Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Electrochemical surface-enhanced Raman spectroscopy

Abstract

Electrochemical surface-enhanced Raman spectroscopy (EC-SERS) is a spectroelectrochemical method that has been in existence since the first SERS measurements were collected, yet it is a technique that has only recently become mainstream. EC-SERS measurements involve the collection of greatly enhanced Raman spectra at the electrified interface of nanostructured metal surfaces, most often coinage metals such as gold or silver. Owing to the surface sensitivity and selectivity of EC-SERS measurements, this technique can provide insight into various interfacial processes. Recent applications of EC-SERS investigations have included biosensing, catalysis and environmental analysis. This Primer seeks to introduce researchers with interdisciplinary backgrounds to key concepts of EC-SERS, including signal enhancement mechanisms, practical experimentation, electrode preparation and data collection and interpretation. Finally, a selection of recent applications and novel directions for future research are presented.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Surface-enhanced Raman spectroscopy mechanisms.
Fig. 2: Electrochemical surface-enhanced Raman spectroscopy optical path configurations.
Fig. 3: Miniaturization approaches in electrochemical surface-enhanced Raman spectroscopy.
Fig. 4: Electrochemical surface-enhanced Raman spectroscopy data cube.
Fig. 5: Procedures for performing mechanistic analyses of electrochemical surface-enhanced Raman spectroscopy measurements.
Fig. 6: Electrochemical shell-isolated nanoparticle-enhanced Raman spectroscopy study of interfacial water on a Pd single-crystal surface in a 0.1-M NaClO4 solution (pH 11).
Fig. 7: Electrochemical surface-enhanced Raman spectroscopy for characterization of battery materials.

Similar content being viewed by others

References

  1. Fleischmann, M., Hendra, P. J. & McQuillan, A. J. Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett. 26, 163–166 (1974). To the best of our knowledge, this article reports on the first SERS observation and the first EC-SERS study.

    Article  ADS  Google Scholar 

  2. Jeanmaire, D. L. & Van Duyne, R. P. Surface Raman spectroelectrochemistry: part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J. Electroanal. Chem. Interfacial Electrochem. 84, 1–20 (1977). To the best of our knowledge, this article is one of two which represents the first discovery of SERS.

    Article  Google Scholar 

  3. Albrecht, M. G. & Creighton, J. A. Anomalously intense Raman spectra of pyridine at a silver electrode. J. Am. Chem. Soc. 99, 5215–5217 (1977). To the best of our knowledge, this article is one of two which represents the first discovery of SERS.

    Article  Google Scholar 

  4. Sharma, B., Frontiera, R. R., Henry, A.-I., Ringe, E. & Van Duyne, R. P. SERS: materials, applications, and the future. Mater. Today 15, 16–25 (2012).

    Article  Google Scholar 

  5. Wu, D.-Y., Li, J.-F., Ren, B. & Tian, Z.-Q. Electrochemical surface-enhanced Raman spectroscopy of nanostructures. Chem. Soc. Rev. 37, 1025–1041 (2008). This article is a useful review of EC-SERS.

    Article  Google Scholar 

  6. Willets, K. A. Probing nanoscale interfaces with electrochemical surface-enhanced Raman scattering. Curr. Opin. Electrochem. 13, 18–24 (2019).

    Article  Google Scholar 

  7. Markin, A. V., Arzhanukhina, A. I., Markina, N. E. & Goryacheva, I. Y. Analytical performance of electrochemical surface-enhanced Raman spectroscopy: a critical review. Trends Anal. Chem. 157, 116776 (2022). This article provides a critical review of the analytical performance of EC-SERS.

    Article  Google Scholar 

  8. Han, X. X., Rodriguez, R. S., Haynes, C. L., Ozaki, Y. & Zhao, B. Surface-enhanced Raman spectroscopy. Nat. Rev. Methods Primers 1, 87 (2022). This paper is a useful Primer for SERS.

    Article  Google Scholar 

  9. Campion, A. & Kambhampati, P. Surface-enhanced Raman scattering. Chem. Soc. Rev. 27, 241 (1998).

    Article  Google Scholar 

  10. Greene, B. H. C., Alhatab, D. S., Pye, C. C. & Brosseau, C. L. Electrochemical-surface enhanced Raman spectroscopic (EC-SERS) study of 6-thiouric acid: a metabolite of the chemotherapy drug azathioprine. J. Phys. Chem. C 121, 8084–8090 (2017).

    Article  Google Scholar 

  11. Zaleski, S. et al. Investigating nanoscale electrochemistry with surface- and tip-enhanced Raman spectroscopy. Acc. Chem. Res. 49, 2023–2030 (2016).

    Article  Google Scholar 

  12. Haes, A. J. et al. Plasmonic materials for surface-enhanced sensing and spectroscopy. MRS Bull. 30, 368–375 (2005).

    Article  Google Scholar 

  13. Zhao, J., Dieringer, J. A., Zhang, X., Schatz, G. C. & Van Duyne, R. P. Wavelength-scanned surface-enhanced resonance Raman excitation spectroscopy. J. Phys. Chem. C 112, 19302–19310 (2008).

    Article  Google Scholar 

  14. Zhao, Y. et al. A facile method for the synthesis of large-size Ag nanoparticles as efficient SERS substrates. J. Raman Spectrosc. 47, 662–667 (2016).

    Article  ADS  Google Scholar 

  15. Tian, Z. Q. & Zhang, X. M. in Developments in Electrochemistry: Science Inspired by Martin Fleischmann 113–135 (John Wiley & Sons, Ltd, 2014).

  16. Denson, S. C., Pommier, C. J. S. & Denton, M. B. The impact of array detectors on Raman spectroscopy. J. Chem. Educ. 84, 67–74 (2007).

    Article  Google Scholar 

  17. Hollricher, O. in Springer Series in Surface Sciences Vol. 66, 69–87 (Springer International Publishing, 2018).

  18. McCreery, R. L. Raman Spectroscopy for Chemical Analysis. Measurement Science and Technology Vol. 12 (John Wiley & Sons, Inc., 2000).

  19. Butler, H. J. et al. Using Raman spectroscopy to characterize biological materials. Nat. Protoc. 11, 664–687 (2016).

    Article  Google Scholar 

  20. Wang, X. et al. Tip-enhanced Raman spectroscopy for surfaces and interfaces. Chem. Soc. Rev. 46, 4020–4041 (2017).

    Article  ADS  Google Scholar 

  21. Sartin, M. M., Su, H.-S., Wang, X. & Ren, B. Tip-enhanced Raman spectroscopy for nanoscale probing of dynamic chemical systems. J. Chem. Phys. 153, 170901 (2020).

    Article  ADS  Google Scholar 

  22. Tian, Z.-Q. & Ren, B. Adsorption and reaction at electrochemical interfaces as probed by surface-enhanced raman spectroscopy. Annu. Rev. Phys. Chem. 55, 197–229 (2004).

    Article  ADS  Google Scholar 

  23. Cai, W. B. et al. Investigation of surface-enhanced Raman scattering from platinum electrodes using a confocal Raman microscope: dependence of surface roughening pretreatment. Surf. Sci. 406, 9–22 (1998).

    Article  ADS  Google Scholar 

  24. Robinson, A. M., Harroun, S. G., Bergman, J. & Brosseau, C. L. Portable electrochemical surface-enhanced Raman spectroscopy system for routine spectroelectrochemical analysis. Anal. Chem. 84, 1760–1764 (2012). This article is an early demonstration of the use of screen-printed electrodes for in situ EC-SERS.

    Article  Google Scholar 

  25. Ibañez, D., Romero, E. C., Heras, A. & Colina, A. Dynamic Raman spectroelectrochemistry of single walled carbon nanotubes modified electrodes using a Langmuir–Schaefer method. Electrochim. Acta 129, 171–176 (2014).

    Article  Google Scholar 

  26. Ibáñez, D. et al. Development of a novel Raman cell for the easy handling of spectroelectrochemical measurements. Microchem. J. 180, 107614 (2022).

    Article  Google Scholar 

  27. Zeng, Z.-C. et al. Novel electrochemical Raman spectroscopy enabled by water immersion objective. Anal. Chem. 88, 9381–9385 (2016).

    Article  Google Scholar 

  28. González-Diéguez, N., Colina, A., López-Palacios, J. & Heras, A. Spectroelectrochemistry at screen-printed electrodes: determination of dopamine. Anal. Chem. 84, 9146–9153 (2012).

    Article  Google Scholar 

  29. Shou-Zhong, Z. et al. Extending SERS activity at silver electrodes to a wide potential region. Acta Phys. Chim. Sin. 11, 1020–1025 (1995).

    Article  Google Scholar 

  30. Zhao, L., Blackburn, J. & Brosseau, C. L. Quantitative detection of uric acid by electrochemical-surface enhanced Raman spectroscopy using a multilayered Au/Ag substrate. Anal. Chem. 87, 441–447 (2015).

    Article  Google Scholar 

  31. Farling, C. G., Stackaruk, M. C., Pye, C. C. & Brosseau, C. L. Fabrication of high quality electrochemical SERS (EC-SERS) substrates using physical vapour deposition. Phys. Chem. Chem. Phys. 23, 20065–20072 (2021).

    Article  Google Scholar 

  32. Fan, M., Andrade, G. F. S. & Brolo, A. G. A review on the fabrication of substrates for surface enhanced Raman spectroscopy and their applications in analytical chemistry. Anal. Chim. Acta 693, 7–25 (2011).

    Article  Google Scholar 

  33. Le Thi Ngoc, L. et al. Suppression of surface-enhanced Raman scattering on gold nanostructures by metal adhesion layers. J. Phys. Chem. C 120, 18756–18762 (2016).

    Article  Google Scholar 

  34. Zhu, Q., Murphy, C. J. & Baker, L. R. Opportunities for electrocatalytic CO2 reduction enabled by surface ligands. J. Am. Chem. Soc. 144, 2829–2840 (2022).

    Article  Google Scholar 

  35. Xu, L.-J. et al. Label-free detection of native proteins by surface-enhanced Raman spectroscopy using iodide-modified nanoparticles. Anal. Chem. 86, 2238–2245 (2014).

    Article  Google Scholar 

  36. Zong, C., Chen, C. J., Zhang, M., Wu, D. Y. & Ren, B. Transient electrochemical surface-enhanced Raman spectroscopy: a millisecond time-resolved study of an electrochemical redox process. J. Am. Chem. Soc. 137, 11768–11774 (2015).

    Article  Google Scholar 

  37. Bindesri, S. D., Alhatab, D. S. & Brosseau, C. L. Development of an electrochemical surface-enhanced Raman spectroscopy (EC-SERS) fabric-based plasmonic sensor for point-of-care diagnostics. Analyst 143, 4128–4135 (2018).

    Article  ADS  Google Scholar 

  38. Karaballi, R. A., Merchant, S., Power, S. R. & Brosseau, C. L. Electrochemical surface-enhanced Raman spectroscopy (EC-SERS) study of the interaction between protein aggregates and biomimetic membranes. Phys. Chem. Chem. Phys. 20, 4513–4526 (2018).

    Article  Google Scholar 

  39. Ibanez, D., Perez-Junquera, A., Begona Gonzalez-Garcia, M., Hernandez-Santos, D. & Fanjul-Bolado, P. Spectroelectrochemical elucidation of B vitamins present in multivitamin complexes by EC-SERS. Talanta 206, 120190 (2020).

    Article  Google Scholar 

  40. Huang, C.-Y. & Hsiao, H.-C. Integrated EC-SERS chip with uniform nanostructured EC-SERS active working electrode for rapid detection of uric acid. Sensors 20, 7066 (2020).

    Article  ADS  Google Scholar 

  41. Hutchinson, K., McQuillan, A. J. & Hester, R. E. Non-aqueous SERS: pyridine in N,N’-dimethylformamide solution at a silver electrode. Chem. Phys. Lett. 98, 27–31 (1983).

    Article  ADS  Google Scholar 

  42. Wang, J. et al. In situ SERS and SHINERS study of electrochemical hydrogenation of p-ethynylaniline in nonaqueous solvents. Electrochem. Commun. 78, 16–20 (2017).

    Article  Google Scholar 

  43. Lipkowski, J. & Stolberg, L. in Adsorption of Molecules at Metal Electrodes (eds Lipkowski, J. & Ross, P. N.) (VCH, 1992).

  44. Moskovits, M. Surface selection rules. J. Chem. Phys. 77, 4408–4416 (1982). This article provides a description of the surface selection rules active in SERS.

    Article  ADS  Google Scholar 

  45. Larkin, D., Guyer, K. L., Hupp, J. T. & Weaver, M. J. Determination of specific adsorption of some simple anions at a polycrystalline silver–aqueous interface using differential capacitance and kinetic probe techniques. J. Electroanal. Chem. Interfacial Electrochem. 138, 401–423 (1982).

    Article  Google Scholar 

  46. Ali, A. H. & Foss, C. A. Electrochemically induced shifts in the plasmon resonance bands of nanoscopic gold particles adsorbed on transparent electrodes. J. Electrochem. Soc. 146, 628–636 (1999).

    Article  Google Scholar 

  47. Perales-Rondon, J. V. et al. Electrochemical surface oxidation enhanced Raman scattering. Electrochim. Acta 282, 377–383 (2018). To the best of our knowledge, this article is the first demonstration of EC-SOERS.

    Article  Google Scholar 

  48. Perales-Rondon, J. V., Hernandez, S., Heras, A. & Colina, A. Effect of chloride and pH on the electrochemical surface oxidation enhanced Raman scattering. Appl. Surf. Sci. 473, 366–372 (2019).

    Article  ADS  Google Scholar 

  49. Perez-Estebanez, M. et al. Chemical selectivity in electrochemical surface oxidation enhanced Raman scattering. Electrochim. Acta 353, 136560 (2020).

    Article  Google Scholar 

  50. Hernandez, S., Perales-Rondon, J. V., Heras, A. & Colina, A. Electrochemical SERS and SOERS in a single experiment: a new methodology for quantitative analysis. Electrochim. Acta 334, 135561 (2020).

    Article  Google Scholar 

  51. Perez-Estebanez, M. et al. Raman spectroelectrochemical determination of clopyralid in tap water. Microchem. J. 183, 108018 (2022).

    Article  Google Scholar 

  52. Hernandez, S., Perales-Rondon, J. V., Heras, A. & Colina, A. Enhancement factors in electrochemical surface oxidation enhanced Raman scattering. Electrochim. Acta 380, 138223 (2021).

    Article  Google Scholar 

  53. Alessandri, I. & Lombardi, J. R. Enhanced Raman scattering with dielectrics. Chem. Rev. 116, 14921–14981 (2016).

    Article  Google Scholar 

  54. Hernandez, S., Perales-Rondon, J. V., Heras, A. & Colina, A. Determination of uric acid in synthetic urine by using electrochemical surface oxidation enhanced Raman scattering. Anal. Chim. Acta 1085, 61–67 (2019).

    Article  Google Scholar 

  55. Hu, J.-W. et al. Synthesis of Au@Pd core–shell nanoparticles with controllable size and their application in surface-enhanced Raman spectroscopy. Chem. Phys. Lett. 408, 354–359 (2005).

    Article  ADS  Google Scholar 

  56. Li, J.-F. et al. Surface-enhanced Raman spectroscopy using gold-core platinum-shell nanoparticle film electrodes:  toward a versatile vibrational strategy for electrochemical interfaces. Langmuir 22, 10372–10379 (2006).

    Article  Google Scholar 

  57. Lu, L. et al. Fabrication of core–shell Au-Pt nanoparticle film and its potential application as catalysis and SERS substrate. J. Mater. Chem. 14, 1005–1009 (2004).

    Article  Google Scholar 

  58. Tian, Z.-Q., Ren, B., Li, J.-F. & Yang, Z.-L. Expanding generality of surface-enhanced Raman spectroscopy with borrowing SERS activity strategy. Chem. Commun. 2007, 3514–3534 (2007).

    Article  Google Scholar 

  59. Van Duyne, R. P. & Haushalter, J. P. Surface-enhanced Raman spectroscopy of adsorbates on semiconductor electrode surfaces. 2. In situ studies of transition metal (iron and ruthenium) complexes on silver/gallium arsenide and silver/silicon. J. Phys. Chem. 89, 4055–4061 (1985).

    Article  Google Scholar 

  60. Van Duyne, R. P. & Haushalter, J. P. Surface-enhanced Raman spectroscopy of adsorbates on semiconductor electrode surfaces: tris(bipyridine)ruthenium(II) adsorbed on silver-modified n-gallium arsenide(100). J. Phys. Chem. 87, 2999–3003 (1983).

    Article  Google Scholar 

  61. Leung, L. W. H. & Weaver, M. J. Extending surface-enhanced Raman spectroscopy to transition-metal surfaces: carbon monoxide adsorption and electrooxidation on platinum- and palladium-coated gold electrodes. J. Am. Chem. Soc. 109, 5113–5119 (1987).

    Article  Google Scholar 

  62. Leung, L.-W. H. & Weaver, M. J. Extending the metal interface generality of surface-enhanced Raman spectroscopy: underpotential deposited layers of mercury, thallium, and lead on gold electrodes. J. Electroanal. Chem. 217, 367–384 (1987).

    Article  Google Scholar 

  63. Leung, L. W. H. & Weaver, M. J. Adsorption and electrooxidation of carbon monoxide on rhodium- and ruthenium-coated gold electrodes as probed by surface-enhanced Raman spectroscopy. Langmuir 4, 1076–1083 (1988).

    Article  Google Scholar 

  64. Zou, S., Williams, C. T., Chen, E. K. Y. & Weaver, M. J. Probing molecular vibrations at catalytically significant interfaces:  a new ubiquity of surface-enhanced Raman scattering. J. Am. Chem. Soc. 120, 3811–3812 (1998).

    Article  Google Scholar 

  65. Zou, S., Weaver, M. J., Li, X. Q., Ren, B. & Tian, Z. Q. New strategies for surface-enhanced Raman scattering at transition–metal interfaces:  thickness-dependent characteristics of electrodeposited Pt-group films on gold and carbon. J. Phys. Chem. B 103, 4218–4222 (1999).

    Article  Google Scholar 

  66. Li, J.-F., Zhang, Y.-J., Ding, S.-Y., Panneerselvam, R. & Tian, Z.-Q. Core–shell nanoparticle-enhanced Raman spectroscopy. Chem. Rev. 117, 5002–5069 (2017).

    Article  Google Scholar 

  67. Li, J. F. et al. Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature 464, 392–395 (2010). To the best of our knowledge, this article is the first demonstration of SHINERS.

    Article  ADS  Google Scholar 

  68. Li, J. F. et al. Surface analysis using shell-isolated nanoparticle-enhanced Raman spectroscopy. Nat. Protoc. 8, 52–65 (2013).

    Article  ADS  Google Scholar 

  69. Li, J.-F., Anema, J. R., Wandlowski, T. & Tian, Z.-Q. Dielectric shell isolated and graphene shell isolated nanoparticle enhanced Raman spectroscopies and their applications. Chem. Soc. Rev. 44, 8399–8409 (2015).

    Article  Google Scholar 

  70. Wang, Y.-H., Wei, J., Radjenovic, P., Tian, Z.-Q. & Li, J.-F. In situ analysis of surface catalytic reactions using shell-isolated nanoparticle-enhanced Raman spectroscopy. Anal. Chem. 91, 1675–1685 (2019).

    Article  Google Scholar 

  71. Lin, X.-D. et al. Synthesis of ultrathin and compact Au@MnO2 nanoparticles for shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS). J. Raman Spectrosc. 43, 40–45 (2012).

    Article  ADS  Google Scholar 

  72. Qiu, Z. et al. Raman spectroscopic investigation on TiO2–N719 dye interfaces using Ag@TiO2 nanoparticles and potential correlation strategies. ChemPhysChem 14, 2217–2224 (2013).

    Article  Google Scholar 

  73. Li, J.-F., Rudnev, A., Fu, Y., Bodappa, N. & Wandlowski, T. In situ SHINERS at electrochemical single-crystal electrode/electrolyte interfaces: tuning preparation strategies and selected applications. ACS Nano 7, 8940–8952 (2013).

    Article  Google Scholar 

  74. Li, J.-F. et al. Extraordinary enhancement of Raman scattering from pyridine on single crystal Au and Pt electrodes by shell-isolated Au nanoparticles. J. Am. Chem. Soc. 133, 15922–15925 (2011).

    Article  Google Scholar 

  75. Anderson, M. S. Locally enhanced Raman spectroscopy with an atomic force microscope. Appl. Phys. Lett. 76, 3130–3132 (2000).

    Article  ADS  Google Scholar 

  76. Hayazawa, N., Inouye, Y., Sekkat, Z. & Kawata, S. Metallized tip amplification of near-field Raman scattering. Opt. Commun. 183, 333–336 (2000).

    Article  ADS  Google Scholar 

  77. Pettinger, B., Picardi, G., Schuster, R. & Ertl, G. Surface enhanced Raman spectroscopy: towards single molecule spectroscopy. Electrochemistry 68, 942–949 (2000).

    Article  Google Scholar 

  78. Stöckle, R. M., Suh, Y. D., Deckert, V. & Zenobi, R. Nanoscale chemical analysis by tip-enhanced Raman spectroscopy. Chem. Phys. Lett. 318, 131–136 (2000). To the best of our knowledge, this article demonstrates the first conceptual demonstration of TERS.

    Article  ADS  Google Scholar 

  79. Zeng, Z.-C. et al. Electrochemical tip-enhanced Raman spectroscopy. J. Am. Chem. Soc. 137, 11928–11931 (2015).

    Article  Google Scholar 

  80. Kurouski, D., Mattei, M. & Van Duyne, R. P. Probing redox reactions at the nanoscale with electrochemical tip-enhanced Raman spectroscopy. Nano Lett. 15, 7956–7962 (2015).

    Article  ADS  Google Scholar 

  81. Yang, B., Kazuma, E., Yokota, Y. & Kim, Y. Fabrication of sharp gold tips by three-electrode electrochemical etching with high controllability and reproducibility. J. Phys. Chem. C 122, 16950–16955 (2018).

    Article  Google Scholar 

  82. Zhang, W., Yeo, B. S., Schmid, T. & Zenobi, R. Single molecule tip-enhanced Raman spectroscopy with silver tips. J. Phys. Chem. C 111, 1733–1738 (2007).

    Article  Google Scholar 

  83. Ren, B., Picardi, G. & Pettinger, B. Preparation of gold tips suitable for tip-enhanced Raman spectroscopy and light emission by electrochemical etching. Rev. Sci. Instrum. 75, 837–841 (2004).

    Article  ADS  Google Scholar 

  84. Yokota, Y. et al. Systematic assessment of benzenethiol self-assembled monolayers on Au(111) as a standard sample for electrochemical tip-enhanced Raman spectroscopy. J. Phys. Chem. C 123, 2953–2963 (2019).

    Article  Google Scholar 

  85. Yeo, B.-S., Zhang, W., Vannier, C. & Zenobi, R. Enhancement of Raman signals with silver-coated tips. Appl. Spectrosc. 60, 1142–1147 (2006).

    Article  ADS  Google Scholar 

  86. Taguchi, A. et al. Controlling the plasmon resonance wavelength in metal-coated probe using refractive index modification. Opt. Express 17, 6509–6518 (2009).

    Article  ADS  Google Scholar 

  87. Deckert, V. et al. Spatial resolution in Raman spectroscopy. Faraday Discuss. 177, 9–20 (2015).

    Article  ADS  Google Scholar 

  88. Saito, Y., Murakami, T., Inouye, Y. & Kawata, S. Fabrication of silver probes for localized plasmon excitation in near-field Raman spectroscopy. Chem. Lett. 34, 920–921 (2005).

    Article  Google Scholar 

  89. Brejna, P. R. & Griffiths, P. R. Electroless deposition of silver onto silicon as a method of preparation of reproducible surface-enhanced Raman spectroscopy substrates and tip-enhanced Raman spectroscopy tips. Appl. Spectrosc. 64, 493–499 (2010).

    Article  ADS  Google Scholar 

  90. Yang, L.-K. et al. Rational fabrication of a gold-coated AFM TERS tip by pulsed electrodeposition. Nanoscale 7, 18225–18231 (2015).

    Article  ADS  Google Scholar 

  91. Huang, T.-X. et al. Rational fabrication of silver-coated AFM TERS tips with a high enhancement and long lifetime. Nanoscale 10, 4398–4405 (2018).

    Article  Google Scholar 

  92. Kumar, N. et al. Nanoscale chemical imaging of solid–liquid interfaces using tip-enhanced Raman spectroscopy. Nanoscale 10, 1815–1824 (2018).

    Article  Google Scholar 

  93. Schmid, T., Yeo, B.-S., Leong, G., Stadler, J. & Zenobi, R. Performing tip-enhanced Raman spectroscopy in liquids. J. Raman Spectrosc. 40, 1392–1399 (2009).

    Article  ADS  Google Scholar 

  94. Bao, Y.-F. et al. Atomic force microscopy based top-illumination electrochemical tip-enhanced Raman spectroscopy. Anal. Chem. 92, 12548–12555 (2020).

    Article  Google Scholar 

  95. Huang, S.-C. et al. Electrochemical tip-enhanced Raman spectroscopy with improved sensitivity enabled by a water immersion objective. Anal. Chem. 91, 11092–11097 (2019).

    Article  Google Scholar 

  96. Touzalin, T., Joiret, S., Lucas, I. T. & Maisonhaute, E. Electrochemical tip-enhanced Raman spectroscopy imaging with 8 nm lateral resolution. Electrochem. Commun. 108, 106557 (2019).

    Article  Google Scholar 

  97. Huang, S.-C. et al. Electrochemical tip-enhanced Raman spectroscopy: an in situ nanospectroscopy for electrochemistry. Annu. Rev. Phys. Chem. 72, 213–234 (2021).

    Article  Google Scholar 

  98. Amemiya, S., Bard, A. J., Fan, F.-R. F., Mirkin, M. V. & Unwin, P. R. Scanning electrochemical microscopy. Annu. Rev. Anal. Chem. 1, 95–131 (2008).

    Article  Google Scholar 

  99. Polcari, D., Dauphin-Ducharme, P. & Mauzeroll, J. Scanning electrochemical microscopy: a comprehensive review of experimental parameters from 1989 to 2015. Chem. Rev. 116, 13234–13278 (2016).

    Article  Google Scholar 

  100. Danis, L., Polcari, D., Kwan, A., Gateman, S. M. & Mauzeroll, J. Fabrication of carbon, gold, platinum, silver, and mercury ultramicroelectrodes with controlled geometry. Anal. Chem. 87, 2565–2569 (2015).

    Article  Google Scholar 

  101. Clausmeyer, J., Nebel, M., Grützke, S., Kayran, Y. U. & Schuhmann, W. Local surface modifications investigated by combining scanning electrochemical microscopy and surface-enhanced raman scattering. ChemPlusChem 83, 414–417 (2018).

    Article  Google Scholar 

  102. Hatfield, K. O., Gole, M. T., Schorr, N. B., Murphy, C. J. & Rodríguez-López, J. Surface-enhanced Raman spectroscopy-scanning electrochemical microscopy: observation of real-time surface pH perturbations. Anal. Chem. 93, 7792–7796 (2021).

    Article  Google Scholar 

  103. Gossage, Z. T. et al. Interrogating charge storage on redox active colloids via combined Raman spectroscopy and scanning electrochemical microscopy. Langmuir 33, 9455–9463 (2017).

    Article  Google Scholar 

  104. Bentley, C. L., Kang, M. & Unwin, P. R. Nanoscale structure dynamics within electrocatalytic materials. J. Am. Chem. Soc. 139, 16813–16821 (2017).

    Article  Google Scholar 

  105. Zhang, S., Li, M., Su, B. & Shao, Y. Fabrication and use of nanopipettes in chemical analysis. Annu. Rev. Anal. Chem. 11, 265–286 (2018).

    Article  Google Scholar 

  106. Morris, C. A., Friedman, A. K. & Baker, L. A. Applications of nanopipettes in the analytical sciences. Analyst 135, 2190–2202 (2010).

    Article  ADS  Google Scholar 

  107. Wang, Y., Wang, D. & Mirkin, M. V. Resistive-pulse and rectification sensing with glass and carbon nanopipettes. Proc. R. Soc. Math. Phys. Eng. Sci. 473, 20160931 (2017).

    ADS  Google Scholar 

  108. Brasiliense, V., Park, J. E., Chen, Z., Van Duyne, R. P. & Schatz, G. C. Nanopipette-based electrochemical SERS platforms: using electrodeposition to produce versatile and adaptable plasmonic substrates. J. Raman Spectrosc. 52, 339–347 (2021).

    Article  ADS  Google Scholar 

  109. Vitol, E. A. et al. In situ intracellular spectroscopy with surface enhanced Raman spectroscopy (SERS)-enabled nanopipettes. ACS Nano 3, 3529–3536 (2009).

    Article  Google Scholar 

  110. Masson, J.-F. et al. Plasmonic nanopipette biosensor. Anal. Chem. 86, 8998–9005 (2014).

    Article  Google Scholar 

  111. Fang, W. et al. Portable SERS-enabled micropipettes for microarea sampling and reliably quantitative detection of surface organic residues. Anal. Chem. 87, 9217–9224 (2015).

    Article  Google Scholar 

  112. Yang, J.-M. et al. Surface-enhanced Raman scattering probing the translocation of DNA and amino acid through plasmonic nanopores. Anal. Chem. 91, 6275–6280 (2019).

    Article  Google Scholar 

  113. Li, P., Ge, M., Lin, D. & Yang, L. Functionalized acupuncture needle as a SERS-active platform for rapid and sensitive determination of adenosine triphosphate. Anal. Bioanal. Chem. 411, 5669–5679 (2019).

    Article  Google Scholar 

  114. Lussier, F., Missirlis, D., Spatz, J. P. & Masson, J.-F. Machine-learning-driven surface-enhanced Raman scattering optophysiology reveals multiplexed metabolite gradients near cells. ACS Nano 13, 1403–1411 (2019).

    Google Scholar 

  115. Vitol, E. A., Orynbayeva, Z., Friedman, G. & Gogotsi, Y. Nanoprobes for intracellular and single cell surface-enhanced Raman spectroscopy (SERS). J. Raman Spectrosc. 43, 817–827 (2012).

    Article  ADS  Google Scholar 

  116. Nie, X.-L. et al. Recognition of plastic nanoparticles using a single gold nanopore fabricated at the tip of a glass nanopipette. Chem. Commun. 55, 6397–6400 (2019).

    Article  Google Scholar 

  117. LI, H.-N. et al. Facile fabrication of gold functionalized nanopipette for nanoscale electrochemistry and surface enhanced Raman spectroscopy. Chin. J. Anal. Chem. 47, e19104–e19112 (2019).

    Article  ADS  Google Scholar 

  118. Shi, C., Zhang, W., Birke, R. L. & Lombardi, J. R. Detection of short-lived intermediates in electrochemical reactions using time-resolved surface-enhanced Raman spectroscopy. J. Phys. Chem. 94, 4766–4769 (1990).

    Article  Google Scholar 

  119. Wilson, A. J., Molina, N. Y. & Willets, K. A. Modification of the electrochemical properties of Nile Blue through covalent attachment to gold as revealed by electrochemistry and SERS. J. Phys. Chem. C 120, 21091–21098 (2016).

    Article  Google Scholar 

  120. Willets, K. A. Super-resolution imaging of SERS hot spots. Chem. Soc. Rev. 43, 3854–3864 (2014).

    Article  Google Scholar 

  121. Wilson, A. J. & Willets, K. A. Visualizing site-specific redox potentials on the surface of plasmonic nanoparticle aggregates with superlocalization SERS microscopy. Nano Lett. 14, 939–945 (2014).

    Article  ADS  Google Scholar 

  122. Weber, M. L., Wilson, A. J. & Willets, K. A. Characterizing the spatial dependence of redox chemistry on plasmonic nanoparticle electrodes using correlated super-resolution surface-enhanced Raman scattering imaging and electron microscopy. J. Phys. Chem. C 119, 18591–18601 (2015).

    Article  Google Scholar 

  123. Huang, S.-C. et al. Probing nanoscale spatial distribution of plasmonically excited hot carriers. Nat. Commun. 11, 4211 (2020).

    Article  ADS  Google Scholar 

  124. Schulze, G. et al. Investigation of selected baseline removal techniques as candidates for automated implementation. Appl. Spectrosc. 59, 545–574 (2005).

    Article  ADS  Google Scholar 

  125. Wei, D., Chen, S. & Liu, Q. Review of fluorescence suppression techniques in Raman spectroscopy. Appl. Spectrosc. Rev. 50, 387–406 (2015).

    Article  ADS  Google Scholar 

  126. Galloway, C. M., Ru, E. C. L. & Etchegoin, P. G. An iterative algorithm for background removal in spectroscopy by wavelet transforms. Appl. Spectrosc. 63, 1370–1376 (2009).

    Article  ADS  Google Scholar 

  127. Lieber, C. A. & Mahadevan-Jansen, A. Automated method for subtraction of fluorescence from biological Raman spectra. Appl. Spectrosc. 57, 1363–1367 (2003).

    Article  ADS  Google Scholar 

  128. Guo, S., Popp, J. & Bocklitz, T. Chemometric analysis in Raman spectroscopy from experimental design to machine learning-based modeling. Nat. Protoc. 16, 5426–5459 (2021).

    Article  Google Scholar 

  129. Lin, K.-Q. et al. Plasmonic photoluminescence for recovering native chemical information from surface-enhanced Raman scattering. Nat. Commun. 8, 14891 (2017).

    Article  ADS  Google Scholar 

  130. Plieth, W., Wilson, G. S. & Gutiérrez De La Fe, C. Spectroelectrochemistry: a survey of in situ spectroscopic techniques. Pure Appl. Chem. 70, 1395–1414 (1998).

    Article  Google Scholar 

  131. Luo, S. et al. Developing a peak extraction and retention (PEER) algorithm for improving the temporal resolution of Raman spectroscopy. Anal. Chem. 93, 8408–8413 (2021).

    Article  Google Scholar 

  132. Savitzky, A. & Golay, M. J. E. Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 36, 1627–1639 (1964).

    Article  ADS  Google Scholar 

  133. Wang, X., Liu, G., Xu, M., Ren, B. & Tian, Z. Development of weak signal recognition and an extraction algorithm for Raman imaging. Anal. Chem. 91, 12909–12916 (2019).

    Article  Google Scholar 

  134. Barclay, V. J., Bonner, R. F. & Hamilton, I. P. Application of wavelet transforms to experimental spectra: smoothing, denoising, and data set compression. Anal. Chem. 69, 78–90 (1997).

    Article  Google Scholar 

  135. Wang, A. et al. In situ identification of intermediates of benzyl chloride reduction at a silver electrode by SERS coupled with DFT calculations. J. Am. Chem. Soc. 132, 9534–9536 (2010).

    Article  Google Scholar 

  136. Huang, Y.-F., Kooyman, P. J. & Koper, M. T. M. Intermediate stages of electrochemical oxidation of single-crystalline platinum revealed by in situ Raman spectroscopy. Nat. Commun. 7, 12440 (2016).

    Article  ADS  Google Scholar 

  137. Dong, J.-C. et al. In situ Raman spectroscopic evidence for oxygen reduction reaction intermediates at platinum single-crystal surfaces. Nat. Energy 4, 60–67 (2019).

    Article  ADS  Google Scholar 

  138. Hernandez, S. et al. Multiamperometric-SERS detection of melamine on gold screen-printed electrodes. J. Electroanal. Chem. 918, 116478 (2022).

    Article  Google Scholar 

  139. Wang, Y.-H. et al. In situ Raman spectroscopy reveals the structure and dissociation of interfacial water. Nature 600, 81–85 (2021).

    Article  ADS  Google Scholar 

  140. Bro, R. PARAFAC. Tutorial and applications. Chemom. Intell. Lab. Syst. 38, 149–171 (1997).

    Article  Google Scholar 

  141. Andersson, C. A. & Bro, R. The N-way toolbox for MATLAB. Chemom. Intell. Lab. Syst. 52, 1–4 (2000).

    Article  Google Scholar 

  142. Marro, M., Nieva, C., De Juan, A. & Sierra, A. Unravelling the metabolic progression of breast cancer cells to bone metastasis by coupling Raman spectroscopy and a novel use of MCR-ALS algorithm. Anal. Chem. 90, 5594–5602 (2018).

    Article  Google Scholar 

  143. Grys, D.-B., de Nijs, B., Huang, J., Scherman, O. A. & Baumberg, J. J. SERSbot: revealing the details of SERS multianalyte sensing using full automation. ACS Sens. 6, 4507–4514 (2021).

    Article  Google Scholar 

  144. Morais, C. L. M., Lima, K. M. G., Singh, M. & Martin, F. L. Tutorial: multivariate classification for vibrational spectroscopy in biological samples. Nat. Protoc. 15, 2143–2162 (2020).

    Article  Google Scholar 

  145. Bursch, M., Mewes, J.-M., Hansen, A. & Grimme, S. Best-practice DFT protocols for basic molecular computational chemistry**. Angew. Chem. Int. Ed. 61, e202205735 (2022).

    Article  ADS  Google Scholar 

  146. Su, M. et al. In situ Raman study of CO electrooxidation on Pt(hkl) single-crystal surfaces in acidic solution. Angew. Chem. Int. Ed. 59, 23554–23558 (2020).

    Article  Google Scholar 

  147. Dai, K. et al. Adsorption and reduction reactions of anthraquinone derivatives on gold electrodes studied with electrochemical surface-enhanced Raman spectroscopy. J. Raman Spectrosc. 43, 1367–1373 (2012).

    Article  ADS  Google Scholar 

  148. Perez-Estebanez, M. et al. Double fingerprint characterization of uracil and 5-uracil. Electrochim. Acta 388, 138615 (2021).

    Article  Google Scholar 

  149. Quinet, O., Champagne, B. & Kirtman, B. Analytical TDHF second derivatives of dynamic electronic polarizability with respect to nuclear coordinates. Application to the dynamic ZPVA correction. J. Comput. Chem. 22, 1920–1932 (2001).

    Article  Google Scholar 

  150. Marenich, A. V., Cramer, C. J. & Truhlar, D. G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B 113, 6378–6396 (2009).

    Article  Google Scholar 

  151. Ozaki, Y. et al. Advances, challenges and perspectives of quantum chemical approaches in molecular spectroscopy of the condensed phase. Chem. Soc. Rev. 50, 10917–10954 (2021).

    Article  Google Scholar 

  152. Li, C.-Y. et al. In situ probing electrified interfacial water structures at atomically flat surfaces. Nat. Mater. 18, 697–701 (2019).

    Article  ADS  Google Scholar 

  153. Li, P. et al. Hydrogen bond network connectivity in the electric double layer dominates the kinetic pH effect in hydrogen electrocatalysis on Pt. Nat. Catal. 5, 900–911 (2022).

    Article  Google Scholar 

  154. Le, J.-B., Yang, X.-H., Zhuang, Y.-B., Jia, M. & Cheng, J. Recent progress toward ab initio modeling of electrocatalysis. J. Phys. Chem. Lett. 12, 8924–8931 (2021).

    Article  Google Scholar 

  155. Wang, H., Zhang, L., Han, J. & Weinan, E. DeePMD-kit: a deep learning package for many-body potential energy representation and molecular dynamics. Comput. Phys. Commun. 228, 178–184 (2018).

    Article  ADS  Google Scholar 

  156. Aranda, D. et al. Computational model for electrochemical surface-enhanced Raman scattering: key role of the surface charges and synergy between electromagnetic and charge-transfer enhancement mechanisms. J. Chem. Theory Comput. 18, 6802–6815 (2022).

    Article  Google Scholar 

  157. Tian, Z.-Q. & Ren, B. in Encyclopedia of Electrochemistry Vol. 3 (eds Bard, A. J., Stratmann, M. & Unwin, P. R.) 576–659 (Wiley-VCH, 2007).

  158. Okejas, V., Sjostrom, C. & Harris, J. M. SERS detection of the vibrational stark effect from nitrile-terminated SAMs to probe electric fields in the diffuse double-layer. J. Am. Chem. Soc. 124, 2408–2409 (2002).

    Article  Google Scholar 

  159. Zhang, N. et al. Probing double layer structure at Au/[BMIm]BF4 interface by molecular length-dependent SERS Stark effect. J. Electroanal. Chem. 751, 137–143 (2015).

    Article  Google Scholar 

  160. Marr, J. M. & Schultz, Z. Imaging electric fields in SERS and TERS using the vibrational stark effect. J. Phys. Chem. Lett. 4, 3268–3272 (2013).

    Article  Google Scholar 

  161. Huang, Y.-F. et al. When the signal is not from the original molecule to be detected: chemical transformation of para-aminothiophenol on Ag during the SERS measurement. J. Am. Chem. Soc. 132, 9244–9246 (2010).

    Article  Google Scholar 

  162. Zhan, C. et al. From plasmon-enhanced molecular spectroscopy to plasmon-mediated chemical reactions. Nat. Rev. Chem. 2, 216–213 (2018).

    Article  Google Scholar 

  163. Zhan, C., Moskovits, M. & Tian, Z.-Q. Recent progress and prospects in plasmon-mediated chemical reaction. Matter 3, 42056 (2020).

    Article  Google Scholar 

  164. Moldovan, R. et al. Review on combining surface-enhanced Raman spectroscopy and electrochemistry for analytical applications. Anal. Chim. Acta 1209, 339250 (2022).

    Article  Google Scholar 

  165. Hendricks-Leukes, N. R., Jonas, M. R., Mlamla, Z. C., Smith, M. & Blackburn, J. M. Dual-approach electrochemical surface-enhanced Raman scattering detection of Mycobacterium tuberculosis in patient-derived biological specimens: proof of concept for a generalizable method to detect and identify bacterial pathogens. ACS Sens. 7, 1403–1418 (2022).

    Article  Google Scholar 

  166. Albarghouthi, N., Eisnor, M. M., Pye, C. C. & Brosseau, C. L. Electrochemical surface-enhanced Raman spectroscopy (EC-SERS) and computational study of atrazine: toward point-of-need detection of prevalent herbicides. J. Phys. Chem. C 126, 9836–9842 (2022).

    Article  Google Scholar 

  167. Velička, M., Zacharovas, E., Adomavičiūtė, S. & Šablinskas, V. Detection of caffeine intake by means of EC-SERS spectroscopy of human saliva. Spectrochim. Acta A Mol. Biomol. Spectrosc. 246, 118956 (2021).

    Article  Google Scholar 

  168. Lin, Y.-K., Tai, R.-J., Wei, S.-C. & Luo, S.-C. Electrochemical SERS on 2D mapping for metabolites detection. Langmuir 36, 5990–5996 (2020).

    Article  Google Scholar 

  169. Velicka, M., Adomaviciute, S., Zacharovas, E. & Sablinskas, V. in Plasmonics in Biology and Medicine XVII Vol. 11257 (eds VoDinh, T., Ho, H. & Ray, K.) (SPIE, 2020).

  170. Karaballi, R. A., Nel, A., Krishnan, S., Blackburn, J. & Brosseau, C. L. Development of an electrochemical surface-enhanced Raman spectroscopy (EC-SERS) aptasensor for direct detection of DNA hybridization. Phys. Chem. Chem. Phys. 17, 21356–21363 (2015).

    Article  Google Scholar 

  171. Lynk, T. P., Sit, C. S. & Brosseau, C. L. Electrochemical surface-enhanced Raman spectroscopy as a platform for bacterial detection and identification. Anal. Chem. 90, 12639–12646 (2018).

    Article  Google Scholar 

  172. McLeod, K. E. R., Lynk, T. P., Sit, C. S. & Brosseau, C. L. On the origin of electrochemical surface-enhanced Raman spectroscopy (EC-SERS) signals for bacterial samples: the importance of filtered control studies in the development of new bacterial screening platforms. Anal. Methods 11, 924–929 (2019).

    Article  Google Scholar 

  173. Moldovan, R. et al. EC-SERS detection of thiobendazole in apple juice using activated screen-printed electrodes. Food Chem. 405, 134713 (2023).

    Article  Google Scholar 

  174. Santos, V. O., Leite, I. R., Brolo, A. G. & Rubim, J. C. The electrochemical reduction of CO2 on a copper electrode in 1-N-butyl-3-methyl imidazolium tetrafluoroborate (BMI.BF4) monitored by surface-enhanced Raman scattering (SERS). J. Raman Spectrosc. 47, 674–680 (2016).

    Article  ADS  Google Scholar 

  175. Henckel, D. A. et al. Potential dependence of the local pH in a CO2 reduction electrolyzer. ACS Catal. 11, 255–263 (2021).

    Article  Google Scholar 

  176. Shan, W. et al. In situ surface-enhanced Raman spectroscopic evidence on the origin of selectivity in CO2 electrocatalytic reduction. ACS Nano 14, 11363–11372 (2020).

    Article  Google Scholar 

  177. An, H. et al. Sub-second time-resolved surface-enhanced Raman spectroscopy reveals dynamic CO intermediates during electrochemical CO2 reduction on copper. Angew. Chem. Int. Ed. 60, 16576–16584 (2021).

    Article  Google Scholar 

  178. Tian, Z.-Q., Ren, B., Chen, Y.-X., Zou, S.-Z. & Mao, B.-W. Probing electrode/electrolyte interfacial structure in the potential region of hydrogen evolution by Raman spectroscopy. J. Chem. Soc. Faraday Trans. 92, 3829 (1996).

    Article  Google Scholar 

  179. Ren, B. et al. Surface Raman spectra of pyridine and hydrogen on bare platinum and nickel electrodes. J. Electroanal. Chem. 415, 175–178 (1996).

    Article  Google Scholar 

  180. Chen, Y. X. & Tian, Z. Q. Dependence of surface enhanced Raman scattering of water on the hydrogen evolution reaction. Chem. Phys. Lett. 281, 379–383 (1997).

    Article  ADS  Google Scholar 

  181. Tian, Z. Q., Ren, B. & Mao, B. W. Extending surface Raman spectroscopy to transition metal surfaces for practical applications. 1. Vibrational properties of thiocyanate and carbon monoxide adsorbed on electrochemically activated platinum surfaces. J. Phys. Chem. B 101, 1338–1346 (1997).

    Article  Google Scholar 

  182. Ren, B., Xu, X., Li, X. Q., Cai, W. B. & Tian, Z. Q. Extending surface Raman spectroscopic studies to transition metals for practical applications: II. Hydrogen adsorption at platinum electrodes. Surf. Sci. 427–428, 157–161 (1999).

    Article  ADS  Google Scholar 

  183. Ren, B., Cui, L., Lin, X.-F. & Tian, Z.-Q. Probing different adsorption behavior of CO on Pt at solid/liquid and solid/gas interfaces by Raman spectroscopy with a three-phase Raman cell. Chem. Phys. Lett. 376, 130–135 (2003).

    Article  ADS  Google Scholar 

  184. Zhang, P. et al. Potential-dependent chemisorption of carbon monoxide at a gold core−platinum shell nanoparticle electrode: a combined study by electrochemical in situ surface-enhanced Raman spectroscopy and density functional theory. J. Phys. Chem. C 114, 403–411 (2010).

    Article  Google Scholar 

  185. Zhang, B. et al. Electrochemical and surfaced-enhanced Raman spectroscopic investigation of CO and SCN- adsorbed on Au core−Pt shell nanoparticles supported on GC electrodes. Langmuir 21, 7449–7455 (2005).

    Article  Google Scholar 

  186. Hu, J.-W. et al. Palladium-coated gold nanoparticles with a controlled shell thickness used as surface-enhanced Raman scattering substrate. J. Phys. Chem. C 111, 1105–1112 (2007).

    Article  Google Scholar 

  187. Li, J.-F. et al. Core–shell nanoparticle based SERS from hydrogen adsorbed on a rhodium(111) electrode. Chem. Commun. 47, 2023–2025 (2011).

    Article  Google Scholar 

  188. Li, J.-F. et al. SERS and DFT study of water on metal cathodes of silver, gold and platinum nanoparticles. Phys. Chem. Chem. Phys. 12, 2493–2502 (2010).

    Article  Google Scholar 

  189. Li, C.-Y. et al. In situ monitoring of electrooxidation processes at gold single crystal surfaces using shell-isolated nanoparticle-enhanced Raman spectroscopy. J. Am. Chem. Soc. 137, 7648–7651 (2015).

    Article  Google Scholar 

  190. Li, J. et al. Electrokinetic and in situ spectroscopic investigations of CO electrochemical reduction on copper. Nat. Commun. 12, 3264 (2021).

    Article  ADS  Google Scholar 

  191. Kang, G., Yang, M., Mattei, M. S., Schatz, G. C. & Van Duyne, R. P. In situ nanoscale redox mapping using tip-enhanced Raman spectroscopy. Nano Lett. 19, 2106–2113 (2019).

    Article  ADS  Google Scholar 

  192. Pfisterer, J. H. K., Baghernejad, M., Giuzio, G. & Domke, K. F. Reactivity mapping of nanoscale defect chemistry under electrochemical reaction conditions. Nat. Commun. 10, 5702 (2019).

    Article  ADS  Google Scholar 

  193. Ding, S.-Y. et al. Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials. Nat. Rev. Mater. 1, 16021 (2016).

    Article  ADS  Google Scholar 

  194. Chen, J.-J. et al. Conductive Lewis base matrix to recover the missing link of Li2S8 during the sulfur redox cycle in Li–S battery. Chem. Mater. 27, 2048–2055 (2015).

    Article  Google Scholar 

  195. Huang, J. X. et al. Structural evolution of NM (Ni and Mn) lithium-rich layered material revealed by in-situ electrochemical Raman spectroscopic study. J. Power Sources 310, 85–90 (2016).

    Article  ADS  Google Scholar 

  196. Peng, Z. et al. Oxygen reactions in a non-aqueous Li+ electrolyte. Angew. Chem. Int. Ed. 50, 6351–6355 (2011).

    Article  Google Scholar 

  197. Johnson, L. et al. The role of LiO2 solubility in O2 reduction in aprotic solvents and its consequences for Li-O2 batteries. Nat. Chem. 6, 1091–1099 (2014).

    Article  Google Scholar 

  198. Peng, Z., Chen, Y., Bruce, P. G. & Xu, Y. Direct detection of the superoxide anion as a stable intermediate in the electroreduction of oxygen in a non-aqueous electrolyte containing phenol as a proton source. Angew. Chem. Int. Ed. 54, 8165–8168 (2015).

    Article  Google Scholar 

  199. Peng, Z., Freunberger, S. A., Chen, Y. & Bruce, P. G. A reversible and higher-rate Li-O2 battery. Science 337, 563–566 (2012).

    Article  ADS  Google Scholar 

  200. Gittleson, F. S., Ryu, W. H. & Taylor, A. D. Operando observation of the gold–electrolyte interface in Li-O2 batteries. ACS Appl. Mater. Inter. 6, 19017–19025 (2014).

    Article  Google Scholar 

  201. Hy, S. et al. In situ surface enhanced Raman spectroscopic studies of solid–electrolyte interphase formation in lithium ion battery electrodes. J. Power Sources 256, 324–328 (2014).

    Article  ADS  Google Scholar 

  202. Gajan, A. et al. Solid electrolyte interphase instability in operating lithium-ion batteries unraveled by enhanced-Raman spectroscopy. ACS Energy Lett. 6, 1757–1763 (2021).

    Article  Google Scholar 

  203. Hu, R. et al. Dramatically enhanced reversibility of Li2O in SnO2-based electrodes: the effect of nanostructure on high initial reversible capacity. Energy Environ. Sci. 9, 595–603 (2016).

    Article  Google Scholar 

  204. Chen, D. et al. Operando investigation into dynamic evolution of cathode–electrolyte interfaces in a Li-ion battery. Nano Lett. 19, 2037–2043 (2019).

    Article  ADS  Google Scholar 

  205. Hy, S., Felix, F., Rick, J., Su, W. N. & Hwang, B. J. Direct in situ observation of Li2O evolution on Li-rich high-capacity cathode material, Li[Ni(x)Li((1−2x)/3)Mn((2−x)/3)]O2 (0 ≤ x ≤ 0.5). J. Am. Chem. Soc. 136, 999–1007 (2014).

    Article  Google Scholar 

  206. Martin-Yerga, D. et al. Dynamics of solid–electrolyte interphase formation on silicon electrodes revealed by combinatorial electrochemical screening. Angew. Chem. Int. Ed. 61, e202207184 (2022).

    Article  Google Scholar 

  207. Nanda, J. et al. Unraveling the nanoscale heterogeneity of solid electrolyte interphase using tip-enhanced Raman spectroscopy. Joule 3, 2001–2019 (2019).

    Article  Google Scholar 

  208. Zhong, J. H. et al. Quantitative correlation between defect density and heterogeneous electron transfer rate of single layer graphene. J. Am. Chem. Soc. 136, 16609–16617 (2014).

    Article  Google Scholar 

  209. Chen, J. et al. Ag@MoS2 core–shell heterostructure as SERS platform to reveal the hydrogen evolution active sites of single-layer MoS2. J. Am. Chem. Soc. 142, 7161–7167 (2020).

    Article  Google Scholar 

  210. Zhang, S. P. et al. In situ Raman study of the photoinduced behavior of dye molecules on TiO2(hkl) single crystal surfaces. Chem. Sci. 11, 6431–6435 (2020).

    Article  Google Scholar 

  211. Yang, L. et al. Engineering large-scaled electrochromic semiconductor films as reproductive SERS substrates for operando investigation at the solid/liquid interfaces. Chin. Chem. Lett. 33, 5169–5173 (2022).

    Article  Google Scholar 

  212. Smith, G. & Dickinson, E. J. F. Error, reproducibility and uncertainty in experiments for electrochemical energy technologies. Nat. Commun. 13, 6832 (2022).

    Article  ADS  Google Scholar 

  213. Eisnor, M. M. et al. Electrochemical surface-enhanced Raman spectroscopy (EC-SERS): a tool for the identification of polyphenolic components in natural lake pigments. Phys. Chem. Chem. Phys. 24, 347–356 (2022).

    Article  Google Scholar 

  214. Chotoye, S. A. B., Eisnor, M. M., Ball, R. B. E. & Brosseau, C. L. Development of an electrochemical surface-enhanced Raman spectroscopic biosensor for the direct detection of glutathione. J. Raman Spectrosc. 54, 587–595 (2023).

    Article  ADS  Google Scholar 

  215. Yan, M., Kawamata, Y. & Baran, P. S. Synthetic organic electrochemical methods since 2000: on the verge of a renaissance. Chem. Rev. 117, 13230–13319 (2017).

    Article  Google Scholar 

  216. Chakrabarti, A. et al. A decade+ of operando spectroscopy studies. Catal. Today 283, 27–53 (2017).

    Article  Google Scholar 

  217. Chang Xie, W. et al. In-situ electrochemical surface-enhanced Raman spectroscopy study of formic acid electrooxidation at variable temperatures by high-frequency heating technology. Electrochim. Acta 281, 323–328 (2018).

    Article  Google Scholar 

  218. Wang, X. & Guo, L. SERS activity of semiconductors: crystalline and amorphous nanomaterials. Angew. Chem. Int. Ed. 59, 4231–4239 (2020).

    Article  Google Scholar 

  219. Qu, S. et al. An electrochromic Ag-decorated WO3−x film with adjustable defect states for electrochemical surface-enhanced Raman spectroscopy. Nanomaterials 12, 1637 (2022).

    Article  Google Scholar 

  220. Hao, R. & Zhang, B. Nanopipette-based electroplated nanoelectrodes. Anal. Chem. 88, 614–620 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Sciences and Engineering Research Council of Canada (C.L.B.) and the Canada Research Chairs Program (C.L.B.). A.J.W. and P.B.J. acknowledge support from the Oak Ridge Associated Universities through a Ralph E. Powe Junior Faculty Enhancement Award and start-up funds from the University of Louisville. A.C. acknowledges the Ministerio de Ciencia e Innovación and Agencia Estatal de Investigación (MCIN/AEI/10.13039/501100011033, PID2020-113154RB-C21). J.V.P.-R. acknowledges Ministerio de Universidades and NextGenerationEU for his Maria Zambrano fellowship. B.R. and X.W. acknowledge the financial support of the National Natural Science Foundation of China (NSFC) (Grant Nos 22021001, 22227802 and 92061118).

Author information

Authors and Affiliations

Authors

Contributions

Introduction (C.L.B.); Experimentation (A.C., J.V.P.-R., C.L.B., B.R., X.W., A.J.W. and P.B.J.); Results (A.C., J.V.P.-R., B.R. and X.W.); Applications (C.L.B., B.R. and X.W.); Reproducibility and data deposition (C.L.B.); Limitations and optimizations (C.L.B.); Outlook (C.L.B.); Overview of the Primer (C.L.B.).

Corresponding authors

Correspondence to Christa L. Brosseau, Alvaro Colina, Andrew J. Wilson, Bin Ren or Xiang Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Methods Primers thanks Zhu Chen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Gaussian: https://gaussian.com

IRUG: http://www.irug.org/

ORCA: https:// orcaforum.kofo.mpg.de

RRUFF: https://rruff.info/

SDBS: https://sdbs.db.aist.go.jp

Glossary

Chemical enhancement mechanism

Charge-transfer processes between the adsorbate and the metal surface result in an enhancement of the Raman signal, typically in the order of 101–102.

Electrochemical Stark tuning

Changes in vibrational frequencies of adsorbed species as a function of applied potential that originates from potential-dependent metal–adsorbate bonding and from the influence of electric field on the adsorbed layer.

Electromagnetic enhancement

Excitation of localized surface plasmons on the nanoparticle surface leads to a generation of an enhanced electric field at the surface, which results in an E4 enhancement of the Raman-scattered photons.

Epi-illumination

An arrangement of optical components in microscopy that allows for illumination of the specimen from above.

Glancing angle geometry

In optics, the angle between the incident beam and the surface.

Localized surface plasmon resonance

Collective oscillation of conduction electrons present in metal nanoparticles on irradiation of light.

Potential of zero charge

(PZC). Potential at which the surface free charge of a particular metal is zero.

Savitzky–Golay smoothing

A digital data filter commonly used to smooth data.

Signal filtering

Process whereby unwanted components or features of a signal are removed.

VoltaRamangram

A plot of the spectral peak evolution in Raman spectroscopy as a function of the applied potential.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brosseau, C.L., Colina, A., Perales-Rondon, J.V. et al. Electrochemical surface-enhanced Raman spectroscopy. Nat Rev Methods Primers 3, 79 (2023). https://doi.org/10.1038/s43586-023-00263-6

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s43586-023-00263-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing