Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Finite-difference time-domain methods

Abstract

The finite-difference time-domain (FDTD) method is a widespread numerical tool for full-wave analysis of electromagnetic fields in complex media and for detailed geometries. Applications of the FDTD method cover a range of time and spatial scales, extending from subatomic to galactic lengths and from classical to quantum physics. Technology areas that benefit from the FDTD method include biomedicine — bioimaging, biophotonics, bioelectronics and biosensors; geophysics — remote sensing, communications, space weather hazards and geolocation; metamaterials — sub-wavelength focusing lenses, electromagnetic cloaks and continuously scanning leaky-wave antennas; optics — diffractive optical elements, photonic bandgap structures, photonic crystal waveguides and ring-resonator devices; plasmonics — plasmonic waveguides and antennas; and quantum applications — quantum devices and quantum radar. This Primer summarizes the main features of the FDTD method, along with key extensions that enable accurate solutions to be obtained for different research questions. Additionally, hardware considerations are discussed, plus examples of how to extract magnitude and phase data, Brillouin diagrams and scattering parameters from the output of an FDTD model. The Primer ends with a discussion of ongoing challenges and opportunities to further enhance the FDTD method for current and future applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Details for common finite-difference time-domain grid arrangements.
Fig. 2: Advanced finite-difference time-domain modelling approaches.
Fig. 3: Example approaches for obtaining results from finite-difference time-domain simulations.
Fig. 4: The finite-difference time-domain method applied to the biomedical field.
Fig. 5: The finite-difference time-domain method applied to electromagnetic propagation in the Earth–ionosphere waveguide.
Fig. 6: The finite-difference time-domain method applied to a metamaterial: a negative index lens.
Fig. 7: The finite-difference time-domain method applied to plasmonics.
Fig. 8: Results from a quantum finite-difference time-domain model.

Similar content being viewed by others

References

  1. Maxwell, J. C. VIII. A dynamical theory of the electromagnetic field. Philos. Trans. R. Soc. Lond. 155, 459–512 (1865).

    ADS  Google Scholar 

  2. Chew, W. C. et al. Quantum Maxwell’s equations made simple: employing scalar and vector potential formulation. IEEE Antennas Propag. Mag. 63, 14–26 (2020).

    Article  Google Scholar 

  3. Kong, J. A. Electromagnetic Wave Theory (Wiley, 1990).

  4. Balanis, C. A. Advanced Engineering Electromagnetics 2nd edn (Wiley, 2012).

  5. Yee, K. Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antennas Propag. 14, 302–307 (1966). Paper in which Yee introduced the FDTD method.

    Article  ADS  MATH  Google Scholar 

  6. Courant, R., Friedrichs, K. & Lewy, H. Über die partiellen differenzengleichungen der mathematischen Physik. Math. Ann. 100, 32–74 (1928).

    Article  MathSciNet  MATH  Google Scholar 

  7. Taflove, A. & Hagness, S. C. Computational Electromagnetics: The Finite-Difference Time-Domain Method 3rd edn (Artech House, Inc., 2005). A thorough overview of many key algorithms and applications of the method.

  8. Tan, T. & Potter, M. FDTD discrete planewave (FDTD-DPW) formulation for a perfectly matched source in TFSF simulations. IEEE Trans. Antennas Propag. 58, 2641–2648 (2010).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Harms, P., Mittra, R. & Ko, W. Implementation of the periodic boundary condition in the finite-difference time-domain algorithm for FSS structures. IEEE Trans. Antennas Propag. 42, 1317–1324 (1994).

    Article  ADS  Google Scholar 

  10. Kesler, M. P., Maloney, J. G., Shirley, B. L. & Smith, G. S. Antenna design with the use of photonic band-gap materials as all-dielectric planar reflectors. Microw. Opt. Technol. Lett. 11, 169–174 (1996).

    Article  Google Scholar 

  11. Smith, D. R., Burns, S., Simpson, J. J. & Ferrone, S. M. FDTD modeling of scattered ultra-low frequency electromagnetic waves from objects submerged in the ocean. IEEE Trans. Antennas Propag. 67, 2534–2541 (2019).

    Article  ADS  Google Scholar 

  12. Oh, K. S. & Schutt-Aine, J. E. An efficient implementation of surface impedance boundary conditions for the finite-difference time-domain method. IEEE Trans. Antennas Propag. 43, 660–666 (1995).

    Article  ADS  Google Scholar 

  13. Beggs, J. H., Luebbers, R. J., Yee, K. S. & Kunz, K. S. Finite-difference time-domain implementation of surface impedance boundary conditions. IEEE Trans. Antennas Propag. 40, 49–56 (1992).

    Article  ADS  Google Scholar 

  14. Berenger, J.-P. A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 114, 185–200 (1994).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Katz, D. S., Thiele, E. T. & Taflove, A. Validation and extension to three dimensions of the Berenger PML absorbing boundary condition for FDTD meshes. IEEE Microw. Guided Wave Lett. 4, 268–270 (1994).

    Article  Google Scholar 

  16. Chew, W. C. & Weedon, W. H. A 3D perfectly matched medium from modified Maxwell’s equations with stretched coordinates. Microw. Opt. Technol. Lett. 7, 599–604 (1994).

    Article  ADS  Google Scholar 

  17. Teixeira, F. L. & Chew, W. C. Complex space approach to perfectly matched layers: a review and some new developments. Int. J. Numer. Model. Electron. Netw. Devices Fields 13, 441–455 (2000). Describes the PML concept and its various extensions with an emphasis on the complex coordinate mapping approach.

    Article  MATH  Google Scholar 

  18. Kuzuoglu, M. & Mittra, R. Frequency dependence of the constitutive parameters of causal perfectly matched anisotropic absorbers. IEEE Microw. Guided Wave Lett. 6, 447–449 (1996).

    Article  Google Scholar 

  19. Teixeira, F. L. & Chew, W. C. Differential forms, metrics, and the reflectionless absorption of electromagnetic waves. J. Electromagn. Waves Appl. 13, 665–686 (1999).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Sacks, Z. S., Kingsland, D. M., Lee, R. & Lee, J.-F. A perfectly matched anisotropic absorber for use as an absorbing boundary condition. IEEE Trans. Antennas Propag. 43, 1460–1463 (1995).

    Article  ADS  Google Scholar 

  21. Roden, J. A. & Gedney, S. D. Convolution PML (CPML): an efficient FDTD implementation of the CFS–PML for arbitrary media. Microw. Opt. Technol. Lett. 27, 334–339 (2000).

    Article  Google Scholar 

  22. Moreno, E. et al. Implementation of open boundary problems in photo-conductive antennas by using convolutional perfectly matched layers. IEEE Trans. Antennas Propag. 64, 4919–4922 (2016).

    Article  ADS  Google Scholar 

  23. Wang, J.-F., Li, G. & Chen, Z. Convolutional implementation and analysis of the CFS-PML ABC for the FDTD method based on wave equation. IEEE Microw. Wirel. Compon. Lett. 32, 811–814 (2022).

    Article  Google Scholar 

  24. Teixeira, F. L. Time-domain finite-difference and finite-element methods for Maxwell equations in complex media. IEEE Trans. Antennas Propag. 56, 2150–2166 (2008). Provides a thorough review of the FDTD algorithm applied to complex media.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Shibayama, J., Suzuki, K., Yamauchi, J. & Nakano, H. Trapezoidal recursive convolution‐based FDTD method for arbitrary‐shaped dispersive materials. Electron. Lett. 54, 1429–1430 (2018).

    Article  ADS  Google Scholar 

  26. Okoniewski, M., Mrozowski, M. & Stuchly, M. A. Computationally efficient algorithms for multi-term dielectric dispersion in FDTD. in IEEE Antennas and Propagation Society International Symposium 1997 364–367 (IEEE, 1997).

  27. Pereda, J. A., Vielva, L. A., Solano, M. A., Vegas, A. & Prieto, A. FDTD analysis of magnetized ferrites: application to the calculation of dispersion characteristics of ferrite-loaded waveguides. IEEE Trans. Microw. Theory Tech. 43, 350–357 (1995).

    Article  ADS  Google Scholar 

  28. Okoniewski, M. & Okoniewska, E. FDTD analysis of magnetized ferrites: a more efficient algorithm. IEEE Microw. Guided Wave Lett. 4, 169–171 (1994).

    Article  Google Scholar 

  29. Yu, Y., Niu, J. & Simpson, J. J. A 3-D global earth–ionosphere FDTD model including an anisotropic magnetized plasma ionosphere. IEEE Trans. Antennas Propag. 60, 3246–3256 (2012).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Ha, S.-G., Cho, J., Choi, J., Kim, H. & Jung, K.-Y. FDTD dispersive modeling of human tissues based on quadratic complex rational function. IEEE Trans. Antennas Propag. 61, 996–999 (2013).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Choi, H., Baek, J.-W. & Jung, K.-Y. Comprehensive study on numerical aspects of modified Lorentz model-based dispersive FDTD formulations. IEEE Trans. Antennas Propag. 67, 7643–7648 (2019).

    Article  ADS  Google Scholar 

  32. Sullivan, D. M. Frequency-dependent FDTD methods using Z transforms. IEEE Trans. Antennas Propag. 40, 1223–1230 (1992).

    Article  ADS  Google Scholar 

  33. Kosmas, P., Rappaport, C. M. & Bishop, E. Modeling with the FDTD method for breast cancer detection. IEEE Trans. Microw. Theory Tech. 52, 1890–1897 (2004).

    Article  ADS  Google Scholar 

  34. Kast, M. J. & Elsherbeni, A. Z. Integration of nonlinear circuit elements into FDTD method formulation. in Advances in Time‐Domain Computational Electromagnetic Methods (ed. Rodolfo, A.) 1–31 (SciTech Publishing, 2022).

  35. Holland, R. THREDS: a finite-difference time-domain EMP code in 3d spherical coordinates. IEEE Trans. Nucl. Sci. 30, 4592–4595 (1983).

    Article  ADS  Google Scholar 

  36. Said, F. A. et al. FDTD analysis of structured metallic nanohole films for LSPR-based biosensor. in IEEE Regional Symposium on Micro and Nanoelectronics (RSM) (IEEE, 2015).

  37. Mudanyali, O. et al. Wide-field optical detection of nanoparticles using on-chip microscopy and self-assembled nanolenses. Nat. Photon. 7, 247–254 (2013).

    Article  ADS  Google Scholar 

  38. Joseph, R. M. & Taflove, A. FDTD Maxwell’s equations models for nonlinear electrodynamics and optics. IEEE Trans. Antennas Propag. 45, 364–374 (1997).

    Article  ADS  Google Scholar 

  39. Boyd, R. Nonlinear Optics 3rd edn (Academic Press, 2018).

  40. Bhardwaj, S., Teixeira, F. L. & Volakis, J. L. Fast modeling of terahertz plasma-wave devices using unconditionally stable FDTD methods. IEEE J. Multisc. Multiphys. Comput. Tech. 3, 29–36 (2018).

    Article  ADS  Google Scholar 

  41. Biabani, S. & Foroutan, G. Self consistent multi-fluid FDTD simulations of a nanosecond high power microwave discharge in air. Phys. Lett. A 382, 2720–2731 (2018).

    Article  ADS  Google Scholar 

  42. Godfrey, B. B. & Vay, J.-L. Suppressing the numerical Cherenkov instability in FDTD PIC codes. J. Comput. Phys. 267, 1–6 (2014).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Na, D.-Y. et al. Diagnosing numerical Cherenkov instabilities in relativistic plasma simulations based on general meshes. J. Comput. Phys. 402, 108880 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  44. Nicolaides, R. A method for complex geometries in finite-difference solutions of Maxwell’s equations. Comput. Math. Appl. 48, 1111–1119 (2004).

    MathSciNet  MATH  Google Scholar 

  45. Lee, H. O. & Teixeira, F. L. Locally-conformal FDTD for anisotropic conductive interfaces. IEEE Trans. Antennas Propag. 58, 3658–3665 (2010).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. Zhao, Q. & Sarris, C. D. Generalized tensor FDTD method for sloped dispersive interfaces and thin sheets. Opt. Express 27, 15812–15826 (2019).

    Article  ADS  Google Scholar 

  47. Cabello, M. R. et al. A new efficient and stable 3D conformal FDTD. IEEE Microw. Wirel. Compon. Lett. 26, 553–555 (2016).

    Article  Google Scholar 

  48. Srisukh, Y., Nehrbass, J., Teixeira, F. L., Lee, J.-F. & Lee, R. An approach for automatic grid generation in three-dimensional FDTD simulations of complex geometries. IEEE Antennas Propag. Mag. 44, 75–80 (2002). Describes an automatic 3D FDTD grid generation for complex geometries.

    Article  ADS  Google Scholar 

  49. Heinrich, W., Beilenhoff, K., Mezzanotte, P. & Roselli, L. Optimum mesh grading for finite-difference method. IEEE Trans. Microw. Theory Tech. 44, 1569–1574 (1996).

    Article  ADS  Google Scholar 

  50. Mezzanotte, P., Roselli, L., Huber, C., Zscheile, H. & Heinrich, W. On the accuracy of the finite-difference method using mesh grading. in Proceedings of 1995 IEEE MTT-S International Microwave Symposium Vol. 2, 781–784 (IEEE, 1995).

  51. Maloney, J. G. & Smith, G. S. The efficient modeling of thin material sheets in the finite-difference time-domain (FDTD) method. IEEE Trans. Antennas Propag. 40, 323–330 (1992).

    Article  ADS  Google Scholar 

  52. Farjadpour, A. et al. Improving accuracy by subpixel smoothing in the finite-difference time domain. Opt. Lett. 31, 2972–2974 (2006).

    Article  ADS  Google Scholar 

  53. Nadobny, J., Sullivan, D., Wlodarczyk, W., Deuflhard, P. & Wust, P. A 3-D tensor FDTD-formulation for treatment of sloped interfaces in electrically inhomogeneous media. IEEE Trans. Antennas Propag. 51, 1760–1770 (2003). Introduces a tensor FDTD formulation for the treatment of non-rectangular boundaries crossing a Yee cell.

    Article  ADS  Google Scholar 

  54. Karkkainen, M. K. Subcell FDTD modeling of electrically thin dispersive layers. IEEE Trans. Microw. Theory Tech. 51, 1774–1780 (2003).

    Article  ADS  Google Scholar 

  55. Zhao, Y. & Hao, Y. Finite-difference time-domain study of guided modes in nano-plasmonic waveguides. IEEE Trans. Antennas Propag. 55, 3070–3077 (2007).

    Article  ADS  Google Scholar 

  56. Chevalier, M. W., Luebbers, R. J. & Cable, V. P. FDTD local grid with material traverse. IEEE Trans. Antennas Propag. 45, 411–421 (1997).

    Article  ADS  Google Scholar 

  57. Kim, I. S. & Hoefer, W. J. R. A local mesh refinement algorithm for the time domain-finite difference method using Maxwell’s curl equations. IEEE Trans. Microw. Theory Tech. 38, 812–815 (1990).

    Article  ADS  Google Scholar 

  58. Zivanovic, S. S., Yee, K. S. & Mei, K. K. A subgridding method for the time-domain finite-difference method to solve Maxwell’s equations. IEEE Trans. Microw. Theory Tech. 39, 471–479 (1991).

    Article  ADS  Google Scholar 

  59. Okoniewski, M., Okoniewska, E. & Stuchly, M. A. Three-dimensional subgridding algorithm for FDTD. IEEE Trans. Antennas Propag. 45, 422–429 (1997).

    Article  ADS  Google Scholar 

  60. Kulas, L. & Mrozowski, M. Low-reflection subgridding. IEEE Trans. Microw. Theory Tech. 53, 1587–1592 (2005).

    Article  ADS  Google Scholar 

  61. Thoma, P. & Weiland, T. A consistent subgridding scheme for the finite difference time domain method. Int. J. Numer. Model. Electron. Netw. Devices Fields 9, 359–374 (1996). Presents consistent and provably stable formulations for FDTD subgridding.

    Article  Google Scholar 

  62. Xiao, K., Pommerenke, D. J. & Drewniak, J. L. A three-dimensional FDTD subgridding algorithm with separated temporal and spatial interfaces and related stability analysis. IEEE Trans. Antennas Propag. 55, 1981–1990 (2007). Presents consistent and provably stable formulations for FDTD subgridding.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  63. Berenger, J.-P. Origin of parasitic solutions with Holland and Simpson thin wires in the FDTD grid. IEEE Trans. Electromagn. Compat. 61, 487–494 (2019). Describes the origin of the parasitic solutions for the thin-wire formulation.

    Article  Google Scholar 

  64. Holland, R. & Simpson, L. Finite-difference analysis of EMP coupling to thin struts and wires. IEEE Trans. Electromagn. Compat. EMC-23, 88–97 (1981).

    Article  ADS  Google Scholar 

  65. Teixeira, F. L. & Chew, W. C. Finite-difference computation of transient electromagnetic waves for cylindrical geometries in complex media. IEEE Trans. Geosci. Remote Sens. 38, 1530–1543 (2000).

    Article  ADS  Google Scholar 

  66. Pérez-Ocón, F., Pozo, A. M., Jiménez, J. R. & Hita, E. Fast single-mode characterization of optical fiber by finite-difference time-domain method. J. Lightwave Technol. 24, 3129 (2006).

    Article  ADS  Google Scholar 

  67. Lee, H. O. & Teixeira, F. L. Cylindrical FDTD analysis of LWD tools through anisotropic dipping-layered earth media. IEEE Trans. Geosci. Remote Sens. 45, 383–388 (2007).

    Article  ADS  Google Scholar 

  68. Simpson, J. J. Current and future applications of 3-D global earth–ionosphere models based on the full-vector Maxwell’s equations FDTD method. Surv. Geophys. 30, 105–130 (2009). Summarizes developments and applications of FDTD modelling of the Earth–ionosphere waveguide.

    Article  ADS  Google Scholar 

  69. Simpson, J. J. & Taflove, A. Three-dimensional FDTD modeling of impulsive ELF propagation about the earth-sphere. IEEE Trans. Antennas Propag. 52, 443–451 (2004).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  70. Samimi, A. & Simpson, J. J. Parallelization of 3-D global FDTD earth–ionosphere waveguide models at resolutions on the order of 1 km and higher. IEEE Antennas Wirel. Propag. Lett. 15, 1959–1962 (2016).

    Article  ADS  Google Scholar 

  71. Lee, R. A note on mass lumping in the finite element time domain method. IEEE Trans. Antennas Propag. 54, 760–762 (2006).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  72. Teixeira, F. L. A summary review on 25 years of progress and future challenges in FDTD and FETD techniques. Appl. Comput. Electromagn. Soc. J. 25, 1–14 (2022).

    Google Scholar 

  73. Rylander, T. & Bondeson, A. Stable FEM–FDTD hybrid method for Maxwell’s equations. Computer Phys. Commun. 125, 75–82 (2000).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  74. Chilton, R. A. & Lee, R. Conservative and provably stable FDTD subgridding. IEEE Trans. Antennas Propag. 55, 2537–2549 (2007).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  75. Jung, K.-Y. & Teixeira, F. L. in Advanced Time Domain Modeling for Electrical Engineering (ed. Rodolfo, A.) 217–252 (SciTech Publishing, IET Press, 2022).

  76. Tan, E. L. Fundamental schemes for efficient unconditionally stable implicit finite-difference time-domain methods. IEEE Trans. Antennas Propag. 56, 170–177 (2008).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  77. Shi, S.-B., Shao, W., Wei, X.-K., Yang, X.-S. & Wang, B.-Z. A new unconditionally stable FDTD method based on the Newmark-Beta algorithm. IEEE Trans. Microw. Theory Tech. 64, 4082–4090 (2016).

    Article  ADS  Google Scholar 

  78. Sun, G. & Trueman, C. W. Efficient implementations of the Crank–Nicolson scheme for the finite-difference time-domain method. IEEE Trans. Microw. Theory Tech. 54, 2275–2284 (2006).

    Article  ADS  Google Scholar 

  79. Moon, H., Teixeira, F. L., Kim, J. & Omelchenko, Y. A. Trade-offs for unconditional stability in the finite-element time-domain method. IEEE Microw. Wirel. Compon. Lett. 24, 361–363 (2014).

    Article  Google Scholar 

  80. Namiki, T. A new FDTD algorithm based on alternating-direction implicit method. IEEE Trans. Microw. Theory Tech. 47, 2003–2007 (1999).

    Article  ADS  Google Scholar 

  81. Zheng, F., Chen, Z. & Zhang, J. A finite-difference time-domain method without the Courant stability conditions. IEEE Microw. Guided Wave Lett. 9, 441–443 (1999).

    Article  Google Scholar 

  82. Yuan, C. & Chen, Z. D. On the modeling of conducting media with the unconditionally stable ADI-FDTD method. IEEE Trans. Microw. Theory Tech. 51, 1929–1938 (2003).

    Article  ADS  Google Scholar 

  83. Shibayama, J., Muraki, M., Yamauchi, J. & Nakano, H. Efficient implicit FDTD algorithm based on locally one-dimensional scheme. Electron. Lett. 41, 1–2 (2005).

    Article  Google Scholar 

  84. Nascimento, V. E., Borges, B.-H. V. & Teixeira, F. L. Split-field PML implementations for the unconditionally stable LOD-FDTD method. IEEE Microw. Wirel. Compon. Lett. 16, 398–400 (2006).

    Article  Google Scholar 

  85. Ong, C. et al. Speed it up. IEEE Microw. Mag. 11, 70–78 (2010).

    Article  Google Scholar 

  86. Shlager, K. L. & Schneider, J. B. Comparison of the dispersion properties of several low-dispersion finite-difference time-domain algorithms. IEEE Trans. Antennas Propag. 51, 642–653 (2003).

    Article  ADS  Google Scholar 

  87. Hadi, M. F. & Piket-May, M. A modified FDTD (2, 4) scheme for modeling electrically large structures with high-phase accuracy. IEEE Trans. Antennas Propag. 45, 254–264 (1997).

    Article  ADS  Google Scholar 

  88. Zhao, S. & Wei, G. W. High-order FDTD methods via derivative matching for Maxwell’s equations with material interfaces. J. Comput. Phys. 200, 60–103 (2004).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  89. Law, Y.-M. & Nave, J.-C. High-order FDTD schemes for Maxwell’s interface problems with discontinuous coefficients and complex interfaces based on the correction function method. J. Sci. Comput. https://doi.org/10.1007/s10915-022-01797-9 (2022).

    Article  MathSciNet  MATH  Google Scholar 

  90. Wang, S. & Teixeira, F. L. Lattice models for large-scale simulations of coherent wave scattering. Phys. Rev. E https://doi.org/10.1103/physreve.69.016701 (2004).

    Article  Google Scholar 

  91. Finkelstein, B. & Kastner, R. A comprehensive new methodology for formulating FDTD schemes with controlled order of accuracy and dispersion. IEEE Trans. Antennas Propag. 56, 3516–3525 (2008).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  92. Zygiridis, T. T., Papadopoulos, A. D. & Kantartzis, N. V. Error-optimized finite-difference modeling of wave propagation problems with Lorentz material dispersion. J. Comput. Phys. 452, 110916 (2022).

    Article  MathSciNet  MATH  Google Scholar 

  93. Karniadakis, G. E. et al. Physics-informed machine learning. Nat. Rev. Phys. 3, 422–440 (2021).

    Article  Google Scholar 

  94. Raissi, M., Perdikaris, P. & Karniadakis, G. E. Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 378, 686–707 (2019).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  95. Sirignano, J. & Spiliopoulos, K. DGM: a deep learning algorithm for solving partial differential equations. J. Comput. Phys. 375, 1339–1364 (2018).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  96. E, W. & Yu, B. The deep Ritz method: a deep learning-based numerical algorithm for solving variational problems. Commun. Math. Stat. 6, 1–12 (2018).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  97. Zhang, P. et al. A Maxwell’s equations based deep learning method for time domain electromagnetic simulations. IEEE J. Multisc. Multiphys. Comput. Tech. 6, 35–40 (2021).

    Article  ADS  Google Scholar 

  98. Qi, S. & Sarris, C. D. Electromagnetic-thermal analysis with FDTD and physics-informed neural networks. IEEE J. Multisc. Multiphys. Comput. Tech. 8, 49–59 (2023).

    Article  ADS  Google Scholar 

  99. Qi, S. & Sarris, C. D. Deep neural networks for rapid simulation of planar microwave circuits based on their layouts. IEEE Trans. Microw. Theory Tech. 70, 4805–4815 (2022).

    Article  ADS  Google Scholar 

  100. Folk, M., Heber, G., Koziol, Q., Pourmal, E. & Robinson, D. An overview of the HDF5 technology suite and its applications. in AD ‘11 Proc. EDBT/ICDT 2011 Workshop on Array Databases 36–47 (ACM, 2011).

  101. Hastings, F. D., Schneider, J. B. & Broschat, S. L. A Monte-Carlo FDTD technique for rough surface scattering. IEEE Trans. Antennas Propag. 43, 1183–1191 (1995).

    Article  ADS  Google Scholar 

  102. Le Maître, O. & Knio, O. M. Spectral Methods for Uncertainty Quantification: With Applications to Computational Fluid Dynamics (Springer-Verlag, 2010).

  103. Xiu, D. & Karniadakis, G. E. The Wiener–Askey polynomial chaos for stochastic differential equations. SIAM J. Sci. Comput. 24, 619–644 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  104. Xiu, D. Numerical Methods for Stochastic Computations: A Spectral Method Approach (Princeton Univ. Press, 2010).

  105. Austin, A. C. M. & Sarris, C. D. Efficient analysis of geometrical uncertainty in the FDTD method using polynomial chaos with application to microwave circuits. IEEE Trans. Microw. Theory Tech. 61, 4293–4301 (2013). Provides an FDTD-based method for the modelling of geometric uncertainties.

    Article  ADS  Google Scholar 

  106. Edwards, R. S., Marvin, A. C. & Porter, S. J. Uncertainty analyses in the finite-difference time-domain method. IEEE Trans. Electromagn. Compat. 52, 155–163 (2010).

    Article  Google Scholar 

  107. Ishimaru, A. Electromagnetic Wave Propagation, Radiation, and Scattering: From Fundamentals to Applications 2nd edn (John Wiley & Sons, 2017).

  108. Taflove, A. & Hagness, S. C. Periodic structures. in Computational Electromagnetics: The Finite-Difference Time-Domain Method Ch. 13 (Artech House, Inc., 2005).

  109. Chan, C. T., Yu, Q. L. & Ho, K. M. Order-N spectral method for electromagnetic waves. Phys. Rev. B 51, 16635–16642 (1995).

    Article  ADS  Google Scholar 

  110. Luo, C., Johnson, S. G., Joannopoulos, J. D. & Pendry, J. B. Negative refraction without negative index in metallic photonic crystals. Opt. Express 11, 746–754 (2003).

    Article  ADS  Google Scholar 

  111. Ward, A. J. & Pendry, J. B. Calculating photonic Green’s functions using a nonorthogonal finite-difference time-domain method. Phys. Rev. B 58, 7252–7259 (1998).

    Article  ADS  Google Scholar 

  112. Ward, A. J. & Pendry, J. B. A program for calculating photonic band structures, Green’s functions and transmission/reflection coefficients using a non-orthogonal FDTD method. Computer Phys. Commun. 128, 590–621 (2000).

    Article  ADS  MATH  Google Scholar 

  113. Kokkinos, T., Sarris, C. D. & Eleftheriades, G. V. Periodic finite-difference time-domain analysis of loaded transmission-line negative-refractive-index metamaterials. IEEE Trans. Microw. Theory Tech. 53, 1488–1495 (2005).

    Article  ADS  Google Scholar 

  114. Liu, Y., Sarris, C. D. & Eleftheriades, G. V. Triangular-mesh-based FDTD analysis of two-dimensional plasmonic structures supporting backward waves at optical frequencies. J. Lightwave Technol. 25, 938–945 (2007).

    Article  ADS  Google Scholar 

  115. Aminian, A., Yang, F. & Rahmat-Samii, Y. Bandwidth determination for soft and hard ground planes by spectral FDTD: a unified approach in visible and surface wave regions. IEEE Trans. Antennas Propag. 53, 18–28 (2005).

    Article  ADS  Google Scholar 

  116. Yang, F., Chen, J., Qiang, R. & Elsherbeni, A. A simple and efficient FDTD/PBC algorithm for scattering analysis of periodic structures. Radio Sci. https://doi.org/10.1029/2006rs003526 (2007).

    Article  Google Scholar 

  117. Holter, H. & Steyskal, H. Infinite phased-array analysis using FDTD periodic boundary conditions-pulse scanning in oblique directions. IEEE Trans. Antennas Propag. 47, 1508–1514 (1999).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  118. Turner, G. M. & Christodoulou, C. FDTD analysis of phased array antennas. IEEE Trans. Antennas Propag. 47, 661–667 (1999).

    Article  ADS  Google Scholar 

  119. Zhao, Q. & Sarris, C. D. Discontinuous Galerkin time domain modeling of metasurface geometries with multi-rate time stepping. in 2021 IEEE MTT-S International Microwave Symposium (IMS) (IEEE, 2021).

  120. Guo, S. et al. Metalens for improving optical coherence tomography. J. Korean Phys. Soc. 81, 32–37 (2022).

    Article  ADS  Google Scholar 

  121. Eid, A., Winkelmann, J. A., Eshein, A., Taflove, A. & Backman, V. Origins of subdiffractional contrast in optical coherence tomography. Biomed. Opt. Express 12, 3630–3642 (2021).

    Article  Google Scholar 

  122. Cherkezyan, L. et al. Interferometric spectroscopy of scattered light can quantify the statistics of subdiffractional refractive-index fluctuations. Phys. Rev. Lett. https://doi.org/10.1103/physrevlett.111.033903 (2013).

    Article  Google Scholar 

  123. Li, Y. et al. Nanoscale chromatin imaging and analysis platform bridges 4D chromatin organization with molecular function. Sci. Adv. 7, eabe4310 (2021).

    Article  ADS  Google Scholar 

  124. Sun, G., Fu, C., Dong, M., Jin, G. & Song, Q. The finite-difference time-domain (FDTD) guided preparation of Ag nanostructures on Ti substrate for sensitive SERS detection of small molecules. Spectrochim. Acta Pt A: Mol. Biomolecular Spectrosc. 269, 120743 (2022).

    Article  Google Scholar 

  125. Seo, J.-H., Han, Y. & Chung, J.-Y. A comparative study of birdcage RF coil configurations for ultra-high field magnetic resonance imaging. Sensors 22, 1741 (2022).

    Article  ADS  Google Scholar 

  126. Taflove, A. & Brodwin, M. E. Computation of the electromagnetic fields and induced temperatures within a model of the microwave-irradiated human eye. IEEE Trans. Microw. Theory Tech. 23, 888–896 (1975).

    Article  ADS  Google Scholar 

  127. Chiang, J., Wang, P. & Brace, C. L. Computational modelling of microwave tumour ablations. Int. J. Hyperth. 29, 308–317 (2013).

    Article  Google Scholar 

  128. Chakarothai, J., Watanabe, S. & Wake, K. Numerical dosimetry of electromagnetic pulse exposures using FDTD method. IEEE Trans. Antennas Propag. 66, 5397–5408 (2018).

    Article  ADS  Google Scholar 

  129. Hajiaboli, A. & Popovie, M. FDTD analysis of light propagation in the human photoreceptor cells. IEEE Trans. Magn. 44, 1430–1433 (2008).

    Article  ADS  Google Scholar 

  130. Arifler, D. et al. Light scattering from normal and dysplastic cervical cells at different epithelial depths: finite-difference time-domain modeling with a perfectly matched layer boundary condition. J. Biomed. Opt. 8, 484–494 (2003).

    Article  ADS  Google Scholar 

  131. Su, X.-T., Singh, K., Rozmus, W., Backhouse, C. & Capjack, C. Light scattering characterization of mitochondrial aggregation in single cells. Opt. Express 17, 13381–13388 (2009).

    Article  ADS  Google Scholar 

  132. Simpson, J. J., Capoglu, I. R. & Backman, V. Using FDTD to improve our understanding of partial wave spectroscopy for advancing ultra early-stage cancer detection techniques. in 2009 13th International Symposium on Antenna Technology and Applied Electromagnetics and the Canadian Radio Science Meeting (IEEE, 2009).

  133. Silla, G., Bastianelli, L., Colella, E., Moglie, F. & Primiani, V. M. SAR computation due to wearable devices by using high-resolution body models and FDTD numerical code. in 2022 International Symposium on Electromagnetic Compatibility — EMC Europe. (IEEE).

  134. Al-Sehemi, A., Al-Ghamdi, A., Dishovsky, N., Atanasov, N. & Atanasova, G. Miniaturized wearable antennas with improved radiation efficiency using magneto-dielectric composites. IETE J. Res. 68, 1157–1167 (2022).

    Article  Google Scholar 

  135. Arunkumar, R., Suaganya, T. & Robinson, S. Design and analysis of 2D photonic crystal based biosensor to detect different blood components. Photonic Sens. 9, 69–77 (2019).

    Article  ADS  Google Scholar 

  136. Warren, C., Giannopoulos, A. & Giannakis, I. gprMax: open source software to simulate electromagnetic wave propagation for ground penetrating radar. Computer Phys. Commun. 209, 163–170 (2016).

    Article  ADS  Google Scholar 

  137. Lee, H. O., Teixeira, F. L., San Martin, L. E. & Bittar, M. S. Numerical modeling of eccentered LWD borehole sensors in dipping and fully anisotropic earth formations. IEEE Trans. Geosci. Remote Sens. 50, 727–735 (2012).

    Article  ADS  Google Scholar 

  138. Pokhrel, S., Nguyen, B., Rodriguez, M., Bernabeu, E. & Simpson, J. J. A finite difference time domain investigation of electric field enhancements along ocean–continent boundaries during space weather events. J. Geophys. Res. Space Phys. 123, 5033–5046 (2018).

    Article  ADS  Google Scholar 

  139. Thevenot, M., Bérenger, J.-P., Monediere, T. & Jecko, F. A FDTD scheme for the computation of VLF-LF propagation in the anisotropic earth–ionosphere waveguide. Ann. Telecommun. 54, 297–310 (1999).

    Article  Google Scholar 

  140. Bérenger, J.-P. FDTD computation of VLF–LF propagation in the Earth–ionosphere waveguide. Ann. Telecommun. 57, 1059–1090 (2002).

    Article  Google Scholar 

  141. Bérenger, J.-P. Reduction of the angular dispersion of the FDTD method in the Earth–ionosphere waveguide. J. Electromagn. Waves Appl. 17, 1225–1235 (2003).

    Article  ADS  Google Scholar 

  142. Bérenger, J.-P. An implicit FDTD scheme for the propagation of VLF–LF radio waves in the Earth–ionosphere waveguide. Comptes Rendus Phys. 15, 393–402 (2014).

    Article  ADS  Google Scholar 

  143. Bérenger, J.-P. FDTD propagation of VLF–LF waves in the presence of ions in the Earth–ionosphere waveguide. Ann. Telecommun. 75, 437–446 (2020).

    Article  Google Scholar 

  144. Burns, S., Gasdia, F., Simpson, J. J. & Marshall, R. A. 3-D FDTD modeling of long-distance VLF propagation in the Earth–ionosphere waveguide. IEEE Trans. Antennas Propag. 69, 7743–7752 (2021).

    Article  ADS  Google Scholar 

  145. Hu, W. & Cummer, S. A. An FDTD model for low and high altitude lightning-generated EM fields. IEEE Trans. Antennas Propag. 54, 1513–1522 (2006).

    Article  ADS  Google Scholar 

  146. Smith, D. R., Huang, C. Y., Dao, E., Pokhrel, S. & Simpson, J. J. FDTD modeling of high‐frequency waves through ionospheric plasma irregularities. J. Geophys. Res. Space Phys. 125, e2019JA027499 (2020).

    Article  ADS  Google Scholar 

  147. Niknam, K. & Simpson, J. A review of grid-based, time-domain modeling of electromagnetic wave propagation involving the ionosphere. IEEE J. Multisc. Multiphys. Comput. Tech. 6, 214–228 (2021). Summarizes the FDTD method applied to propagation in the ionosphere.

    Article  ADS  Google Scholar 

  148. Cummer, S. A. Dynamics of causal beam refraction in negative refractive index materials. Appl. Phys. Lett. 82, 2008–2010 (2003). Uses FDTD to demonstrate the dynamic evolution of negative refraction and sub-wavelength focusing with planar negative index lenses.

    Article  ADS  Google Scholar 

  149. Foteinopoulou, S., Economou, E. N. & Soukoulis, C. M. Refraction in media with a negative refractive index. Phys. Rev. Lett. https://doi.org/10.1103/physrevlett.90.107402 (2003).

    Article  Google Scholar 

  150. Kokkinos, T., Islam, R., Sarris, C. D. & Eleftheriades, G. V. Rigorous analysis of negative refractive index metamaterials using FDTD with embedded lumped elements. in 2004 IEEE MTT-S International Microwave Symposium Digest (IEEE Cat. No. 04CH37535) (IEEE, 2004).

  151. Li, D. & Sarris, C. D. A unified FDTD lattice truncation method for dispersive media based on periodic boundary conditions. J. Lightwave Technol. 28, 1447–1454 (2010).

    Article  ADS  Google Scholar 

  152. Pendry, J. B. Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966–3969 (2000).

    Article  ADS  Google Scholar 

  153. Taflove, A., Oskooi, A. & Johnson, S. G. Advances in FDTD Computational Electrodynamics: Photonics and Nanotechnology (Artech House, 2013). A perspective on advanced FDTD algorithms in the context of photonics and nanotechnology.

  154. Chen, Z., Taflove, A. & Backman, V. Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique. Opt. Express 12, 1214–1220 (2004). This paper uses FDTD to discover the existence of photonic nanojets.

    Article  ADS  Google Scholar 

  155. Karamehmedović, M., Scheel, K., Listov-Saabye Pedersen, F., Villegas, A. & Hansen, P.-E. Steerable photonic jet for super-resolution microscopy. Opt. Express 30, 41757–41773 (2022).

    Article  ADS  Google Scholar 

  156. Prather, D. W. & Shi, S. Formulation and application of the finite-difference time-domain method for the analysis of axially symmetric diffractive optical elements. J. Opt. Soc. Am. A 16, 1131–1142 (1999).

    Article  ADS  Google Scholar 

  157. Tong, M.-S. et al. Analysis of photonic band-gap (PBG) structures using the FDTD method. Microw. Opt. Technol. Lett. 41, 173–177 (2004).

    Article  Google Scholar 

  158. Sánchez‐Postigo, A. et al. Breaking the coupling efficiency–bandwidth trade‐off in surface grating couplers using zero‐order radiation. Laser Photon. Rev. 15, 2000542 (2021).

    Article  ADS  Google Scholar 

  159. Lavrinenko, A. V., Novitsky, A. & Zhilko, V. V. ARROW-based silicon-on-insulator photonic crystal waveguides with reduced losses. Opt. Quantum Electron. 38, 815 (2007).

    Article  Google Scholar 

  160. Bahadori, M., Nikdast, M., Cheng, Q. & Bergman, K. Universal design of waveguide bends in silicon-on-insulator photonics platform. J. Lightwave Technol. 37, 3044–3054 (2019).

    Article  ADS  Google Scholar 

  161. Kedia, J. & Gupta, N. An FDTD analysis of serially coupled double ring resonator for DWDM. Optik 126, 5641–5644 (2015).

    Article  ADS  Google Scholar 

  162. Gray, S. K. & Kupka, T. Propagation of light in metallic nanowire arrays: finite-difference time-domain studies of silver cylinders. Phys. Rev. B https://doi.org/10.1103/physrevb.68.045415 (2003).

    Article  Google Scholar 

  163. Oubre, C. & Nordlander, P. Optical properties of metallodielectric nanostructures calculated using the finite difference time domain method. J. Phys. Chem. B 108, 17740–17747 (2004).

    Article  Google Scholar 

  164. Zeng, Z., Venuthurumilli, P. K. & Xu, X. Inverse design of plasmonic structures with FDTD. ACS Photon. 8, 1489–1496 (2021).

    Article  Google Scholar 

  165. Ludwig, A., Sarris, C. D. & Eleftheriades, G. V. Metascreen-based superdirective antenna in the optical frequency regime. Phys. Rev. Lett. https://doi.org/10.1103/physrevlett.109.223901 (2012).

    Article  Google Scholar 

  166. Gabay, D., Yilmaz, A., Boag, A. & Natan, A. Modeling electromagnetic wave phenomena in large quantum systems: formulation and computational costs. IEEE Antennas Propag. Mag. 63, 29–39 (2021).

    Article  Google Scholar 

  167. Martin, R. M. Electronic Structure: Basic Theory and Practical Methods (Cambridge Univ. Press, 2004).

  168. Sholl, D. S. & Steckel, J. A. Density Functional Theory (John Wiley & Sons, Ltd, 2009).

  169. Payne, M. C., Teter, M. P., Allan, D. C., Arias, T. A. & Joannopoulos, J. D. Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Rev. Mod. Phys. 64, 1045–1097 (1992).

    Article  ADS  Google Scholar 

  170. Chew, W. C., Liu, A. Y., Salazar-Lazaro, C. & Sha, W. E. Quantum electromagnetics: a new look — part I. IEEE J. Multisc. Multiphys. Comput. Tech. 1, 73–84 (2016).

    Article  ADS  Google Scholar 

  171. Chew, W. C., Liu, A. Y., Salazar-Lazaro, C. & Sha, W. E. Quantum electromagnetics: a new look — part II. IEEE J. Multisc. Multiphys. Comput. Tech. 1, 85–97 (2016).

    Article  ADS  Google Scholar 

  172. Fox, A. M. & Fox, M. Quantum Optics: An Introduction Vol. 15 (Oxford Univ. Press, 2006).

  173. Gerry, C., Knight, P. & Knight, P. L. Introductory Quantum Optics (Cambridge Univ. Press, 2005).

  174. Miller, D. A. B. Quantum mechanics for scientists and engineers (Cambridge University Press, 2008).

  175. Na, D.-Y. & Chew, W. C. Quantum electromagnetic finite-difference time-domain solver. Quantum Rep. 2, 253–265 (2020).

    Article  Google Scholar 

  176. Na, D.-Y., Zhu, J. & Chew, W. C. Diagonalization of the Hamiltonian for finite-sized dispersive media: canonical quantization with numerical mode decomposition. Phys. Rev. A 103, 063707 (2021).

    Article  ADS  MathSciNet  Google Scholar 

  177. Na, D.-Y., Zhu, J., Chew, W. C. & Teixeira, F. L. Quantum information preserving computational electromagnetics. Phys. Rev. A 102, 013711 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  178. Thiel, W., Tornquist, K., Reano, R. & Katehi, L. P. B. A study of thermal effects in RF-MEM-switches using a time domain approach. in 2002 IEEE MTT-S International Microwave Symposium Digest (Cat. No. 02CH37278) (IEEE, 2002).

  179. Alsunaidi, M. A., Imtiaz, S. M. S. & El-Ghazaly, S. M. Electromagnetic wave effects on microwave transistors using a full-wave time-domain model. IEEE Trans. Microw. Theory Tech. 44, 799–808 (1996).

    Article  ADS  Google Scholar 

  180. Grondin, R. O., El-Ghazaly, S. M. & Goodnick, S. A review of global modeling of charge transport in semiconductors and full-wave electromagnetics. IEEE Trans. Microw. Theory Tech. 47, 817–829 (1999).

    Article  ADS  Google Scholar 

  181. Piket-May, M. et al. High-speed electronic circuits with active and nonlinear components. in Computational Electrodynamics: The Finite-Difference Time-Domain Method Ch. 15 (Artech House, Inc., 2005).

  182. Sui, W., Christensen, D. A. & Durney, C. H. Extending the two-dimensional FDTD method to hybrid electromagnetic systems with active and passive lumped elements. IEEE Trans. Microw. Theory Tech. 40, 724–730 (1992).

    Article  ADS  Google Scholar 

  183. Decleer, P. & Vande Ginste, D. A hybrid EM/QM framework based on the ADHIE-FDTD method for the modeling of nanowires. IEEE J. Multisc. Multiphys. Comput. Tech. 7, 236–251 (2022).

    Article  ADS  Google Scholar 

  184. Hue, Y.-K., Teixeira, F. L., Martin, L. S. & Bittar, M. S. Three-dimensional simulation of eccentric LWD tool response in boreholes through dipping formations. IEEE Trans. Geosci. Remote Sens. 43, 257–268 (2005).

    Article  ADS  Google Scholar 

  185. Zhang, Y., Simpson, J. J., Welling, D. & Liemohn, M. Improving the efficiency of Maxwell’s equations FDTD modeling for space weather applications by scaling the speed of light. in 2020 IEEE USNC-CNC-URSI North American Radio Science Meeting (Joint with AP-S Symposium) (IEEE, 2020).

  186. Sarris, C. D. Extending the stability limit of the FDTD method with spatial filtering. IEEE Microw. Wirel. Compon. Lett. 21, 176–178 (2011).

    Article  Google Scholar 

  187. Jandhyala, V., Michielssen, E. & Mittra, R. FDTD signal extrapolation using the forward–backward autoregressive (AR) model. IEEE Microw. Guided Wave Lett. 4, 163–165 (1994).

    Article  Google Scholar 

  188. Nayak, I., Kumar, M. & Teixeira, F. L. Detection and prediction of equilibrium states in kinetic plasma simulations via mode tracking using reduced-order dynamic mode decomposition. J. Comput. Phys. 447, 110671 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  189. Smith, D. R., Tan, T., Dao, E., Huang, C. & Simpson, J. J. An FDTD investigation of orthogonality and the backscattering of HF waves in the presence of ionospheric irregularities. J. Geophys. Res. Space Phys. https://doi.org/10.1029/2020ja028201 (2020).

    Article  Google Scholar 

  190. Donderici, B. & Teixeira, F. L. Domain-overriding and digital filtering for 3-D FDTD subgridded simulations. IEEE Microw. Wirel. Compon. Lett. 16, 10–12 (2006).

    Article  Google Scholar 

  191. Wagner, C. L. & Schneider, J. B. Divergent fields, charge, and capacitance in FDTD simulations. IEEE Trans. Microw. Theory Tech. 46, 2131–2136 (1998).

    Article  ADS  Google Scholar 

  192. Schuhmann, R. & Weiland, T. Stability of the FDTD algorithm on nonorthogonal grids related to the spatial interpolation scheme. IEEE Trans. Magn. 34, 2751–2754 (1998).

    Article  ADS  Google Scholar 

  193. Wang, S. & Teixeira, F. L. Some remarks on the stability of time-domain electromagnetic simulations. IEEE Trans. Antennas Propag. 52, 895–898 (2004).

    Article  ADS  Google Scholar 

  194. Douvalis, V., Hao, Y. & Parini, C. Stable non-orthogonal FDTD method. Electron. Lett. 40, 850–851 (2004).

    Article  ADS  Google Scholar 

  195. Teixeira, F. L. Lattice Maxwell’s equations. Prog. Electromagn. Res. 148, 113–128 (2014).

    Article  Google Scholar 

  196. Glasser, A. S. & Qin, H. Generalizing Yee’s method: scalable geometric higher-order FEEC algorithms for Maxwell’s equations on an unstructured mesh. Preprint at https://doi.org/10.48550/arXiv.2301.01753 (2023).

  197. Teixeira, F. L. & Chew, W. C. Lattice electromagnetic theory from a topological viewpoint. J. Math. Phys. 40, 169–187 (1999).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  198. Nikolova, N. K., Tam, H. W. & Bakr, M. H. Sensitivity analysis with the FDTD method on structured grids. IEEE Trans. Microw. Theory Tech. 52, 1207–1216 (2004).

    Article  ADS  Google Scholar 

  199. Zhao, Q. & Sarris, C. D. Space–time adaptive modeling and shape optimization of microwave structures with applications to metasurface design. IEEE Trans. Microw. Theory Tech. 70, 5440–5453 (2022).

    Article  ADS  Google Scholar 

  200. Hughes, T. W., Minkov, M., Liu, V., Yu, Z. & Fan, S. A perspective on the pathway toward full wave simulation of large area metalenses. Appl. Phys. Lett. 119, 150502 (2021).

    Article  ADS  Google Scholar 

  201. Zivari, A. et al. On-chip distribution of quantum information using traveling phonons. Sci. Adv. 8, eadd2811 (2022).

    Article  Google Scholar 

  202. Balsara, D. S. & Simpson, J. J. Making a synthesis of FDTD and DGTD schemes for computational electromagnetics. IEEE J. Multisc. Multiphys. Comput. Tech. 5, 99–118 (2020).

    Article  ADS  Google Scholar 

  203. Sarris, C. D. Adaptive mesh refinement for time-domain numerical electromagnetics. in Synthesis Lectures on Computational Electromagnetics Vol. 1, 1–154 (Morgan & Claypool Publishers, 2007).

  204. Huang, Z., Demarest, K. R. & Plumb, R. G. An FDTD/MoM hybrid technique for modeling complex antennas in the presence of heterogeneous grounds. IEEE Trans. Geosci. Remote Sens. 37, 2692–2698 (1999).

    Article  ADS  Google Scholar 

  205. Wang, Y., Safavi-Naeini, S. & Chaudhuri, S. K. A hybrid technique based on combining ray tracing and FDTD methods for site-specific modeling of indoor radio wave propagation. IEEE Trans. Antennas Propag. 48, 743–754 (2000).

    Article  ADS  Google Scholar 

  206. Chen, Z., Wang, C.-F. & Hoefer, W. J. R. A unified view of computational electromagnetics. IEEE Trans. Microw. Theory Tech. 70, 955–969 (2022).

    Article  ADS  Google Scholar 

  207. Joannopoulos, J. D., Johnson, S. G., Winn, J. N. & Meade, R. D. Photonic Crystals: Molding the Flow of Light 2nd edn (Princeton Univ. Press, 2008).

Download references

Acknowledgements

F.L.T. acknowledges support from the US Department of Energy Grant No. DE-SC0022982 through the NSF/DOE Partnership in Basic Plasma Science and Engineering. Part of the material from J.J.S. is based on work supported by the National Science Foundation under Grant No. 1662318. C.S. acknowledges support from the Natural Sciences and Engineering Research Council of Canada (NSERC) through a Discovery Grant. The authors acknowledge the help of K. Niknam in the generation of Fig. 5e using input data provided by T. Reichler.

Author information

Authors and Affiliations

Authors

Contributions

Introduction (F.L.T., Y.Z. and J.J.S.); Experimentation (F.L.T., C.S., J.-P.B., M.O. and J.J.S.); Results (F.L.T., C.S. and J.J.S.); Applications (F.L.T., C.S., Y.Z., D.-Y.N., J.-P.B., Y.S., V.B., J.J.S. and W.C.C.); Reproducibility and data deposition (C.S., Y.Z. and J.J.S.); Limitations and optimizations (F.L.T., Y.Z. and J.J.S.); Outlook (C.S., Y.Z., D.-Y.N., J.J.S. and W.C.C.); Overview of the Primer (all authors).

Corresponding author

Correspondence to J. J. Simpson.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Methods Primers thanks Theodoros Zygiridis, Jiefu Chen, Jun Shibayama, Stephen Gedney and Zhizhang Chen for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Message passing interface: https://www.open-mpi.org/

OpenMP: https://www.openmp.org/resources/

Glossary

Boundary conditions

Description of the behaviour of the solutions at certain points in space, usually along the outer edges of the finite-difference time-domain grid.

Courant–Friedrichs–Lewy (CFL) condition

A constraint that must be satisfied to achieve convergence and maintain numerical stability in a simulation.

Iterative Stencil Loops simulator

A numerical data processing solution where an array of elements is updated according to a fixed pattern called a stencil.

Maxwell’s equations

Two coupled partial differential equations that govern the propagation of electromagnetic waves.

Monte Carlo method

When applied to the finite-difference time-domain method, the Monte Carlo method involves rerunning a finite-difference time-domain simulation numerous times, often thousands or millions of times, to obtain a range of possible electric or magnetic field outcomes for an uncertain modelling scenario.

Scattering parameters

S-parameters provide a relationship between the input and output of an electrical network.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teixeira, F.L., Sarris, C., Zhang, Y. et al. Finite-difference time-domain methods. Nat Rev Methods Primers 3, 75 (2023). https://doi.org/10.1038/s43586-023-00257-4

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s43586-023-00257-4

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer