Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Shell-isolated nanoparticle-enhanced Raman spectroscopy

Abstract

Surface-enhanced Raman spectroscopy (SERS) is a highly sensitive spectroscopic technique that provides non-destructive detection at the single-molecule level. Shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS) provided a solution to the long-standing limitation of poor universality of traditional SERS substrates and morphology and, as a result, greatly expanded applications of SERS. In this Primer, we introduce the background, origin and enhancement mechanism of SHINERS before describing the experimental details of SHINERS, including the types and characterization of shell-isolated nanoparticles, relevant experimental instruments, and experimental reproducibility and data analysis. The recent advances in electrochemical catalysis, heterogeneous catalysis, batteries, and industry and living applications are highlighted. By analysing the limitations and possible optimizations of SHINERS, the guidance for further improvements is discussed. Finally, an outlook on the application of SHINERS-based research is presented.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The working modes of SERS, TERS and SHINERS.
Fig. 2: Schematic of equipment set-ups for SHINERS experiments.
Fig. 3: SHINERS for electrochemical catalysis.
Fig. 4: SHINERS for battery research: present and future perspective.
Fig. 5: SHINERS for heterogeneous catalysis.
Fig. 6: SHINERS for industry and living application.

Similar content being viewed by others

References

  1. Fleischmann, M., Hendra, P. J. & McQuillan, A. J. Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett. 26, 163–166 (1974). To our knowledge, this article is the first report of surface-enhanced Raman spectra.

    Article  ADS  Google Scholar 

  2. Jeanmaire, D. L. & Van Duyne, R. P. Surface raman spectroelectrochemistry: part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J. Electroanal. Chem. Interfacial Electrochem. 84, 1–20 (1977). This work demonstrates that the anomalous enhancement in surface Raman spectra is due to a new effect: the SERS effect.

    Article  Google Scholar 

  3. Albrecht, M. G. & Creighton, J. A. Anomalously intense Raman spectra of pyridine at a silver electrode. J. Am. Chem. Soc. 99, 5215–5217 (1977).

    Article  Google Scholar 

  4. Li, J.-F., Zhang, Y.-J., Ding, S.-Y., Panneerselvam, R. & Tian, Z.-Q. Core–shell nanoparticle-enhanced Raman spectroscopy. Chem. Rev. 117, 5002–5069 (2017).

    Article  Google Scholar 

  5. Zhang, H., Duan, S., Radjenovic, P. M., Tian, Z.-Q. & Li, J.-F. Core–shell nanostructure-enhanced Raman spectroscopy for surface catalysis. Acc. Chem. Res. 53, 729–739 (2020).

    Article  Google Scholar 

  6. Moskovits, M. Surface roughness and the enhanced intensity of Raman scattering by molecules adsorbed on metals. J. Chem. Phys. 69, 4159–4161 (1978).

    Article  ADS  Google Scholar 

  7. Li, J. F. et al. Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature 464, 392–395 (2010). To our knowledge, this article is the first demonstration of the observation of SHINERS.

    Article  ADS  Google Scholar 

  8. Li, J.-F., Anema, J. R., Wandlowski, T. & Tian, Z.-Q. Dielectric shell isolated and graphene shell isolated nanoparticle enhanced Raman spectroscopies and their applications. Chem. Soc. Rev. 44, 8399–8409 (2015).

    Article  Google Scholar 

  9. Anderson, M. S. Locally enhanced Raman spectroscopy with an atomic force microscope. Appl. Phys. Lett. 76, 3130–3132 (2000).

    Article  ADS  Google Scholar 

  10. Pettinger, B., Picardi, G., Schuster, R. & Ertl, G. Surface enhanced Raman spectroscopy: towards single molecule spectroscopy. Electrochemistry 68, 942–949 (2000).

    Article  Google Scholar 

  11. Hayazawa, N., Inouye, Y., Sekkat, Z. & Kawata, S. Metallized tip amplification of near-field Raman scattering. Opt. Commun. 183, 333–336 (2000).

    Article  ADS  Google Scholar 

  12. Stöckle, R. M., Suh, Y. D., Deckert, V. & Zenobi, R. Nanoscale chemical analysis by tip-enhanced Raman spectroscopy. Chem. Phys. Lett. 318, 131–136 (2000). Together with Anderson (2000), Pettinger et al. (2000) and Hayazawa et al. (2000), this paper is the first reporting on TERS to our knowledge.

    Article  ADS  Google Scholar 

  13. Pettinger, B., Ren, B., Picardi, G., Schuster, R. & Ertl, G. Nanoscale probing of adsorbed species by tip-enhanced Raman spectroscopy. Phys. Rev. Lett. 92, 096101 (2004).

    Article  ADS  Google Scholar 

  14. Wu, D.-Y., Li, J.-F., Ren, B. & Tian, Z.-Q. Electrochemical surface-enhanced Raman spectroscopy of nanostructures. Chem. Soc. Rev. 37, 1025–1041 (2008).

    Article  Google Scholar 

  15. Liz-Marzán, L. M., Giersig, M. & Mulvaney, P. Synthesis of nanosized gold−silica core−shell particles. Langmuir 12, 4329–4335 (1996).

    Article  Google Scholar 

  16. Dong, J.-C. et al. Direct in situ Raman spectroscopic evidence of oxygen reduction reaction intermediates at high-index Pt(hkl) surfaces. J. Am. Chem. Soc. 142, 715–719 (2020).

    Article  Google Scholar 

  17. Dong, J.-C. et al. In situ Raman spectroscopic evidence for oxygen reduction reaction intermediates at platinum single-crystal surfaces. Nat. Energy 4, 60–67 (2019). To our knowledge, this work studies the ORR reaction on a Pt(hkl) single-crystal surface in situ by the electrochemical SHINERS technique for the first time.

    Article  ADS  Google Scholar 

  18. Zhou, H. et al. Application of SERS quantitative analysis method in food safety detection. Rev. Anal. Chem. 40, 173–186 (2021).

    Article  Google Scholar 

  19. Wei, J. et al. Probing single-atom catalysts and catalytic reaction processes by shell-isolated nanoparticle-enhanced Raman spectroscopy. Angew. Chem. Int. Ed. 60, 9306–9310 (2021).

    Article  Google Scholar 

  20. Zhang, H. et al. In situ dynamic tracking of heterogeneous nanocatalytic processes by shell-isolated nanoparticle-enhanced Raman spectroscopy. Nat. Commun. 8, 15447 (2017). To our knowledge, this article is the first demonstration of the observation of the SHINERS-satellite strategy for the studies of heterogeneous nanocatalytic processes.

    Article  ADS  Google Scholar 

  21. Zhang, H. et al. Revealing the role of interfacial properties on catalytic behaviors by in situ surface-enhanced Raman spectroscopy. J. Am. Chem. Soc. 139, 10339–10346 (2017).

    Article  Google Scholar 

  22. Wang, Y.-H. et al. In situ spectroscopic insight into the origin of the enhanced performance of bimetallic nanocatalysts towards the oxygen reduction reaction (ORR). Angew. Chem. Int. Ed. 58, 16062–16066 (2019).

    Article  Google Scholar 

  23. Chen, H.-Q. et al. Unmasking the critical role of the ordering degree of bimetallic nanocatalysts on oxygen reduction reaction by in situ Raman spectroscopy. Angew. Chem. Int. Ed. 61, e202117834 (2022).

    Google Scholar 

  24. Huang, J. et al. Rational design and synthesis of γFe2O3@Au magnetic gold nanoflowers for efficient cancer theranostics. Adv. Mater. 27, 5049–5056 (2015).

    Article  Google Scholar 

  25. Li, J. F. et al. Surface analysis using shell-isolated nanoparticle-enhanced Raman spectroscopy. Nat. Protoc. 8, 52–65 (2013).

    Article  ADS  Google Scholar 

  26. Kudelski, A. & Wojtysiak, S. Silica-covered silver and gold nanoresonators for Raman analysis of surfaces of various materials. J. Phys. Chem. C. 116, 16167–16174 (2012).

    Article  Google Scholar 

  27. Abdulrahman, H. B., Kolataj, K., Lenczewski, P., Krajczewski, J. & Kudelski, A. MnO2-protected silver nanoparticles: new electromagnetic nanoresonators for Raman analysis of surfaces in basis environment. Appl. Surf. Sci. 388, 704–709 (2016).

    Article  ADS  Google Scholar 

  28. Krajczewski, J., Kolataj, K., Pietrasik, S. & Kudelski, A. Silica-covered star-shaped Au–Ag nanoparticles as new electromagnetic nanoresonators for Raman characterisation of surfaces. Spectrochim. Acta A Mol. Biomol. Spectrosc. 193, 1–7 (2018).

    Article  ADS  Google Scholar 

  29. Uzayisenga, V. et al. Synthesis, characterization, and 3D-FDTD simulation of Ag@SiO2 nanoparticles for shell-isolated nanoparticle-enhanced Raman spectroscopy. Langmuir 28, 9140–9146 (2012).

    Article  Google Scholar 

  30. Butcher, D. P. Jr., Boulos, S. P., Murphy, C. J., Ambrosio, R. C. & Gewirth, A. A. Face-dependent shell-isolated nanoparticle enhanced Raman spectroscopy of 2,2′-bipyridine on Au(100) and Au(111). J. Phys. Chem. C. 116, 5128–5140 (2012).

    Article  Google Scholar 

  31. Zhang, B.-Q., Li, S.-B., Xiao, Q., Li, J. & Sun, J.-J. Rapid synthesis and characterization of ultra-thin shell Au@SiO2 nanorods with tunable SPR for shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS). J. Raman Spectrosc. 44, 1120–1125 (2013).

    Article  ADS  Google Scholar 

  32. Li, S.-B. et al. Shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS) based on gold-core silica-shell nanorods. Z. Phys. Chem. 225, 775–783 (2011).

    Article  Google Scholar 

  33. Kolataj, K., Krajczewski, J. & Kudelski, A. Dipyramidal-Au@SiO2 nanostructures: new efficient electromagnetic nanoresonators for Raman spectroscopy analysis of surfaces. Appl. Surf. Sci. 456, 932–940 (2018).

    Article  ADS  Google Scholar 

  34. Krajczewski, J., Michalowska, A. & Kudelski, A. Star-shaped plasmonic nanostructures: new, simply synthetized materials for Raman analysis of surfaces. Spectrochim. Acta A Mol. Biomol. Spectrosc. 225, 117469 (2020).

    Article  Google Scholar 

  35. Boccorh, D. K. et al. A universal polymer shell-isolated nanoparticle (SHIN) design for single particle spectro-electrochemical SERS sensing using different core shapes. Nanoscale Adv. 3, 6415–6426 (2021).

    Article  ADS  Google Scholar 

  36. Abdulrahman, H. B., Krajczewski, J. & Kudelski, A. Modification of surfaces of silver nanoparticles for controlled deposition of silicon, manganese, and titanium dioxides. Appl. Surf. Sci. 427, 334–339 (2018).

    Article  ADS  Google Scholar 

  37. Kolataj, K., Krajczewski, J. & Kudelski, A. Silver nanoparticles with many sharp apexes and edges as efficient nanoresonators for shell-isolated nanoparticle-enhanced Raman spectroscopy. J. Phys. Chem. C. 121, 12383–12391 (2017).

    Article  Google Scholar 

  38. Sun, Y. G., Mayers, B. & Xia, Y. N. Metal nanostructures with hollow interiors. Adv. Mater. 15, 641–646 (2003).

    Article  Google Scholar 

  39. Abdulrahman, H. B., Krajczewski, J., Aleksandrowska, D. & Kudelski, A. Silica-protected hollow silver and gold nanoparticles: new material for Raman analysis of surfaces. J. Phys. Chem. C 119, 20030–20038 (2015).

    Article  Google Scholar 

  40. Michalowska, A. & Kudelski, A. The first silver-based plasmonic nanomaterial for shell-isolated nanoparticle-enhanced Raman spectroscopy with magnetic properties. Molecules 27, 3081 (2022).

    Article  Google Scholar 

  41. Michalowska, A., Krajczewski, J. & Kudelski, A. Magnetic iron oxide cores with attached gold nanostructures coated with a layer of silica: an easily, homogeneously deposited new nanomaterial for surface-enhanced Raman scattering measurements. Spectrochim. Acta A Mol. Biomol. Spectrosc. 277, 121266 (2022).

    Article  Google Scholar 

  42. Wei, D.-Y. et al. In situ Raman observation of oxygen activation and reaction at platinum–ceria interfaces during CO oxidation. J. Am. Chem. Soc. 143, 15635–15643 (2021).

    Article  Google Scholar 

  43. Honesty, N. R. & Gewirth, A. A. Shell-isolated nanoparticle enhanced Raman spectroscopy (SHINERS) investigation of benzotriazole film formation on Cu(100), Cu(111), and Cu(poly). J. Raman Spectrosc. 43, 46–50 (2012).

    Article  ADS  Google Scholar 

  44. Lin, X.-D. et al. Shell-isolated nanoparticle-enhanced Raman spectroscopy: nanoparticle synthesis, characterization and applications in electrochemistry. J. Electroanal. Chem. Inter. Electrochem. 688, 5–11 (2013).

    Article  Google Scholar 

  45. Barlow, B. C., Guo, B., Situm, A., Grosvenor, A. P. & Burgess, I. J. Shell isolated nanoparticle enhanced Raman spectroscopy (SHINERS) studies of steel surface corrosion. J. Electroanal. Chem. 853, 113559 (2019).

    Article  Google Scholar 

  46. Fernandez-Vidal, J. et al. Long-life and pH-stable SnO2-coated Au nanoparticles for SHINERS. J. Phys. Chem. C. 126, 12074–12081 (2022).

    Article  Google Scholar 

  47. Lin, X.-D. et al. Synthesis of ultrathin and compact Au@MnO2 nanoparticles for shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS). J. Raman Spectrosc. 43, 40–45 (2012).

    Article  ADS  Google Scholar 

  48. Zhang, Y.-J. et al. Graphene-coated Au nanoparticle-enhanced Raman spectroscopy. J. Raman Spectrosc. 52, 439–445 (2021).

    Article  ADS  Google Scholar 

  49. Ye, W. et al. Ultrathin polydopamine film coated gold nanoparticles: a sensitive, uniform, and stable SHINERS substrate for detection of benzotriazole. Analyst 142, 3459–3467 (2017).

    Article  ADS  Google Scholar 

  50. Qian, K., Liu, H., Yang, L. & Liu, J. Functionalized shell-isolated nanoparticle-enhanced Raman spectroscopy for selective detection of trinitrotoluene. Analyst 137, 4644–4646 (2012).

    Article  ADS  Google Scholar 

  51. Li, J.-F. et al. Extraordinary enhancement of Raman scattering from pyridine on single crystal Au and Pt electrodes by shell-isolated Au nanoparticles. J. Am. Chem. Soc. 133, 15922–15925 (2011).

    Article  Google Scholar 

  52. Li, C.-Y. et al. In situ monitoring of electrooxidation processes at gold single crystal surfaces using shell-isolated nanoparticle-enhanced Raman spectroscopy. J. Am. Chem. Soc. 137, 7648–7651 (2015). To our knowledge, this article is the first demonstration of electro-oxidation processes on gold single-crystal surfaces.

    Article  Google Scholar 

  53. Li, J.-F. et al. Electrochemical shell-isolated nanoparticle-enhanced Raman spectroscopy: correlating structural information and adsorption processes of pyridine at the Au(hkl) single crystal/solution interface. J. Am. Chem. Soc. 137, 2400–2408 (2015).

    Article  Google Scholar 

  54. Li, J.-F., Rudnev, A., Fu, Y., Bodappa, N. & Wandlowski, T. In situ SHINERS at electrochemical single-crystal electrode/electrolyte interfaces: tuning preparation strategies and selected applications. ACS Nano 7, 8940–8952 (2013).

    Article  Google Scholar 

  55. Qiu, H. et al. Insights into the role of graphene in hybrid photocatalytic system by in-situ shell-isolated nanoparticle-enhanced Raman spectroscopy. Carbon 152, 305–315 (2019).

    Article  Google Scholar 

  56. Zhang, W. et al. Large scale synthesis of pinhole-free shell-isolated nanoparticles (SHINs) using improved atomic layer deposition (ALD) method for practical applications. J. Raman Spectrosc. 46, 1200–1204 (2015).

    Article  ADS  Google Scholar 

  57. Krajczewski, J., Abdulrahman, H. B., Kolataj, K. & Kudelski, A. Zirconium(IV) oxide: new coating material for nanoresonators for shell-isolated nanoparticle-enhanced Raman spectroscopy. Spectrochim. Acta A Mol. Biomol. Spectrosc. 193, 480–485 (2018).

    Article  ADS  Google Scholar 

  58. Gerrard, D. L. & Bowley, H. J. in Practical Raman Spectroscopy (eds Gardiner, D. J. & Graves, P. R.) 55–76 (Springer, 1989).

  59. Barbillat, J. & da Silva, E. Near infra-red Raman spectroscopy with dispersive instruments and multichannel detection. Spectrochim. Acta A Mol. Biomol. Spectrosc. 53, 2411–2422 (1997).

    Article  ADS  Google Scholar 

  60. Ma, D., Jin, T., Xie, K. & Huang, H. An overview of flow cell architecture design and optimization for electrochemical CO2 reduction. J. Mater. Chem. A 9, 20897–20918 (2021).

    Article  Google Scholar 

  61. Pérez-Jiménez, A. I., Lyu, D., Lu, Z., Liu, G. & Ren, B. Surface-enhanced Raman spectroscopy: benefits, trade-offs and future developments. Chem. Sci. 11, 4563–4577 (2020).

    Article  Google Scholar 

  62. Kresse, G. & Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251–14269 (1994).

    Article  ADS  Google Scholar 

  63. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  ADS  Google Scholar 

  64. Perdew, J. P. et al. Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 46, 6671–6687 (1992).

    Article  ADS  Google Scholar 

  65. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  ADS  Google Scholar 

  66. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  ADS  Google Scholar 

  67. Ze, H. et al. Molecular insight of the critical role of Ni in Pt-based nanocatalysts for improving the oxygen reduction reaction probed using an in situ SERS borrowing strategy. J. Am. Chem. Soc. 143, 1318–1322 (2021).

    Article  Google Scholar 

  68. Anema, J. R., Li, J.-F., Yang, Z.-L., Ren, B. & Tian, Z.-Q. Shell-isolated nanoparticle-enhanced Raman spectroscopy: expanding the versatility of surface-enhanced Raman scattering. Annu. Rev. Anal. Chem. 4, 129–150 (2011).

    Article  Google Scholar 

  69. Wang, Y.-H. et al. Probing interfacial electronic and catalytic properties on well-defined surfaces by using in situ Raman spectroscopy. Angew. Chem. Int. Ed. 57, 11257–11261 (2018).

    Article  Google Scholar 

  70. Li, C.-Y. et al. In situ probing electrified interfacial water structures at atomically flat surfaces. Nat. Mater. 18, 697–701 (2019). To our knowledge, this paper is the first demonstration of in situ probing of electrified interfacial water structures at atomically flat surfaces.

    Article  ADS  Google Scholar 

  71. Wang, Y.-H. et al. In situ Raman spectroscopy reveals the structure and dissociation of interfacial water. Nature 600, 81–85 (2021). This article demonstrates the mechanism of the structure and dissociation of interfacial water on atomically flat palladium single-crystal surfaces.

    Article  ADS  Google Scholar 

  72. Galloway, T. A. & Hardwick, L. J. Utilizing in situ electrochemical SHINERS for oxygen reduction reaction studies in aprotic electrolytes. J. Phys. Chem. Lett. 7, 2119–2124 (2016).

    Article  Google Scholar 

  73. Dong, J.-C., Panneerselvam, R., Lin, Y., Tian, X.-D. & Li, J.-F. Shell-isolated nanoparticle-enhanced Raman spectroscopy at single-crystal electrode surfaces. Adv. Opt. Mater. 4, 1144–1158 (2016).

    Article  Google Scholar 

  74. Bodappa, N. et al. Early stages of electrochemical oxidation of Cu(111) and polycrystalline Cu surfaces revealed by in situ Raman spectroscopy. J. Am. Chem. Soc. 141, 12192–12196 (2019).

    Article  Google Scholar 

  75. Rizo, R. et al. Investigating the presence of adsorbed species on Pt steps at low potentials. Nat. Commun. 13, 2550 (2022).

    Article  ADS  Google Scholar 

  76. Su, M. et al. In situ Raman study of CO electrooxidation on Pt(hkl) single-crystal surfaces in acidic solution. Angew. Chem. Int. Ed. 59, 23554–23558 (2020).

    Article  Google Scholar 

  77. Koohi-Fayegh, S. & Rosen, M. A. A review of energy storage types, applications and recent developments. J. Energy Storage 27, 101047 (2020).

    Article  Google Scholar 

  78. Cowan, A. J. & Hardwick, L. J. Advanced spectroelectrochemical techniques to study electrode interfaces within lithium-ion and lithium-oxygen batteries. Annu. Rev. Anal. Chem. 12, 323–346 (2019).

    Article  Google Scholar 

  79. Aurbach, D., McCloskey, B. D., Nazar, L. F. & Bruce, P. G. Advances in understanding mechanisms underpinning lithium-air batteries. Nat. Energy 1, 16128 (2016).

    Article  ADS  Google Scholar 

  80. Hy, S., Felix, F., Rick, J., Su, W.-N. & Hwang, B. J. Direct in situ observation of Li2O evolution on Li-rich high-capacity cathode material, Li[NixLi(1-2x)/3Mn(2-x)/3]O2 (0 ≤ x ≤ 0.5). J. Am. Chem. Soc. 136, 999–1007 (2014).

    Article  Google Scholar 

  81. Hy, S. et al. In situ surface enhanced Raman spectroscopic studies of solid electrolyte interphase formation in lithium ion battery electrodes. J. Power Sources 256, 324–328 (2014).

    Article  ADS  Google Scholar 

  82. Tripathi, A. M., Su, W.-N. & Hwang, B. J. In situ analytical techniques for battery interface analysis. Chem. Soc. Rev. 47, 736–851 (2018).

    Article  Google Scholar 

  83. Gajan, A. et al. Solid electrolyte interphase instability in operating lithium-ion batteries unraveled by enhanced-Raman spectroscopy. ACS Energy Lett. 6, 1757–1763 (2021).

    Article  Google Scholar 

  84. Cabo-Fernandez, L., Mueller, F., Passerini, S. & Hardwick, L. J. In situ Raman spectroscopy of carbon-coated ZnFe2O4 anode material in Li-ion batteries — investigation of SEI growth. Chem. Commun. 52, 3970–3973 (2016).

    Article  Google Scholar 

  85. Cabo-Fernandez, L., Bresser, D., Braga, F., Passerini, S. & Hardwick, L. J. In-situ electrochemical SHINERS investigation of SEI composition on carbon-coated Zn0.9Fe0.1O anode for lithium-ion batteries. Batteries Supercaps 2, 168–177 (2019).

    Article  Google Scholar 

  86. Martin-Yerga, D. et al. Dynamics of solid-electrolyte interphase formation on silicon electrodes revealed by combinatorial electrochemical screening. Angew. Chem. Int. Ed. 61, e202207184 (2022).

    Article  Google Scholar 

  87. Li, X. et al. Direct visualization of the reversible O2–/O redox process in Li-rich cathode materials. Adv. Mater. 30, 1705197 (2018).

    Article  Google Scholar 

  88. Zhu, C., Fan, C., Cortes, E. & Xie, W. In situ surface-enhanced Raman spectroelectrochemistry reveals the molecular conformation of electrolyte additives in Li-ion batteries. J. Mater. Chem. A 9, 20024–20031 (2021).

    Article  Google Scholar 

  89. Cao, R., Lee, J.-S., Liu, M. & Cho, J. Recent progress in non-precious catalysts for metal-air batteries. Adv. Energy Mater. 2, 816–829 (2012).

    Article  Google Scholar 

  90. Aldous, I. M., Hardwick, L. J., Nichols, R. J. & Vivek, J. P. in Metal‐Air Batteries (ed. Xin-bo Zhang) 233–264 (Wiley, 2018).

  91. Sharon, D. et al. Aprotic metal-oxygen batteries: recent findings and insights. J. Solid. State Electrochem. 21, 1861–1878 (2017).

    Article  ADS  Google Scholar 

  92. Radjenovic, P. M. & Hardwick, L. J. Evaluating chemical bonding in dioxides for the development of metal-oxygen batteries: vibrational spectroscopic trends of dioxygenyls, dioxygen, superoxides and peroxides. Phys. Chem. Chem. Phys. 21, 1552–1563 (2019).

    Article  Google Scholar 

  93. Galloway, T. A., Cabo-Fernandez, L., Aldous, I. M., Braga, F. & Hardwick, L. J. Shell isolated nanoparticles for enhanced Raman spectroscopy studies in lithium-oxygen cells. Faraday Discuss. 205, 469–490 (2017).

    Article  ADS  Google Scholar 

  94. Ding, S.-Y. et al. Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials. Nat. Rev. Mater. 1, 16021 (2016).

    Article  ADS  Google Scholar 

  95. Xue, L. et al. In situ/operando Raman techniques in lithium-sulfur batteries. Small Struct. 3, 2100170 (2022).

    Article  Google Scholar 

  96. Wu, H.-L., Huff, L. A. & Gewirth, A. A. In situ Raman spectroscopy of sulfur speciation in lithium–sulfur batteries. ACS Appl. Mater. Inter. 7, 1709–1719 (2015).

    Article  Google Scholar 

  97. Miele, E. et al. Hollow-core optical fibre sensors for operando Raman spectroscopy investigation of Li-ion battery liquid electrolytes. Nat. Commun. 13, 1651 (2022).

    Article  ADS  Google Scholar 

  98. Li, C.-Y. et al. Unconventional interfacial water structure of highly concentrated aqueous electrolytes at negative electrode polarizations. Nat. Commun. 13, 5330 (2022).

    Article  ADS  Google Scholar 

  99. Freund, H.-J., Meijer, G., Scheffler, M., Schlogl, R. & Wolf, M. CO oxidation as a prototypical reaction for heterogeneous processes. Angew. Chem. Int. Ed. 50, 10064–10094 (2011).

    Article  Google Scholar 

  100. Hartman, T., Wondergem, C. S. & Weckhuysen, B. M. Practical guidelines for shell-isolated nanoparticle-enhanced Raman spectroscopy of heterogeneous catalysts. ChemPhysChem 19, 2461–2467 (2018).

    Article  Google Scholar 

  101. Hartman, T. & Weckhuysen, B. M. Thermally stable TiO2- and SiO2-shell-isolated Au nanoparticles for in situ plasmon-enhanced Raman spectroscopy of hydrogenation catalysts. Chem. Eur. J. 24, 3733–3741 (2018).

    Article  Google Scholar 

  102. Wondergem, C. S. et al. In situ shell-isolated nanoparticle-enhanced Raman spectroscopy of nickel-catalyzed hydrogenation reactions. ChemPhysChem 21, 625–632 (2020).

    Article  Google Scholar 

  103. Wondergem, C. S., Hartman, T. & Weckhuysen, B. M. In situ shell-isolated nanoparticle-enhanced Raman spectroscopy to unravel sequential hydrogenation of phenylacetylene over platinum nanoparticles. ACS Catal. 9, 10794–10802 (2019).

    Article  Google Scholar 

  104. Hartman, T., Geitenbeek, R. G., Whiting, G. T. & Weckhuysen, B. M. Operando monitoring of temperature and active species at the single catalyst particle level. Nat. Catal. 2, 986–996 (2019).

    Article  Google Scholar 

  105. Xie, W., Walkenfort, B. & Schluecker, S. Label-free SERS monitoring of chemical reactions catalyzed by small gold nanoparticles using 3D plasmonic superstructures. J. Am. Chem. Soc. 135, 1657–1660 (2013).

    Article  Google Scholar 

  106. Wei, J. et al. In situ Raman monitoring and manipulating of interfacial hydrogen spillover by precise fabrication of Au/TiO2/Pt sandwich structures. Angew. Chem. Int. Ed. 59, 10343–10347 (2020).

    Article  Google Scholar 

  107. Smith, S. R. et al. Quantitative SHINERS analysis of temporal changes in the passive layer at a gold electrode surface in a thiosulfate solution. Anal. Chem. 87, 3791–3799 (2015).

    Article  Google Scholar 

  108. Smith, S. R., Zhou, C., Baron, J. Y., Choi, Y. & Lipkowski, J. Elucidating the interfacial interactions of copper and ammonia with the sulfur passive layer during thiosulfate mediated gold leaching. Electrochim. Acta 210, 925–934 (2016).

    Article  Google Scholar 

  109. Honesty, N. R. & Gewirth, A. A. Investigating the effect of aging on transpassive behavior of Ni-based alloys in sulfuric acid with shell-isolated nanoparticle enhanced Raman spectroscopy (SHINERS). Corros. Sci. 67, 67–74 (2013).

    Article  Google Scholar 

  110. Zhang, K., Hu, Y. & Li, G. Diazotization-coupling reaction-based selective determination of nitrite in complex samples using shell-isolated nanoparticle-enhanced Raman spectroscopy. Talanta 116, 712–718 (2013).

    Article  Google Scholar 

  111. Zhang, K., Liang, L., Huang, M., Hu, Y. & Li, G. Determination of iodate in iodized salt and water samples by shell-isolated nanoparticle-enhanced Raman spectroscopy. Microchim. Acta 181, 1301–1308 (2014).

    Article  Google Scholar 

  112. Wei, Q. et al. Synthesis of MBA-encoded silver/silica core-shell nanoparticles as novel SERS tags for biosensing gibberellin A3 based on Au@Fe3O4 as substrate. Sensors 19, 5152 (2019).

    Article  ADS  Google Scholar 

  113. Zdaniauskiene, A. et al. Shell-isolated nanoparticle-enhanced Raman spectroscopy for characterization of living yeast cells. Spectrochim. Acta A Mol. Biomol. Spectrosc. 240, 118560 (2020).

    Article  Google Scholar 

  114. Fang, P.-P., Lu, X., Liu, H. & Tong, Y. Applications of shell-isolated nanoparticles in surface-enhanced Raman spectroscopy and fluorescence. Trends Anal. Chem. 66, 103–117 (2015).

    Article  Google Scholar 

  115. Zheng, C. et al. The use of Au@SiO2 shell-isolated nanoparticle-enhanced Raman spectroscopy for human breast cancer detection. Anal. Bioanal. Chem. 406, 5425–5432 (2014).

    Article  Google Scholar 

  116. Zheng, C. et al. Molecular fingerprint of precancerous lesions in breast atypical hyperplasia. J. Int. Med. Res. 48, 0300060520931616 (2020).

    Article  Google Scholar 

  117. Liang, L. et al. Exploring type II microcalcifications in benign and premalignant breast lesions by shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS). Spectrochim. Acta A Mol. Biomol. Spectrosc. 132, 397–402 (2014).

    Article  ADS  Google Scholar 

  118. Nicinski, K. et al. Detection of circulating tumor cells in blood by shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS) in microfluidic device. Sci. Rep. 9, 9267 (2019).

    Article  ADS  Google Scholar 

  119. El-Said, W. A., Alshitari, W. & Choi, J.-W. Controlled fabrication of gold nanobipyramids/polypyrrole for shell-isolated nanoparticle-enhanced Raman spectroscopy to detect γ-aminobutyric acid. Spectrochim. Acta A Mol. Biomol. Spectrosc. 229, 117890 (2020).

    Article  Google Scholar 

  120. Puglieri, T. S., Madden, O. & Andrade, G. F. S. SHINERS in cultural heritage: can SHINERS spectra always be compared with normal Raman spectra? A study of alizarin and its adsorption in the silicon dioxide shell. J. Raman Spectrosc. 52, 1406–1417 (2021).

    Article  ADS  Google Scholar 

  121. Zhang, S.-P. et al. In situ Raman study of the photoinduced behavior of dye molecules on TiO2(hkl) single crystal surfaces. Chem. Sci. 11, 6431–6435 (2020).

    Article  Google Scholar 

  122. You, C.-Y. et al. Plasmon-enhanced fluorescence of phosphors using shell-isolated nanoparticles for display technologies. ACS Appl. Nano Mater. 3, 5846–5854 (2020).

    Article  Google Scholar 

  123. Willets, K. A. & Van Duyne, R. P. Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem. 58, 267–297 (2007).

    Article  ADS  Google Scholar 

  124. Huang, Y.-P. et al. Shell-isolated tip-enhanced Raman and fluorescence spectroscopy. Angew. Chem. Int. Ed. 57, 7523–7527 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2019YFA0705400), the National Natural Science Foundation of China (21925404, T2293692, 22104124, 22174165 and 22021001), the Natural Sciences and Engineering Research Council of Canada (NSERC) to J.L. (RG-03958), and the UK Faraday Institution (EPSRC EP/S003053/1) through the Degradation Project (FIRG001 and FIRG024).

Author information

Authors and Affiliations

Authors

Contributions

Introduction (Z.-Q.T., Y.-J.Z. and H.Z.); Experimentation (A.K. and Y.-J.Z.); Results (Y.-J.Z. and H.Z.); Applications (Y.-J.Z., H.Z., P.-P.F., J.F.-V., L.J.H., J.L. and J.-F.L.); Reproducibility and data deposition (H.Z. and Y.-F.H.); Limitations and optimizations (H.Z. and Y.-F.H.); Outlook (Z.-Q.T., J.-F.L. and Y.-J.Z.). All authors discussed and edited the full manuscript.

Corresponding authors

Correspondence to Ping-Ping Fang, Yi-Fan Huang, Andrzej Kudelski, Laurence J. Hardwick, Jacek Lipkowski, Zhong-Qun Tian or Jian-Feng Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Methods Primers thanks Jung Ho Yu, Wei Xie and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Contact mode

The probed molecules are in direct contact with surface-enhanced Raman scattering (SERS) active material.

Frens method

A method of reducing an aqueous solution of gold or silver precursor by sodium citrate at elevated temperature.

Localized surface plasmon resonance effect

The collective oscillation effect of conduction electrons in nanostructures stimulated by incident light.

Nanoresonators

Nanostructures with a localized surface plasmon resonance effect.

Non-contact mode

The surface-enhanced Raman scattering (SERS) signal amplifier is separated from the surface of interest.

Rayleigh scattering

A scattering in which the intensity of the scattered light is inversely proportional to the fourth power of the frequency of the incident light, and the intensity in each direction is not the same.

Shell-isolated mode

The gold core acts as a signal amplifier, and the chemically inert dielectric shell prevents the interaction between the gold core and the system under study.

SHINERS-satellite strategy

A developed core–shell satellite nanocomposite structure (gold core–silica shell–nanocatalyst satellite structure).

Sol

A dispersed solution having colloidal particles with a diameter of 1–1,000 nm.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, YJ., Ze, H., Fang, PP. et al. Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nat Rev Methods Primers 3, 36 (2023). https://doi.org/10.1038/s43586-023-00217-y

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s43586-023-00217-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing