sound velocities in iron to 110 gigapascals. Science 291, 468–471 (2001).

    Article  ADS  Google Scholar 

  114. Sahle, Ch. J., Mirone, A., Vincent, T., Kallonen, A. & Huotari, S. Improving the spatial and statistical accuracy in X-ray Raman scattering based direct tomography. J. Synchrotron Radiat. 24, 476–481 (2017).

    Article  Google Scholar 

  115. McBride, E. E. et al. Setup for meV-resolution inelastic X-ray scattering measurements and X-ray diffraction at the matter in extreme conditions endstation at the linac coherent light source. Rev. Sci. Instrum. 89, 10F104 (2018).

    Article  Google Scholar 

  116. Shim, S. H., Bengston, A., Morgan, D. & Prakapenka, V. Electronic and magnetic structures of the postperovskite-type Fe2O3 and implications for planetary magnetic records and deep interiors. Proc. Natl Acad. Sci. USA 106, 5508–5512 (2009).

    Article  ADS  Google Scholar 

  117. Kupenko, I. et al. Magnetism in cold subducting slabs at mantle transition zone depths. Nature 570, 102–106 (2019).

    Article  ADS  Google Scholar 

  118. Liu, Y., Wang, J., Azuma, M., Mao, W. L. & Yang, W. Five-dimensional visualization of phase transition in BiNiO3 under high pressure. Appl. Phys. Lett. 104, 043108 (2014).

    Article  ADS  Google Scholar 

  119. Schropp, A. et al. Imaging shock waves in diamond with both high temporal and spatial resolution at an XFEL. Sci. Rep. 5, 11089 (2015).

    Article  ADS  Google Scholar 

  120. Brennan Brown, S. et al. Direct imaging of ultrafast lattice dynamics. Sci. Adv. 5, eaau8044 (2019).

    Article  ADS  Google Scholar 

  121. Seiboth, F. et al. Simultaneous 8.2 keV phase-contrast imaging and 24.6 keV X-ray diffraction from shock-compressed matter at the LCLS. Appl. Phys. Lett. 112, 221907 (2018).

    Article  ADS  Google Scholar 

  122. Husband, R. et al. Simultaneous imaging and diffraction in the dynamic diamond anvil cell. Rev. Sci. Instrum. 93, 053903 (2022).

    Article  ADS  Google Scholar 

  123. Dubrovinsky, L. (guest editor) Single-crystal X-ray diffraction in the megabar pressure range. High Press. Res. 33, 451–452 (2013).

    Article  ADS  Google Scholar 

  124. Aslandukov, A., Aslandukov, M., Dubrovinskaia, N. & Dubrovinsky, L. Domain Auto Finder (DAFi) program: the analysis of single-crystal X-ray diffraction data from polycrystalline samples. J. Appl. Crystallogr. 55, 1383–1391 (2022). A method that enables the automatic identification of single-crystal diffraction from multiphase mixtures of microcrystalline solids. It is very adapted to identifying compounds synthesized at extreme pressure in a laser-heated DAC.

    Article  Google Scholar 

  125. Prakapenka, V. B., Shen, G. Y. & Dubrovinsky, L. Carbon transport in diamond anvil cells. High Temp. High Press. 35, 237–249 (2010).

    Google Scholar 

  126. Husband, R. J. et al. X-ray free electron laser heating of water and gold at high static pressure. Commun. Mater. 2, 61 (2021).

    Article  Google Scholar 

  127. Prescher, C. & Prakapenka, V. B. DIOPTAS: a program fort reduction of two dimensional X-ray diffraction data and data exploration. High Press. Res. 35, 223–230 (2015).

    Article  ADS  Google Scholar 

  128. McHardy, J. D., Storm, C. V., Duff, M. J., MacLeod, S. G. & McMahon, M. I. On the creation of thermal equations of state for use in Dioptas. High Press. Res. 43, 40–57 (2023).

    Article  ADS  Google Scholar 

  129. Itie, J. P. et al. Pressure-induced coordination changes in crystalline and vitreous GeO2. Phys. Rev. Lett. 63, 398 (1989).

    Article  ADS  Google Scholar 

  130. Filipponi, A. EXAFS for liquids. J. Phys. Condens. Matter 13, R23 (2001).

    Article  ADS  Google Scholar 

  131. Irifune, T., Kurio, A., Sakamoto, S., Inoue, T. & Sumiya, H. Ultrahard polycrystalline diamond from graphite. Nature 421, 599–600 (2003).

    Article  ADS  Google Scholar 

  132. Rehr, J. J., Kas, J. J., Vila, F. D., Prange, M. P. & Jorissen, K. Parameter-free calculations of X-ray spectra with FEFF9. Phys. Chem. Chem. Phys. 12, 5503–5513 (2010).

    Article  Google Scholar 

  133. Badro, J. et al. Electronic transitions in perovskite: possible nonconvecting layers in the lower mantle. Science 305, 383–385 (2004).

    Article  ADS  Google Scholar 

  134. Alonso-Mori, R. et al. Energy-dispersive X-ray emission spectroscopy using an X-ray free-electron laser in a shot-by-shot mode. Proc. Natl Acad. Sci. USA 109, 19103–19107 (2012).

    Article  ADS  Google Scholar 

  135. Kaa, J. M. et al. Structural and electron spin state changes in an x-ray heated iron carbonate system at the Earth’s lower mantle pressures. Phys. Rev. Res. 4, 033042 (2022).

    Article  Google Scholar 

  136. Bancroft, D., Peterson, E. L. & Minshall, S. Polymorphism of iron at high pressure. J. Appl. Phys. 27, 291–298 (1956).

    Article  ADS  Google Scholar 

  137. Takahashi, T. & Bassett, W. A. High pressure polymorph of iron. Science 145, 483–486 (1964).

    Article  ADS  Google Scholar 

  138. Kalantar, D. H. et al. Direct observation of the α−ε transition in shock-compressed iron via nanosecond X-ray diffraction. Phys. Rev. Lett. 95, 075502 (2005).

    Article  ADS  Google Scholar 

  139. Mathon, O. et al. XMCD under pressure at the FeK edge on the energy-dispersive beamline of the ESRF. J. Synchrotron Radiat. 11, 423–427 (2004).

    Article  Google Scholar 

  140. Lesik, M. et al. Magnetic measurements on micrometer-sized samples under high pressure using designed NV centers. Science 366, 1359–1362 (2019).

    Article  ADS  Google Scholar 

  141. Hwang, H. et al. Subnanosecond phase transition dynamics in laser-shocked iron. Sci. Adv. 6, eaaz5132 (2020).

    Article  ADS  Google Scholar 

  142. Mao, H. K., Wu, Y., Chen, L. C., Shu, J. F. & Jephcoat, A. P. Static compression of iron to 300 GPa and Fe0.8Ni0.2 alloy to 260 GPa: implications for composition of the core. J. Geophys. Res. Solid Earth 95, 21737–21742 (1990).

    Article  Google Scholar 

  143. Dewaele, A. et al. Quasihydrostatic equation of state of iron above 2 Mbar. Phys. Rev. Lett. 97, 215504 (2006).

    Article  ADS  Google Scholar 

  144. Merkel, S. et al. Femtosecond visualization of hcp-iron strength and plasticity under shock compression. Phys. Rev. Lett. 127, 205501 (2021).

    Article  ADS  Google Scholar 

  145. Boehler, R., Santamaria-Pérez, D., Errandonea, D. & Mezouar, M. Melting, density, and anisotropy of iron at core conditions: new x-ray measurements to 150 GPa. J. Phys. Conf. Ser. 121, 022018 (2008).

    Article  Google Scholar 

  146. Komabayashi, T., Fei, Y., Meng, Y. & Prakapenka, V. In-situ x-ray diffraction measurements of the γ-ε transition boundary of iron in an internally-heated diamond anvil cell. Earth Planet. Sci. Lett. 282, 252–257 (2009).

    Article  ADS  Google Scholar 

  147. Aquilanti, G. et al. Melting of iron determined by X-ray absorption spectroscopy to 100 GPa. Proc. Natl Acad. Sci. USA 112, 12042–12045 (2015).

    Article  ADS  Google Scholar 

  148. Li, J. et al. Shock melting curve of iron: a consensus on the temperature at the Earth’s inner core boundary. Geophys. Res. Lett. 47, 087758 (2020).

    Article  Google Scholar 

  149. Turneaure, S. J., Sharma, S. M. & Gupta, Y. M. Crystal structure and melting of Fe shock compressed to 273 GPa: in situ X-ray diffraction. Phys. Rev. Lett. 125, 215702 (2020).

    Article  ADS  Google Scholar 

  150. Kraus, R. G. et al. Measuring the melting curve of iron at super-Earth core conditions. Science 375, 202–205 (2022).

    Article  ADS  Google Scholar 

  151. Jackson, J. M. et al. Melting of compressed iron by monitoring atomic dynamics. Earth Planet. Sci. Lett. 362, 143–150 (2013).

    Article  ADS  Google Scholar 

  152. Zhang, D. et al. Temperature of Earth’s core constrained from melting of Fe and Fe0.9Ni0.1 at high pressures. Earth Planet. Sci. Lett. 447, 72–83 (2016).

    Article  ADS  Google Scholar 

  153. Andrault, D., Fiquet, G., Kunz, M., Visocekas, F. & Häusermann, D. The orthorhombic structure of iron: an in situ study at high temperature and high pressure. Science 278, 831–834 (1997).

    Article  ADS  Google Scholar 

  154. Dubrovinsky, L. S., Saxena, S., Tutti, F., Rekhi, S. & LeBihan, T. In Situ x-ray study of thermal expansion and phase transition of iron at multimegabar pressure. Phys. Rev. Lett. 84, 1720 (2000).

    Article  ADS  Google Scholar 

  155. Mikhaylushkin, A. S. et al. Pure iron compressed and heated to extreme conditions. Phys. Rev. Lett. 99, 165505 (2007).

    Article  ADS  Google Scholar 

  156. Belonoshko, A. B. & Smirnov, G. S. A comparison of experimental and ab initio structural data on Fe under extreme conditions. Metals 13, 1096 (2023).

    Article  Google Scholar 

  157. Occelli, F., Loubeyre, P. & LeToullec, R. Properties of diamond under hydrostatic pressures to 140 GPa. Nat. Mater. 2, 151–154 (2003).

    Article  ADS  Google Scholar 

  158. Sundqvist, B. Carbon under pressure. Phys. Rep. 909, 1–73 (2021).

    Article  ADS  Google Scholar 

  159. Wang, Y., Panzik, J. E., Kiefer, B. & Lee, K. Crystal structure of graphite under room-temperature compression and decompression. Sci. Rep. 2, 520 (2012).

    Article  ADS  Google Scholar 

  160. Liao, Y., Shi, X., Luo, C. & He, C. Diamond-XII: a new type of exotic cubic carbon allotrope. Mater. Adv. 4, 709 (2023).

    Article  Google Scholar 

  161. Kraus, D. et al. Nanosecond formation of diamond and lonsdaleite by shock compression of graphite. Nat. Commun. 7, 10970 (2016). The use of XFEL XRD enables the observation of the in situ formation and dynamics of material synthesis, here formation of diamond and lonsdaleite from graphite.

    Article  ADS  Google Scholar 

  162. Turneaure, S., Sharma, S., Volz, T. J., Winey, J. M. & Gupta, Y. Transformation of shock-compressed graphite to hexagonal diamond in nanoseconds. Sci. Adv. 3, eaao3561 (2017).

    Article  Google Scholar 

  163. Lazicki, A. et al. Metastability of diamond ramp-compressed to 2 terapascals. Nature 589, 532–535 (2021).

    Article  ADS  Google Scholar 

  164. Yang, L. et al. Melting diamond in the diamond cell by laser-flash heating. High Press. Res. 43, 1–14 (2023).

    Article  ADS  Google Scholar 

  165. Brygoo, S. et al. Laser-shock compression of diamond and evidence of a negative slope melting curve. Nat. Mater. 6, 274–277 (2007).

    Article  ADS  Google Scholar 

  166. Eggert, J. H. et al. Melting temperature of diamond at ultrahigh pressure. Nat. Phys. 6, 40–43 (2010).

    Article  Google Scholar 

  167. Sun, L. et al. X-ray diffraction studies and equation of state of methane at 202 GPa. Chem. Phys. Lett. 473, 72–74 (2009).

    Article  ADS  Google Scholar 

  168. Wang, L. et al. Nanoprobe measurements of materials at megabar pressures. Proc. Natl Acad. Sci. USA 107, 6140–6145 (2010).

    Article  ADS  Google Scholar 

  169. Loubeyre, P., Occelli, F. & Dumas, P. Synchrotron infrared spectroscopic evidence of the probable transition to metal hydrogen. Nature 577, 631–635 (2020).

    Article  ADS  Google Scholar 

  170. Meier, T. et al. Nuclear spin coupling crossover in dense molecular hydrogen. Nat. Commun. 11, 6334 (2020).

    Article  ADS  Google Scholar 

  171. Raimondi, P. et al. The Extremely Brilliant Source storage ring of the European Synchrotron Radiation Facility. Commun. Phys. 6, 82 (2023).

    Article  Google Scholar 

  172. Smith, R. F. et al. Development of slurry targets for high repetition-rate x-ray free electron laser experiments. J. Appl. Phys. 131, 245901 (2022).

    Article  ADS  Google Scholar 

  173. Swift, D. C. et al. Mass–radius relationships for exoplanets. Astrophys. J. 744, 59 (2012).

    Article  ADS  Google Scholar 

  174. Davis, J.-P. Dynamic Compression Science at Sandia’s Z Machine. Presented at the APS 4-Corners Section Meeting held October 20-21, 2017 in Fort Collins, CO. https://www.osti.gov/servlets/purl/1479044 (2017).

  175. Boehler, R. The phase diagram of iron to 430 kbar. Geophys. Res. Lett. 13, 1153–1156 (1986).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge support from V. Cerantola (Università degli Studi di Milano – Bicocca, Italy), H. Sinn (EuXFEL, Schenefeld, Germany) and M. Wulff (ESRF, Grenoble, France) for the data in Fig. 4b; A. Coleman (OMEGA laser facility) and Y. Lee (Pohang Accelerator Laboratory) for the XRD data in Fig. 5b; R. Torchio and A. Rosa (ESRF, Grenoble, France) for the Fe XAS data in Fig. 5c; and R. Alonso-Mori (Linac Coherent Light Source) for the XES data in Fig. 5d. H.-P.L. acknowledges Deutsches Elektronen-Synchrotron (Hamburg, Germany), a member of the Helmholtz Association HGF. This work from R.S. was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.

Author information

Authors and Affiliations

Authors

Contributions

Introduction (P.L. and S.P.); Experimentation (O.M., H.-P.L., R.F.S., C.P., P.L. and S.P.); Results (M.M., P.L., O.M., S.P., W.L.M.); Applications (M.M. and W.L.M.); Reproducibility and data deposition (P.L., C.P. and M.M.); Limitations and optimizations (S.P., M.M. and P.L.); Outlook (S.P. and P.L.); overview of the Primer (S.P. and P.L.).

Corresponding author

Correspondence to Sakura Pascarelli.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Methods Primers thanks Dominik Kraus, Guoyin Shen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Exoplanet database: https://exoplanetarchive.ipac.caltech.edu/

Supplementary information

Glossary

Brilliance

Parameter defined as the flux (number of photons) in a 0.1% spectral bandwidth divided by the source size and the source divergence (photons/s/mm2/mrad2/0.1%bandwidth).

Coherence

If the phase differences between all pairs of points in a radiating region have definite values that are constant with time, coherence occurs.

Compression path

The thermodynamic compression path in pressure, temperature and density space, the path along the equation-of-state surface of a material.

Culets

The flat face of a diamond anvil within a diamond anvil cell.

Deviatoric stress

Deviatoric stresses are present when unequal principal stresses change the shape of a volume element of the material.

Diamond anvil cell

An apparatus, commonly referred to as DAC, in which a pressure medium, a pressure indicator or standard, such as ruby, and a sample are compressed between two diamond culets and a gasket.

Equations of state

An equation of state is a thermodynamic equation relating state variables that describe the state of matter under a given set of physical conditions, such as pressure, volume, temperature or internal energy.

Hugoniot

Locus of end-states associated with shock compression as defined by the Rankine–Hugoniot equations, which relate particle velocity, shock velocity, pressure, density and internal energy. A material’s Hugoniot is often determined experimentally through measurements of shock velocity and particle velocity.

Isentropic compression

Isentropic, or constant entropy, compression is a reversible and low-temperature compression path. Deviations from isentropic compression occur due to non-reversible dissipative processes associated with dislocation generation and flow, and pressure-induced phase transformations.

Ramp compression

A peak compression state reached over an extended period of time, resulting in a thermodynamic compression path close to the isentrope at temperatures below melt. Ramp compression is the only dynamic compression technique that can generate solid states of matter at extreme pressures (order of TPa).

Shock compression

A near-instantaneous increase in sample pressure, often associated with a stepwise increase in entropy and sample temperature. Shock compression, defined by the Rankine–Hugoniot equations, results in a single compression state on the material’s Hugoniot curve.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pascarelli, S., McMahon, M., Pépin, C. et al. Materials under extreme conditions using large X-ray facilities. Nat Rev Methods Primers 3, 82 (2023). https://doi.org/10.1038/s43586-023-00264-5

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s43586-023-00264-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing