Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Optogenetics for light control of biological systems

Abstract

Optogenetic techniques have been developed to allow control over the activity of selected cells within a highly heterogeneous tissue, using a combination of genetic engineering and light. Optogenetics employs natural and engineered photoreceptors, mostly of microbial origin, to be genetically introduced into the cells of interest. As a result, cells that are naturally light-insensitive can be made photosensitive and addressable by illumination and precisely controllable in time and space. The selectivity of expression and subcellular targeting in the host is enabled by applying control elements such as promoters, enhancers and specific targeting sequences to the employed photoreceptor-encoding DNA. This powerful approach allows precise characterization and manipulation of cellular functions and has motivated the development of advanced optical methods for patterned photostimulation. Optogenetics has revolutionized neuroscience during the past 15 years and is primed to have a similar impact in other fields, including cardiology, cell biology and plant sciences. In this Primer, we describe the principles of optogenetics, review the most commonly used optogenetic tools, illumination approaches and scientific applications and discuss the possibilities and limitations associated with optogenetic manipulations across a wide variety of optical techniques, cells, circuits and organisms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Principles of optogenetics.
Fig. 2: The optogenetic actuator toolbox.
Fig. 3: Cell type-specific targeting of optogenetic tools.
Fig. 4: Optical approaches for optogenetic stimulation.
Fig. 5: Expected results in optogenetic experiments.
Fig. 6: Establishing links of causality with optogenetics.
Fig. 7: Optogenetic application for vision restoration, cardiac research and plant modification.

Similar content being viewed by others

References

  1. Famintzin, A. Die Wirkung der Lichtes auf die Bewegung der Chlamidomonas pulvisculus Ehr., Euglena viridis Ehr. und Orcillatoria insignis Tw. in Melanges Biologiques tires du Bulletin de I´Ácademie Imperial des Sciences De St. Petersbourg 73–93 (1866).

  2. Kuhne, W. F. Zur Photochemie der Netzhaut [German] (Carl Winter’s Universitatsbuchhandlung, 1877).

  3. Darwin, C. The Power of Movements in Plants (Appleton, 1881).

  4. Zemelman, B. V., Lee, G. A., Ng, M. & Miesenböck, G. Selective photostimulation of genetically chARGed neurons. Neuron 33, 15–22 (2002).

    Google Scholar 

  5. Boyden, E. S., Zhang, F., Bamberg, E., Nagel, G. & Deisseroth, K. Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci. 8, 1263–1268 (2005).

    Google Scholar 

  6. Ishizuka, T., Kakuda, M., Araki, R. & Yawo, H. Kinetic evaluation of photosensitivity in genetically engineered neurons expressing green algae light-gated channels. Neurosci. Res. 54, 85–94 (2006).

    Google Scholar 

  7. Li, X. et al. Fast noninvasive activation and inhibition of neural and network activity by vertebrate rhodopin and green algae channelrhodopsin. Proc. Natl Acad. Sci. USA 102, 17816–17821 (2005).

    ADS  Google Scholar 

  8. Nagel, G. et al. Light activation of channelrhodopsin-2 in excitable cells of Caenorhabditis elegans triggers rapid behavioral responses. Curr. Biol. 15, 2279–2284 (2005).

    Google Scholar 

  9. Schroll, C. et al. Light-induced activation of distinct modulatory neurons triggers appetitive or aversive learning in Drosophila larvae. Curr. Biol. 16, 1741–1747 (2006).

    Google Scholar 

  10. Adamantidis, A. R., Zhang, F., Aravanis, A. M., Deisseroth, K. & De Lecea, L. Neural substrates of awakening probed with optogenetic control of hypocretin neurons. Nature 450, 420–424 (2007).

    ADS  Google Scholar 

  11. Douglass, A. D., Kraves, S., Deisseroth, K., Schier, A. F. & Engert, F. Escape behavior elicited by single, channelrhodopsin-2-evoked spikes in zebrafish somatosensory neurons. Curr. Biol. 18, 1133–1137 (2008).

    Google Scholar 

  12. Han, X. et al. Millisecond-timescale optical control of neural dynamics in the nonhuman primate brain. Neuron 62, 191–198 (2009).

    Google Scholar 

  13. Bi, A. D. et al. Ectopic expression of a microbial-type rhodopsin restores visual responses in mice with photoreceptor degeneration. Neuron 50, 23–33 (2006).

    MathSciNet  Google Scholar 

  14. Ronzitti, E. et al. Recent advances in patterned photostimulation for optogenetics. J. Opt. 19, 113001 (2017).

    ADS  Google Scholar 

  15. Hull, K., Morstein, J. & Trauner, D. In vivo photopharmacology. Chem. Rev. 118, 10710–10747 (2018).

    Google Scholar 

  16. Velema, W. A., Szymanski, W. & Feringa, B. L. Photopharmacology: beyond proof of principle. J. Am. Chem. Soc. 136, 2178–2191 (2014).

    Google Scholar 

  17. Kolar, K., Knobloch, C., Stork, H., ŽnidariČ, M. & Weber, W. OptoBase: a web platform for molecular optogenetics. ACS Synth. Biol. 7, 1825–1828 (2018).

    Google Scholar 

  18. Manoilov, K. Y., Verkhusha, V. V. & Shcherbakova, D. M. A guide to the optogenetic regulation of endogenous molecules. Nat. Methods 18, 1027–1037 (2021).

    Google Scholar 

  19. Nagel, G. et al. Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc. Natl Acad. Sci. USA 100, 13940–13945 (2003).

    ADS  Google Scholar 

  20. Rozenberg, A. et al. Lateral gene transfer of anion-conducting channelrhodopsins between green algae and giant viruses. Curr. Biol. 30, 4910–4920.e5 (2020).

    Google Scholar 

  21. Vierock, J., Grimm, C., Nitzan, N. & Hegemann, P. Molecular determinants of proton selectivity and gating in the red-light activated channelrhodopsin Chrimson. Sci. Rep. 7, 9928 (2017).

    ADS  Google Scholar 

  22. Govorunova, E. G. et al. Kalium channelrhodopsins are natural light-gated potassium channels that mediate optogenetic inhibition. Nat. Neurosci. https://doi.org/10.1038/s41593-022-01094-6 (2022).

    Article  Google Scholar 

  23. Govorunova, E. G. et al. The expanding family of natural anion channelrhodopsins reveals large variations in kinetics, conductance, and spectral sensitivity. Sci. Rep. 7, 43358 (2017).

    ADS  Google Scholar 

  24. Mahn, M. et al. High-efficiency optogenetic silencing with soma-targeted anion-conducting channelrhodopsins. Nat. Commun. 9, 4125 (2018).

    ADS  Google Scholar 

  25. Ben-Ari, Y. Excitatory actions of GABA during development: the nature of the nurture. Nat. Rev. Neurosci. 3, 728–739 (2002).

    Google Scholar 

  26. Schneider, F., Grimm, C. & Hegemann, P. Biophysics of channelrhodopsin. Annu. Rev. Biophys. 44, 167–186 (2015).

    Google Scholar 

  27. Kuhne, J. et al. Unifying photocycle model for light adaptation and temporal evolution of cation conductance in channelrhodopsin-2. Proc. Natl Acad. Sci. USA 116, 9380–9389 (2019).

    Google Scholar 

  28. Sineshchekov, O. A., Govorunova, E. G., Li, H. & Spudich, J. L. Bacteriorhodopsin-like channelrhodopsins: alternative mechanism for control of cation conductance. Proc. Natl Acad. Sci. USA 114, E9512–E9519 (2017).

    Google Scholar 

  29. Kishi, K. E. et al. Structural basis for channel conduction in the pump-like channelrhodopsin ChRmine. Cell 185, 672–689.e23 (2022).

    Google Scholar 

  30. Klapoetke, N. C. et al. Independent optical excitation of distinct neural populations. Nat. Methods 11, 338–346 (2014).

    Google Scholar 

  31. Oda, K. et al. Crystal structure of the red light-activated channelrhodopsin Chrimson. Nat. Commun. 9, 3949 (2018).

    ADS  Google Scholar 

  32. Govorunova, E. G. et al. RubyACRs, non-algal anion channelrhodopsins with highly red-shifted absorption. Proc. Natl Acad. Sci. USA 117, 22833–22840 (2020).

    Google Scholar 

  33. Gradinaru, V. et al. Molecular and cellular approaches for diversifying and extending optogenetics. Cell 141, 154–165 (2010).

    Google Scholar 

  34. Vierock, J. et al. BiPOLES is an optogenetic tool developed for bidirectional dual-color control of neurons. Nat. Commun. 12, 4527 (2021).

    ADS  Google Scholar 

  35. Grusch, M. et al. Spatio-temporally precise activation of engineered receptor tyrosine kinases by light. EMBO J. 33, 1713–1726 (2014).

    Google Scholar 

  36. Kainrath, S., Stadler, M., Reichhart, E., Distel, M. & Janovjak, H. Green-light-induced inactivation of receptor signaling using cobalamin-binding domains. Angew. Chem. Int. Ed. 56, 4608–4611 (2017).

    Google Scholar 

  37. Chang, K.-Y. et al. Light-inducible receptor tyrosine kinases that regulate neurotrophin signalling. Nat. Commun. 5, 4057 (2014).

    ADS  Google Scholar 

  38. Stierl, M. et al. Light modulation of cellular cAMP by a small bacterial photoactivated adenylyl cyclase, bPAC, of the soil bacterium Beggiatoa. J. Biol. Chem. 286, 1181–1188 (2011).

    Google Scholar 

  39. Zhang, F. et al. Multimodal fast optical interrogation of neural circuitry. Nature 446, 633–U634 (2007).

    ADS  Google Scholar 

  40. Parker, D. Neuronal network analyses: premises, promises and uncertainties. Philos. Trans. R. Soc. B Biol. Sci. 365, 2315–2328 (2010).

    Google Scholar 

  41. Chuong, A. S. et al. Noninvasive optical inhibition with a red-shifted microbial rhodopsin. Nat. Neurosci. 17, 1123–1129 (2014).

    Google Scholar 

  42. Wiegert, J. S., Mahn, M., Prigge, M., Printz, Y. & Yizhar, O. Silencing neurons: tools, applications, and experimental constraints. Neuron 95, 504–529 (2017).

    Google Scholar 

  43. Rost, B. R. et al. Optogenetic acidification of synaptic vesicles and lysosomes. Nat. Neurosci. 18, 1845–1852 (2015).

    Google Scholar 

  44. Junge, W. Protons, the thylakoid membrane, and the chloroplast ATP synthase. Ann. N. Y. Acad. Sci. 574, 268–286 (1989).

    ADS  Google Scholar 

  45. Raimondo, J. V., Kay, L., Ellender, T. J. & Akerman, C. J. Optogenetic silencing strategies differ in their effects on inhibitory synaptic transmission. Nat. Neurosci. 15, 1102–1104 (2012).

    Google Scholar 

  46. Khorana, H. G., Knox, B. E., Nasi, E., Swanson, R. & Thompson, D. A. Expression of a bovine rhodopsin gene in Xenopus oocytes — demonstration of light-dependent ionic currents. Proc. Natl Acad. Sci. USA 85, 7917–7921 (1988).

    ADS  Google Scholar 

  47. Karunarathne, W. A., Giri, L., Patel, A. K., Venkatesh, K. V. & Gautam, N. Optical control demonstrates switch-like PIP3 dynamics underlying the initiation of immune cell migration. Proc. Natl Acad. Sci. 110, E1575–E1583 (2013).

    ADS  Google Scholar 

  48. Karunarathne, W. A., Giri, L., Kalyanaraman, V. & Gautam, N. Optically triggering spatiotemporally confined GPCR activity in a cell and programming neurite initiation and extension. Proc. Natl Acad. Sci. USA 110, E1565–E1574 (2013).

    ADS  Google Scholar 

  49. Masseck, O. A. et al. Vertebrate cone opsins enable sustained and highly sensitive rapid control of Gi/o signaling in anxiety circuitry. Neuron 81, 1263–1273 (2014).

    Google Scholar 

  50. Bailes, H. J., Zhuang, L.-Y. & Lucas, R. J. Reproducible and sustained regulation of Gαs signalling using a metazoan opsin as an optogenetic tool. PLoS ONE 7, e30774 (2012).

    ADS  Google Scholar 

  51. Spoida, K. et al. Melanopsin variants as intrinsic optogenetic on and off switches for transient versus sustained activation of G protein pathways. Curr. Biol. 26, 1206–1212 (2016).

    MathSciNet  Google Scholar 

  52. Lin, B., Koizumi, A., Tanaka, N., Panda, S. & Masland, R. H. Restoration of visual function in retinal degeneration mice by ectopic expression of melanopsin. Proc. Natl Acad. Sci. USA 105, 16009–16014 (2008).

    ADS  Google Scholar 

  53. Tsunematsu, T., Tanaka, K. F., Yamanaka, A. & Koizumi, A. Ectopic expression of melanopsin in orexin/hypocretin neurons enables control of wakefulness of mice in vivo by blue light. Neurosci. Res. 75, 23–28 (2013).

    Google Scholar 

  54. Koyanagi, M. et al. in Optogenetics 141–151 (Springer, 2021).

  55. Eickelbeck, D. et al. Lamprey parapinopsin (“UVLamP”): a bistable UV-sensitive optogenetic switch for ultrafast control of GPCR pathways. ChemBioChem 21, 612 (2020).

    Google Scholar 

  56. Copits, B. A. et al. A photoswitchable GPCR-based opsin for presynaptic inhibition. Neuron 109, 1791–1809. e1711 (2021).

    Google Scholar 

  57. Mahn, M. et al. Efficient optogenetic silencing of neurotransmitter release with a mosquito rhodopsin. Neuron 109, 1621–1635 (2021).

    Google Scholar 

  58. Kim, J.-M. et al. Light-driven activation of β2-adrenergic receptor signaling by a chimeric rhodopsin containing the β2-adrenergic receptor cytoplasmic loops. Biochemistry 44, 2284–2292 (2005).

    Google Scholar 

  59. Airan, R. D., Thompson, K. R., Fenno, L. E., Bernstein, H. & Deisseroth, K. Temporally precise in vivo control of intracellular signalling. Nature 458, 1025–1029 (2009).

    ADS  Google Scholar 

  60. Osorno, T. et al. Light control of G protein signaling pathways by a novel photopigment. PLoS ONE 13, e0205015 (2018).

    Google Scholar 

  61. Bradley, S. J. & Challiss, R. J. G protein-coupled receptor signalling in astrocytes in health and disease: a focus on metabotropic glutamate receptors. Biochem. Pharmacol. 84, 249–259 (2012).

    Google Scholar 

  62. Bernal Sierra, Y. A. et al. Potassium channel-based optogenetic silencing. Nat. Commun. 9, 4611 (2018).

    ADS  Google Scholar 

  63. De Marco, R. J., Groneberg, A. H., Yeh, C. M., Castillo Ramirez, L. A. & Ryu, S. Optogenetic elevation of endogenous glucocorticoid level in larval zebrafish. Front. Neural Circuits 7, 82 (2013).

    Google Scholar 

  64. Jansen, V. et al. Controlling fertilization and cAMP signaling in sperm flagella by optogenetics. eLife 4, e05161 (2015).

    Google Scholar 

  65. Zhang, S. X. et al. Hypothalamic dopamine neurons motivate mating through persistent cAMP signalling. Nature 597, 245–249 (2021).

    ADS  Google Scholar 

  66. Scheib, U. et al. The rhodopsin–guanylyl cyclase of the aquatic fungus Blastocladiella emersonii enables fast optical control of cGMP signaling. Sci. Signal. 8, rs8 (2015).

    Google Scholar 

  67. Scheib, U. et al. Rhodopsin-cyclases for photocontrol of cGMP/cAMP and 2.3 Å structure of the adenylyl cyclase domain. Nat. Commun. 9, 2046 (2018).

    ADS  Google Scholar 

  68. Gao, S. et al. Optogenetic manipulation of cGMP in cells and animals by the tightly light-regulated guanylyl-cyclase opsin CyclOp. Nat. Commun. 6, 8046 (2015).

    ADS  Google Scholar 

  69. Broser, M. et al. NeoR, a near-infrared absorbing rhodopsin. Nat. Commun. 11, 5682 (2020).

    ADS  Google Scholar 

  70. Rost, B. R., Schneider-Warme, F., Schmitz, D. & Hegemann, P. Optogenetic tools for subcellular applications in neuroscience. Neuron 96, 572–603 (2017).

    Google Scholar 

  71. Polesskaya, O. et al. Optogenetic regulation of transcription. BMC Neurosci. 19, 3–13 (2018).

    Google Scholar 

  72. Polstein, L. R. & Gersbach, C. A. Light-inducible spatiotemporal control of gene activation by customizable zinc finger transcription factors. J. Am. Chem. Soc. 134, 16480–16483 (2012).

    Google Scholar 

  73. Konermann, S. et al. Optical control of mammalian endogenous transcription and epigenetic states. Nature 500, 472 (2013).

    ADS  Google Scholar 

  74. Nihongaki, Y., Kawano, F., Nakajima, T. & Sato, M. Photoactivatable CRISPR–Cas9 for optogenetic genome editing. Nat. Biotechnol. 33, 755–760 (2015).

    Google Scholar 

  75. Nihongaki, Y. et al. CRISPR–Cas9-based photoactivatable transcription systems to induce neuronal differentiation. Nat. Methods 14, 963–966 (2017).

    Google Scholar 

  76. Raper, A. T., Stephenson, A. A. & Suo, Z. Functional insights revealed by the kinetic mechanism of CRISPR/Cas9. J. Am. Chem. Soc. 140, 2971–2984 (2018).

    Google Scholar 

  77. Mardinly, A. R. et al. Precise multimodal optical control of neural ensemble activity. Nat. Neurosci. 21, 881–893 (2018).

    Google Scholar 

  78. Arenkiel, B. R. et al. In vivo light-induced activation of neural circuitry in transgenic mice expressing channelrhodopsin-2. Neuron 54, 205–218 (2007).

    Google Scholar 

  79. Madisen, L. et al. A toolbox of Cre-dependent optogenetic transgenic mice for light-induced activation and silencing. Nat. Neurosci. 15, 793–802 (2012).

    Google Scholar 

  80. Madisen, L. et al. Transgenic mice for intersectional targeting of neural sensors and effectors with high specificity and performance. Neuron 85, 942–958 (2015).

    Google Scholar 

  81. Lammel, S. et al. Diversity of transgenic mouse models for selective targeting of midbrain dopamine neurons. Neuron 85, 429–438 (2015).

    Google Scholar 

  82. Song, A. J. & Palmiter, R. D. Detecting and avoiding problems when using the Cre–lox system. Trends Genet. 34, 333–340 (2018).

    Google Scholar 

  83. Graybuck, L. T. et al. Enhancer viruses and a transgenic platform for combinatorial cell subclass-specific labeling. Preprint at bioRxiv https://doi.org/10.1101/525014 (2020).

    Article  Google Scholar 

  84. Nair, R. R., Blankvoort, S., Lagartos, M. J. & Kentros, C. Enhancer-driven gene expression (EDGE) enables the generation of viral vectors specific to neuronal subtypes. iScience 23, 100888 (2020).

    ADS  Google Scholar 

  85. Jüttner, J. et al. Targeting neuronal and glial cell types with synthetic promoter AAVs in mice, non-human primates and humans. Nat. Neurosci. 22, 1345–1356 (2019).

    Google Scholar 

  86. Tervo, D. G. R. et al. A designer AAV variant permits efficient retrograde access to projection neurons. Neuron 92, 372–382 (2016).

    Google Scholar 

  87. Zhang, S. et al. Long-range and local circuits for top-down modulation of visual cortex processing. Science 345, 660–665 (2014).

    ADS  Google Scholar 

  88. Chan, K. Y. et al. Engineered AAVs for efficient noninvasive gene delivery to the central and peripheral nervous systems. Nat. Neurosci. 20, 1172–1179 (2017).

    Google Scholar 

  89. Challis, R. C. et al. Systemic AAV vectors for widespread and targeted gene delivery in rodents. Nat. Protoc. 14, 379–414 (2019).

    Google Scholar 

  90. Mathiesen, S. N., Lock, J. L., Schoderboeck, L., Abraham, W. C. & Hughes, S. M. CNS transduction benefits of AAV-PHP.eB over AAV9 are dependent on administration route and mouse strain. Mol. Ther. Methods Clin. Dev. 19, 447–458 (2020).

    Google Scholar 

  91. LoTurco, J., Manent, J.-B. & Sidiqi, F. New and improved tools for in utero electroporation studies of developing cerebral cortex. Cereb. Cortex 19, i120–i125 (2009).

    Google Scholar 

  92. Dal Maschio, M. et al. High-performance and site-directed in utero electroporation by a triple-electrode probe. Nat. Commun. 3, 960 (2012).

    ADS  Google Scholar 

  93. Rosin, J. M. & Kurrasch, D. M. In utero electroporation induces cell death and alters embryonic microglia morphology and expression signatures in the developing hypothalamus. J. Neuroinflamm. 15, 181 (2018).

    Google Scholar 

  94. Mahn, M., Prigge, M., Ron, S., Levy, R. & Yizhar, O. Biophysical constraints of optogenetic inhibition at presynaptic terminals. Nat. Neurosci. 19, 554–556 (2016).

    Google Scholar 

  95. Ullrich, S., Gueta, R. & Nagel, G. Degradation of channelopsin-2 in the absence of retinal and degradation resistance in certain mutants. Biol. Chem. 394, 271–280 (2013).

    Google Scholar 

  96. Hofherr, A., Fakler, B. & Klöcker, N. Selective Golgi export of Kir2.1 controls the stoichiometry of functional Kir2.x channel heteromers. J. Cell Sci. 118, 1935–1943 (2005).

    Google Scholar 

  97. Mattis, J. et al. An analysis of new and existing opsins for scientific application. Eur. Biophys. J. Biophys. Lett. 40, 68–69 (2011).

    Google Scholar 

  98. Zhou, Y. et al. Optogenetic control of plant growth by a microbial rhodopsin. Nat. Plants 7, 144–151 (2021).

    Google Scholar 

  99. Adam, Y. et al. Voltage imaging and optogenetics reveal behaviour-dependent changes in hippocampal dynamics. Nature 569, 413–417 (2019).

    ADS  Google Scholar 

  100. Wu, C., Ivanova, E., Zhang, Y. & Pan, Z.-H. rAAV-mediated subcellular targeting of optogenetic tools in retinal ganglion cells in vivo. PLoS ONE 8, e66332 (2013).

    ADS  Google Scholar 

  101. Baker, C. A., Elyada, Y. M., Parra, A. & Bolton, M. M. Cellular resolution circuit mapping with temporal-focused excitation of soma-targeted channelrhodopsin. eLife 5, e14193 (2016).

    Google Scholar 

  102. Shemesh, O. A. et al. Temporally precise single-cell-resolution optogenetics. Nat. Neurosci. 20, 1796–1806 (2017).

    Google Scholar 

  103. Forli, A. et al. Two-photon bidirectional control and imaging of neuronal excitability with high spatial resolution in vivo. Cell Rep. 22, 3087–3098 (2018).

    Google Scholar 

  104. Forli, A., Pisoni, M., Printz, Y., Yizhar, O. & Fellin, T. Optogenetic strategies for high-efficiency all-optical interrogation using blue-light-sensitive opsins. eLife 10, e63359 (2021).

    Google Scholar 

  105. Spaulding, E. L. & Burgess, R. W. Accumulating evidence for axonal translation in neuronal homeostasis. Front. Neurosci. 11, 312 (2017).

    Google Scholar 

  106. Johnson, H. E. & Toettcher, J. E. Illuminating developmental biology with cellular optogenetics. Curr. Opin. Biotechnol. 52, 42–48 (2018).

    Google Scholar 

  107. Stujenske, J. M., Spellman, T. & Gordon, J. A. Modeling the spatiotemporal dynamics of light and heat propagation for in vivo optogenetics. Cell Rep. 12, 525–534 (2015).

    Google Scholar 

  108. Rungta, R. L., Osmanski, B.-F., Boido, D., Tanter, M. & Charpak, S. Light controls cerebral blood flow in naive animals. Nat. Commun. 8, 14191 (2017).

    ADS  Google Scholar 

  109. Pisanello, M. et al. Tailoring light delivery for optogenetics by modal demultiplexing in tapered optical fibers. Sci. Rep. 8, 4467 (2018).

    ADS  Google Scholar 

  110. Arrenberg, A. B., Stainier, D. Y., Baier, H. & Huisken, J. Optogenetic control of cardiac function. Science 330, 971–974 (2010).

    ADS  Google Scholar 

  111. Burton, R. A. et al. Optical control of excitation waves in cardiac tissue. Nat. Photonics 9, 813–816 (2015).

    ADS  Google Scholar 

  112. Majumder, R. et al. Optogenetics enables real-time spatiotemporal control over spiral wave dynamics in an excitable cardiac system. eLife 7, e41076 (2018).

    Google Scholar 

  113. Scardigli, M. et al. Real-time optical manipulation of cardiac conduction in intact hearts. J. Physiol. 596, 3841–3858 (2018).

    Google Scholar 

  114. Chen, I.-W., Papagiakoumou, E. & Emiliani, V. Towards circuit optogenetics. Curr. Opin. Neurobiol. 50, 179–189 (2018).

    Google Scholar 

  115. Mager, T. et al. High frequency neural spiking and auditory signaling by ultrafast red-shifted optogenetics. Nat. Commun. 9, 1750 (2018).

    ADS  Google Scholar 

  116. Ronzitti, E. et al. Submillisecond optogenetic control of neuronal firing with two-photon holographic photoactivation of chronos. J. Neurosci. 37, 10679–10689 (2017).

    Google Scholar 

  117. Pégard, N. C. et al. Three-dimensional scanless holographic optogenetics with temporal focusing (3D-SHOT). Nat. Commun. 8, 1228 (2017).

    ADS  Google Scholar 

  118. Marshel, J. H. et al. Cortical layer-specific critical dynamics triggering perception. Science 365, eaaw5202 (2019).

    Google Scholar 

  119. Lin, J., Knutsen, P., Muller, A., Kleinfeld, D. & Tsien, R. ReaChR: a red-shifted variant of channelrhodopsin enables neuronal activation through the intact skull. Nat. Neurosci. 16, 1499–1508 (2013).

    Google Scholar 

  120. Yizhar, O. et al. Neocortical excitation/inhibition balance in information processing and social dysfunction. Nature 477, 171–178 (2011).

    ADS  Google Scholar 

  121. Chen, I.-W. et al. In vivo submillisecond two-photon optogenetics with temporally focused patterned light. J. Neurosci. 39, 3484–3497 (2019).

    Google Scholar 

  122. Feldbauer, K. et al. Channelrhodopsin-2 is a leaky proton pump. Proc. Natl Acad. Sci. USA 106, 12317–12322 (2009).

    ADS  Google Scholar 

  123. Papagiakoumou, E. et al. Scanless two-photon excitation of channelrhodopsin-2. Nat. Methods 7, 848–854 (2010).

    Google Scholar 

  124. Andrasfalvy, B. K., Zemelman, B. V., Tang, J. & Vaziri, A. Two-photon single-cell optogenetic control of neuronal activity by sculpted light. Proc. Natl Acad. Sci. USA 107, 11981–11986 (2010).

    ADS  Google Scholar 

  125. Packer, A. M., Russell, L. E., Dalgleish, H. W. & Häusser, M. Simultaneous all-optical manipulation and recording of neural circuit activity with cellular resolution in vivo. Nat. Methods 12, 140–146 (2015).

    Google Scholar 

  126. Hernandez, O. et al. Three-dimensional spatiotemporal focusing of holographic patterns. Nat. Commun. 7, 11928 (2016).

    ADS  Google Scholar 

  127. Accanto, N. et al. Multiplexed temporally focused light shaping for high-resolution multi-cell targeting. Optica 5, 1478–1491 (2018).

    ADS  Google Scholar 

  128. Chaigneau, E. et al. Two-photon holographic stimulation of ReaChR. Front. Cell. Neurosci. 10, 234 (2016).

    Google Scholar 

  129. Robinson, N. T. et al. Targeted activation of hippocampal place cells drives memory-guided spatial behavior. Cell 183, 1586–1599.e10 (2020).

    Google Scholar 

  130. Dalgleish, H. W. et al. How many neurons are sufficient for perception of cortical activity? eLife 9, e58889 (2020).

    Google Scholar 

  131. Gill, J. V. et al. Precise holographic manipulation of olfactory circuits reveals coding features determining perceptual detection. Neuron 108, 382–393.e5 (2020).

    Google Scholar 

  132. Dal Maschio, M., Donovan, J. C., Helmbrecht, T. O. & Baier, H. Linking neurons to network function and behavior by two-photon holographic optogenetics and volumetric imaging. Neuron 94, 774–789.e5 (2017).

    Google Scholar 

  133. Jennings, J. H. et al. Interacting neural ensembles in orbitofrontal cortex for social and feeding behaviour. Nature 565, 645–649 (2019).

    ADS  Google Scholar 

  134. Accanto, N. et al. Multiplexed temporally focused light shaping through a gradient index lens for precise in-depth optogenetic photostimulation. Sci. Rep. 9, 7603 (2019).

    ADS  Google Scholar 

  135. Rowlands, C. J. et al. Wide-field three-photon excitation in biological samples. Light Sci. Appl. 6, e16255 (2017).

    Google Scholar 

  136. Jackman, S. L., Beneduce, B. M., Drew, I. R. & Regehr, W. G. Achieving high-frequency optical control of synaptic transmission. J. Neurosci. 34, 7704–7714 (2014).

    Google Scholar 

  137. Cardin, J. A. et al. Targeted optogenetic stimulation and recording of neurons in vivo using cell-type-specific expression of channelrhodopsin-2. Nat. Protoc. 5, 247 (2010).

    Google Scholar 

  138. Wu, J. et al. Improved orange and red Ca2+ indicators and photophysical considerations for optogenetic applications. ACS Chem. Neurosci. 4, 963–972 (2013).

    Google Scholar 

  139. Platisa, J. & Pieribone, V. A. Genetically encoded fluorescent voltage indicators: are we there yet? Curr. Opin. Neurobiol. 50, 146–153 (2018).

    Google Scholar 

  140. Urakubo, H., Yagishita, S., Kasai, H., Kubota, Y. & Ishii, S. The critical balance between dopamine D2 receptor and RGS for the sensitive detection of a transient decay in dopamine signal. PLoS Comput. Biol. 17, e1009364 (2021).

    ADS  Google Scholar 

  141. Wang, H., Jing, M. & Li, Y. Lighting up the brain: genetically encoded fluorescent sensors for imaging neurotransmitters and neuromodulators. Curr. Opin. Neurobiol. 50, 171–178 (2018).

    Google Scholar 

  142. Leopold, A. V., Shcherbakova, D. M. & Verkhusha, V. V. Fluorescent biosensors for neurotransmission and neuromodulation: engineering and applications. Front. Cell. Neurosci. 13, 474 (2019).

    Google Scholar 

  143. Gradinaru, V., Mogri, M., Thompson, K. R., Henderson, J. M. & Deisseroth, K. Optical deconstruction of parkinsonian neural circuitry. Science 324, 354–359 (2009).

    ADS  Google Scholar 

  144. Wu, Y. E., Pan, L., Zuo, Y., Li, X. & Hong, W. Detecting activated cell populations using single-cell RNA-seq. Neuron 96, 313–329 (2017).

    Google Scholar 

  145. Franceschini, A., Costantini, I., Pavone, F. S. & Silvestri, L. Dissecting neuronal activation on a brain-wide scale with immediate early genes. Front. Neurosci. 14, 1111 (2020).

    Google Scholar 

  146. Guenthner, C. J., Miyamichi, K., Yang, H. H., Heller, H. C. & Luo, L. Permanent genetic access to transiently active neurons via TRAP: targeted recombination in active populations. Neuron 78, 773–784 (2013).

    Google Scholar 

  147. Grinvald, A., Lieke, E., Frostig, R. D., Gilbert, C. D. & Wiesel, T. N. Functional architecture of cortex revealed by optical imaging of intrinsic signals. Nature 324, 361–364 (1986).

    ADS  Google Scholar 

  148. Juavinett, A. L., Nauhaus, I., Garrett, M. E., Zhuang, J. & Callaway, E. M. Automated identification of mouse visual areas with intrinsic signal imaging. Nat. Protoc. 12, 32 (2017).

    Google Scholar 

  149. Lee, J. H. et al. Global and local fMRI signals driven by neurons defined optogenetically by type and wiring. Nature 465, 788–792 (2010).

    ADS  Google Scholar 

  150. Uludağ, K. & Blinder, P. Linking brain vascular physiology to hemodynamic response in ultra-high field MRI. Neuroimage 168, 279–295 (2018).

    Google Scholar 

  151. Albers, F., Wachsmuth, L., Schache, D., Lambers, H. & Faber, C. Functional MRI readouts from bold and diffusion measurements differentially respond to optogenetic activation and tissue heating. Front. Neurosci. 13, 1104 (2019).

    Google Scholar 

  152. Edelman, B. J. & Macé, E. Functional ultrasound brain imaging: bridging networks, neurons and behavior. Curr. Opin. Biomed. Eng. 18, 100286 (2021).

    Google Scholar 

  153. Brecht, M. et al. Organization of rat vibrissa motor cortex and adjacent areas according to cytoarchitectonics, microstimulation, and intracellular stimulation of identified cells. J. Comp. Neurol. 479, 360–373 (2004).

    Google Scholar 

  154. Heindorf, M., Arber, S. & Keller, G. B. Mouse motor cortex coordinates the behavioral response to unpredicted sensory feedback. Neuron 99, 1040–1054.e5 (2018).

    Google Scholar 

  155. Dana, H. et al. High-performance calcium sensors for imaging activity in neuronal populations and microcompartments. Nat. Methods 16, 649–657 (2019).

    Google Scholar 

  156. Guo, Z. V. et al. Flow of cortical activity underlying a tactile decision in mice. Neuron 81, 179–194 (2014).

    Google Scholar 

  157. Jun, J. J. et al. Fully integrated silicon probes for high-density recording of neural activity. Nature 551, 232–236 (2017).

    ADS  Google Scholar 

  158. Steinmetz, N. A. et al. Neuropixels 2.0: a miniaturized high-density probe for stable, long-term brain recordings. Science 372, eabf4588 (2021).

    Google Scholar 

  159. Kvitsiani, D. et al. Distinct behavioural and network correlates of two interneuron types in prefrontal cortex. Nature 498, 363–366 (2013).

    ADS  Google Scholar 

  160. Ferreira-Pinto, M. J. et al. Functional diversity for body actions in the mesencephalic locomotor region. Cell 184, 4564–4578.e18 (2021).

    Google Scholar 

  161. Pascoli, V. et al. Contrasting forms of cocaine-evoked plasticity control components of relapse. Nature 509, 459–464 (2014).

    ADS  Google Scholar 

  162. Burguière, E., Monteiro, P., Feng, G. & Graybiel, A. M. Optogenetic stimulation of lateral orbitofronto-striatal pathway suppresses compulsive behaviors. Science 340, 1243–1246 (2013).

    ADS  Google Scholar 

  163. Hartong, D. T., Berson, E. L. & Dryja, T. P. Retinitis pigmentosa. Lancet 368, 1795–1809 (2006).

    Google Scholar 

  164. de Jong, E. K., Geerlings, M. J. & den Hollander, A. I. Age-related macular degeneration. Genet. Genomics Eye Dis. https://doi.org/10.1016/B978-0-12-816222-4.00010-1 (2020).

    Article  Google Scholar 

  165. Sahel, J.-A. et al. Partial recovery of visual function in a blind patient after optogenetic therapy. Nat. Med. 27, 1223–1229 (2021).

    Google Scholar 

  166. Tomita, H. et al. Restoration of the majority of the visual spectrum by using modified Volvox channelrhodopsin-1. Mol. Ther. 22, 1434–1440 (2014).

    Google Scholar 

  167. Sengupta, A. et al. Red-shifted channelrhodopsin stimulation restores light responses in blind mice, macaque retina, and human retina. EMBO Mol. Med. 8, 1248–1264 (2016).

    Google Scholar 

  168. Gauvain, G. et al. Optogenetic therapy: high spatiotemporal resolution and pattern discrimination compatible with vision restoration in non-human primates. Commun. Biol. 4, 125 (2021).

    Google Scholar 

  169. Mattis, J. et al. Principles for applying optogenetic tools derived from direct comparative analysis of microbial opsins. Nat. Methods 9, 159–172 (2012).

    Google Scholar 

  170. Ganjawala, T. H., Lu, Q., Fenner, M. D., Abrams, G. W. & Pan, Z.-H. Improved CoChR variants restore visual acuity and contrast sensitivity in a mouse model of blindness under ambient light conditions. Mol. Ther. 27, 1195–1205 (2019).

    Google Scholar 

  171. Cehajic-Kapetanovic, J. et al. Restoration of vision with ectopic expression of human rod opsin. Curr. Biol. 25, 2111–2122 (2015).

    Google Scholar 

  172. Gaub, B. M., Berry, M. H., Holt, A. E., Isacoff, E. Y. & Flannery, J. G. Optogenetic vision restoration using rhodopsin for enhanced sensitivity. Mol. Ther. 23, 1562–1571 (2015).

    Google Scholar 

  173. Berry, M. H. et al. Restoration of high-sensitivity and adapting vision with a cone opsin. Nat. Commun. 10, 1221 (2019).

    ADS  Google Scholar 

  174. van Wyk, M., Pielecka-Fortuna, J., Löwel, S. & Kleinlogel, S. Restoring the ON switch in blind retinas: opto-mGluR6, a next-generation, cell-tailored optogenetic tool. PLoS Biol. 13, e1002143 (2015).

    Google Scholar 

  175. Surace, E. M. & Auricchio, A. Versatility of AAV vectors for retinal gene transfer. Vis. Res. 48, 353–359 (2008).

    Google Scholar 

  176. Ivanova, E., Hwang, G.-S., Pan, Z.-H. & Troilo, D. Evaluation of AAV-mediated expression of Chop2-GFP in the marmoset retina. Investig. Ophthalmol. Vis. Sci. 51, 5288–5296 (2010).

    Google Scholar 

  177. Yin, L. et al. Intravitreal injection of AAV2 transduces macaque inner retina. Investig. Ophthalmol. Vis. Sci. 52, 2775–2783 (2011).

    Google Scholar 

  178. Lagali, P. S. et al. Light-activated channels targeted to ON bipolar cells restore visual function in retinal degeneration. Nat. Neurosci. 11, 667–675 (2008).

    Google Scholar 

  179. Cronin, T. et al. Efficient transduction and optogenetic stimulation of retinal bipolar cells by a synthetic adeno-associated virus capsid and promoter. EMBO Mol. Med. 6, 1175–1190 (2014).

    Google Scholar 

  180. Macé, E. et al. Targeting channelrhodopsin-2 to ON-bipolar cells with vitreally administered AAV restores ON and OFF visual responses in blind mice. Mol. Ther. 23, 7–16 (2015).

    Google Scholar 

  181. Lu, Q., Ganjawala, T. H., Krstevski, A., Abrams, G. W. & Pan, Z.-H. Comparison of AAV-mediated optogenetic vision restoration between retinal ganglion cell expression and ON bipolar cell targeting. Mol. Ther. Methods Clin. Dev. 18, 15–23 (2020).

    Google Scholar 

  182. Busskamp, V. et al. Genetic reactivation of cone photoreceptors restores visual responses in retinitis pigmentosa. Science 329, 413–417 (2010).

    ADS  Google Scholar 

  183. Marc, R. E., Jones, B. W., Watt, C. B. & Strettoi, E. Neural remodeling in retinal degeneration. Prog. Retin. Eye Res. 22, 607–655 (2003).

    Google Scholar 

  184. Bruegmann, T., Beiert, T., Vogt, C. C., Schrickel, J. W. & Sasse, P. Optogenetic termination of atrial fibrillation in mice. Cardiovas. Res. 114, 713–723 (2018).

    Google Scholar 

  185. Bruegmann, T. et al. Optogenetic control of heart muscle in vitro and in vivo. Nat. Methods 7, 897–900 (2010).

    Google Scholar 

  186. Nussinovitch, U. & Gepstein, L. Optogenetics for in vivo cardiac pacing and resynchronization therapies. Nat. Biotechnol. 33, 750–754 (2015).

    Google Scholar 

  187. Bruegmann, T. et al. Optogenetic defibrillation terminates ventricular arrhythmia in mouse hearts and human simulations. J. Clin. Invest. 126, 3894–3904 (2016).

    Google Scholar 

  188. Boyle, P. M., Williams, J. C., Ambrosi, C. M., Entcheva, E. & Trayanova, N. A. A comprehensive multiscale framework for simulating optogenetics in the heart. Nat. Commun. 4, 2370 (2013).

    ADS  Google Scholar 

  189. Quiñonez Uribe, R. A., Luther, S., Diaz-Maue, L. & Richter, C. Energy-reduced arrhythmia termination using global photostimulation in optogenetic murine hearts. Front. Physiol. 9, 1651 (2018).

    Google Scholar 

  190. Nyns, E. C. et al. An automated hybrid bioelectronic system for autogenous restoration of sinus rhythm in atrial fibrillation. Sci. Transl. Med. 11, eaau6447 (2019).

    Google Scholar 

  191. Entcheva, E. & Kay, M. W. Cardiac optogenetics: a decade of enlightenment. Nat. Rev. Cardiol. 18, 349–367 (2021).

    Google Scholar 

  192. Zaglia, T. et al. Optogenetic determination of the myocardial requirements for extrasystoles by cell type-specific targeting of channelrhodopsin-2. Proc. Natl Acad. Sci. USA 112, E4495–E4504 (2015).

    Google Scholar 

  193. Ambrosi, C. M. & Entcheva, E. Optogenetics’ promise: pacing and cardioversion by light? Future Cardiol. 10, 1–4 (2014).

    Google Scholar 

  194. Williams, J. C. et al. Computational optogenetics: empirically-derived voltage-and light-sensitive channelrhodopsin-2 model. PLoS Comput. Biol. 9, e1003220 (2013).

    Google Scholar 

  195. Karathanos, T. V., Boyle, P. M. & Trayanova, N. A. Optogenetics-enabled dynamic modulation of action potential duration in atrial tissue: feasibility of a novel therapeutic approach. Europace 16, iv69–iv76 (2014).

    Google Scholar 

  196. Rajendran, P. S. et al. Identification of peripheral neural circuits that regulate heart rate using optogenetic and viral vector strategies. Nat. Commun. 10, 1944 (2019).

    ADS  Google Scholar 

  197. Ambrosi, C. M., Sadananda, G., Han, J. L. & Entcheva, E. Adeno-associated virus mediated gene delivery: implications for scalable in vitro and in vivo cardiac optogenetic models. Front. Physiol. 10, 168 (2019).

    Google Scholar 

  198. Wengrowski, A. M. et al. Optogenetic release of norepinephrine from cardiac sympathetic neurons alters mechanical and electrical function. Cardiovasc. Res. 105, 143–150 (2015).

    Google Scholar 

  199. Moreno, A. et al. Sudden heart rate reduction upon optogenetic release of acetylcholine from cardiac parasympathetic neurons in perfused hearts. Front. Physiol. 10, 16 (2019).

    Google Scholar 

  200. Greenberg, B. et al. Prevalence of AAV1 neutralizing antibodies and consequences for a clinical trial of gene transfer for advanced heart failure. Gene Ther. 23, 313–319 (2016).

    Google Scholar 

  201. Crocini, C. et al. Optogenetics design of mechanistically-based stimulation patterns for cardiac defibrillation. Sci. Rep. 6, 35628 (2016).

    ADS  Google Scholar 

  202. Hussaini, S. et al. Drift and termination of spiral waves in optogenetically modified cardiac tissue at sub-threshold illumination. eLife 10, e59954 (2021).

    MathSciNet  Google Scholar 

  203. Hochbaum, D. R. et al. All-optical electrophysiology in mammalian neurons using engineered microbial rhodopsins. Nat. Methods 11, 825–833 (2014).

    Google Scholar 

  204. Klimas, A. et al. OptoDyCE as an automated system for high-throughput all-optical dynamic cardiac electrophysiology. Nat. Commun. 7, 11542 (2016).

    ADS  Google Scholar 

  205. Klimas, A., Ortiz, G., Boggess, S. C., Miller, E. W. & Entcheva, E. Multimodal on-axis platform for all-optical electrophysiology with near-infrared probes in human stem-cell-derived cardiomyocytes. Prog. Biophys. Mol. Biol. 154, 62–70 (2020).

    Google Scholar 

  206. Dempsey, G. T. et al. Cardiotoxicity screening with simultaneous optogenetic pacing, voltage imaging and calcium imaging. J. Pharmacol. Toxicol. Meth. 81, 240–250 (2016).

    Google Scholar 

  207. Dwenger, M. et al. Chronic optical pacing conditioning of h-iPSC engineered cardiac tissues. J. Tissue Eng. 10, 2041731419841748 (2019).

    Google Scholar 

  208. Quach, B., Krogh-Madsen, T., Entcheva, E. & Christini, D. J. Light-activated dynamic clamp using iPSC-derived cardiomyocytes. Biophys. J. 115, 2206–2217 (2018).

    ADS  Google Scholar 

  209. Ochoa-Fernandez, R. et al. Optogenetic control of gene expression in plants in the presence of ambient white light. Nat. Methods 17, 717–725 (2020).

    Google Scholar 

  210. Christie, J. M. & Zurbriggen, M. D. Optogenetics in plants. New Phytol. 229, 3108–3115 (2021).

    Google Scholar 

  211. Omelina, E. S. et al. Optogenetic and chemical induction systems for regulation of transgene expression in plants: use in basic and applied research. Int. J. Mol. Sci. 23, 1737 (2022).

    Google Scholar 

  212. Papanatsiou, M. et al. Optogenetic manipulation of stomatal kinetics improves carbon assimilation, water use, and growth. Science 363, 1456–1459 (2019).

    ADS  Google Scholar 

  213. Reyer, A. et al. Channelrhodopsin-mediated optogenetics highlights a central role of depolarization-dependent plant proton pumps. Proc. Natl Acad. Sci. USA 117, 20920–20925 (2020).

    Google Scholar 

  214. Zhou, Y. et al. Extending the anion channelrhodopsin-based toolbox for plant optogenetics. Membranes 11, 287 (2021).

    Google Scholar 

  215. Huang, S. et al. Optogenetic control of the guard cell membrane potential and stomatal movement by the light-gated anion channel Gt ACR1. Sci. Adv. 7, eabg4619 (2021).

    ADS  Google Scholar 

  216. Twell, D., Yamaguchi, J. & McCORMICK, S. Pollen-specific gene expression in transgenic plants: coordinate regulation of two different tomato gene promoters during microsporogenesis. Development 109, 705–713 (1990).

    Google Scholar 

  217. Govorunova, E. G., Sineshchekov, O. A., Janz, R., Liu, X. & Spudich, J. L. NEUROSCIENCE. Natural light-gated anion channels: a family of microbial rhodopsins for advanced optogenetics. Science 349, 647–650 (2015).

    ADS  Google Scholar 

  218. Gutermuth, T. et al. Pollen tube growth regulation by free anions depends on the interaction between the anion channel SLAH3 and calcium-dependent protein kinases CPK2 and CPK20. Plant Cell 25, 4525–4543 (2013).

    Google Scholar 

  219. Gutermuth, T. et al. Tip-localized Ca2+-permeable channels control pollen tube growth via kinase-dependent R-and S-type anion channel regulation. New Phytol. 218, 1089–1105 (2018).

    Google Scholar 

  220. Gilroy, S. et al. ROS, calcium, and electric signals: key mediators of rapid systemic signaling in plants. Plant Physiol. 171, 1606–1615 (2016).

    Google Scholar 

  221. Choi, W.-G. et al. Orchestrating rapid long-distance signaling in plants with Ca2+, ROS and electrical signals. Plant. J. 90, 698–707 (2017).

    Google Scholar 

  222. Fromm, J. & Lautner, S. Electrical signals and their physiological significance in plants. Plant Cell Environ. 30, 249–257 (2007).

    Google Scholar 

  223. Vodeneev, V., Katicheva, L. & Sukhov, V. Electrical signals in higher plants: mechanisms of generation and propagation. Biophysics 61, 505–512 (2016).

    Google Scholar 

  224. Szechynska-Hebda, M., Lewańdowska, M. & Karpiński, S. Electrical signaling, photosynthesis and systemic acquired acclimation. Front. Physiol. 8, 684 (2017).

    Google Scholar 

  225. Hedrich, R. & Neher, E. Venus flytrap: how an excitable, carnivorous plant works. Trends Plant. Sci. 23, 220–234 (2018).

    Google Scholar 

  226. Kravitz, A. & Bonci, A. Optogenetics, physiology, and emotions. Front. Behav. Neurosci. 7, 169 (2013).

    Google Scholar 

  227. Häusser, M. Optogenetics: the age of light. Nat. Methods 11, 1012–1014 (2014).

    Google Scholar 

  228. Dawydow, A. et al. Channelrhodopsin-2–XXL, a powerful optogenetic tool for low-light applications. Proc. Natl Acad. Sci. USA 111, 13972–13977 (2014).

    ADS  Google Scholar 

  229. Inoue, S.-i & Kinoshita, T. Blue light regulation of stomatal opening and the plasma membrane H+-ATPase. Plant Physiol. 174, 531–538 (2017).

    Google Scholar 

  230. Pilot, G. et al. Guard cell inward K+ channel activity in Arabidopsis involves expression of the twin channel subunits KAT1 and KAT2. J. Biol. Chem. 276, 3215–3221 (2001).

    Google Scholar 

  231. Catterall, W. A., Wisedchaisri, G. & Zheng, N. The chemical basis for electrical signaling. Nat. Chem. Biol. 13, 455–463 (2017).

    Google Scholar 

  232. Duan, X., Nagel, G. & Gao, S. Mutated channelrhodopsins with increased sodium and calcium permeability. Appl. Sci. 9, 664 (2019).

    Google Scholar 

  233. Miyashita, T., Shao, Y. R., Chung, J., Pourzia, O. & Feldman, D. Long-term channelrhodopsin-2 (ChR2) expression can induce abnormal axonal morphology and targeting in cerebral cortex. Front. Neural Circuits 7, 8 (2013).

    Google Scholar 

  234. Rapti, K. et al. Neutralizing antibodies against AAV serotypes 1, 2, 6, and 9 in sera of commonly used animal models. Mol. Ther. 20, 73–83 (2012).

    Google Scholar 

  235. Al-Juboori, S. I. et al. Light scattering properties vary across different regions of the adult mouse brain. PLoS ONE 8, e67626 (2013).

    ADS  Google Scholar 

  236. Shin, Y. et al. Characterization of fiber-optic light delivery and light-induced temperature changes in a rodent brain for precise optogenetic neuromodulation. Biomed. Opt. Express 7, 4450–4471 (2016).

    ADS  Google Scholar 

  237. Arias-Gil, G., Ohl, F. W., Takagaki, K. & Lippert, M. T. Measurement, modeling, and prediction of temperature rise due to optogenetic brain stimulation. Neurophotonics 3, 045007 (2016).

    Google Scholar 

  238. Owen, S. F., Liu, M. H. & Kreitzer, A. C. Thermal constraints on in vivo optogenetic manipulations. Nat. Neurosci. 22, 1061–1065 (2019).

    Google Scholar 

  239. Yang, F. & Zheng, J. High temperature sensitivity is intrinsic to voltage-gated potassium channels. eLife 3, e03255 (2014).

    Google Scholar 

  240. Sabatini, B. L. & Regehr, W. G. Timing of neurotransmission at fast synapses in the mammalian brain. Nature 384, 170–172 (1996).

    ADS  Google Scholar 

  241. Moser, E. I. & Andersen, P. Conserved spatial learning in cooled rats in spite of slowing of dentate field potentials. J. Neurosci. 14, 4458–4466 (1994).

    Google Scholar 

  242. Chen, R. et al. Deep brain optogenetics without intracranial surgery. Nat. Biotechnol. 39, 161–164 (2021).

    Google Scholar 

  243. Podgorski, K. & Ranganathan, G. Brain heating induced by near-infrared lasers during multiphoton microscopy. J. Neurophysiol. 116, 1012–1023 (2016).

    Google Scholar 

  244. Picot, A. et al. Temperature rise under two-photon optogenetic brain stimulation. Cell Rep. 24, 1243–1253.e5 (2018).

    Google Scholar 

  245. Pan, Z.-H., Lu, Q., Bi, A., Dizhoor, A. M. & Abrams, G. W. Optogenetic approaches to restoring vision. Annu. Rev. Vis. Sci. 1, 185–210 (2015).

    Google Scholar 

  246. Chuong, A., Miri, M. & Acker, L. Non-invasive optogenetic neural silencing. Nat. Neurosci. 17, 1123–1129 (2014).

    Google Scholar 

  247. Herman, A. M., Huang, L., Murphey, D. K., Garcia, I. & Arenkiel, B. R. Cell type-specific and time-dependent light exposure contribute to silencing in neurons expressing channelrhodopsin-2. eLife 3, e01481 (2014).

    Google Scholar 

  248. Ferenczi, E. A. et al. Optogenetic approaches addressing extracellular modulation of neural excitability. Sci. Rep. 6, 23947 (2016).

    ADS  Google Scholar 

  249. Otchy, T. M. et al. Acute off-target effects of neural circuit manipulations. Nature 528, 358–363 (2015).

    ADS  Google Scholar 

  250. Sorum, B., Rietmeijer, R. A., Gopakumar, K., Adesnik, H. & Brohawn, S. G. Ultrasound activates mechanosensitive TRAAK K+ channels through the lipid membrane. Proc. Natl Acad. Sci. USA 118, e2006980118 (2021).

    Google Scholar 

  251. Strickland, D. et al. TULIPs: tunable, light-controlled interacting protein tags for cell biology. Nat. Methods 9, 379–384 (2012).

    Google Scholar 

  252. Kennedy, M. J. et al. Rapid blue-light–mediated induction of protein interactions in living cells. Nat. Methods 7, 973–975 (2010).

    Google Scholar 

  253. Levskaya, A., Weiner, O. D., Lim, W. A. & Voigt, C. A. Spatiotemporal control of cell signalling using a light-switchable protein interaction. Nature 461, 997–1001 (2009).

    ADS  Google Scholar 

  254. Farhi, S. L. et al. Wide-area all-optical neurophysiology in acute brain slices. J. Neurosci. 39, 4889–4908 (2019).

    Google Scholar 

  255. Berndt, A. et al. High-efficiency channelrhodopsins for fast neuronal stimulation at low light levels. Proc. Natl Acad. Sci. USA 108, 7595–7600 (2011).

    ADS  Google Scholar 

  256. Gong, X. et al. An ultra-sensitive step-function opsin for minimally invasive optogenetic stimulation in mice and macaques. Neuron 107, 38–51.e8 (2020).

    Google Scholar 

  257. Rajasethupathy, P. et al. Projections from neocortex mediate top-down control of memory retrieval. Nature 526, 653–659 (2015).

    ADS  Google Scholar 

  258. Shevchenko, V. et al. Inward H+ pump xenorhodopsin: mechanism and alternative optogenetic approach. Sci. Adv. 3, e1603187 (2017).

    ADS  Google Scholar 

  259. Grimm, C., Silapetere, A., Vogt, A., Sierra, Y. A. B. & Hegemann, P. Electrical properties, substrate specificity and optogenetic potential of the engineered light-driven sodium pump eKR2. Sci. Rep. 8, 9316 (2018).

    ADS  Google Scholar 

  260. Gradinaru, V., Thompson, K. R. & Deisseroth, K. eNpHR: a Natronomonas halorhodopsin enhanced for optogenetic applications. Brain Cell Biol. 36, 129–139 (2008).

    Google Scholar 

  261. Subach, O. M. et al. FRCaMP, a red fluorescent genetically encoded calcium indicator based on calmodulin from Schizosaccharomyces pombe fungus. Int. J. Mol. Sci. 22, 111 (2021).

    Google Scholar 

  262. Dalangin, R. et al. Far-red fluorescent genetically encoded calcium ion indicators. Preprint at bioRxiv https://doi.org/10.1101/2020.11.12.380089 (2020).

  263. Villette, V. et al. Ultrafast two-photon imaging of a high-gain voltage indicator in awake behaving mice. Cell 179, 1590–1608.e23 (2019).

    Google Scholar 

  264. Abdelfattah, A. S. et al. Bright and photostable chemigenetic indicators for extended in vivo voltage imaging. Science 365, 699–704 (2019).

    ADS  Google Scholar 

  265. Kannan, M. et al. Fast, in vivo voltage imaging using a red fluorescent indicator. Nat. Methods 15, 1108–1116 (2018).

    Google Scholar 

  266. Piatkevich, K. D. et al. A robotic multidimensional directed evolution approach applied to fluorescent voltage reporters. Nat. Chem. Biol. 14, 352–360 (2018).

    Google Scholar 

  267. Miesenböck, G., De Angelis, D. A. & Rothman, J. E. Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature 394, 192–195 (1998).

    ADS  Google Scholar 

  268. Anikeeva, P. et al. Optetrode: a multichannel readout for optogenetic control in freely moving mice. Nat. Neurosci. 15, 163–170 (2012).

    Google Scholar 

  269. Creed, M., Pascoli, V. J. & Lüscher, C. Refining deep brain stimulation to emulate optogenetic treatment of synaptic pathology. Science 347, 659–664 (2015).

    ADS  Google Scholar 

  270. Kuhn, J., Gruendler, T. O., Klosterkötter, J. & Bartsch, C. Stimulating the addictive brain. Front. Hum. Neurosci. 6, 220 (2012).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the following funding sources: V.E. is supported by the IHU FOReSIGHT grant (Grant P-ALLOP3-IHU-000), the Axa Research Fund, the European Research Council (ERC) (ERC-2019-AdG; no. 885090) and the Agence National pour la Recherche (ANR-17-CE16-0021). E.E. is supported, in part, by the grants National Institutes of Health (NIH) R01 HL144157, NIH R21EB026152, National Science Foundation (NSF) 1705645 and NSF 1830941. J.V. is supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy (EXC-2049 – 390688087). R.H. is supported by the German Research Foundation (DFG) (Koselleck award HE1640/42-1). P.H. is supported by the DFG (SFB1078, SPP1926, UniSysCat and Neurocure) and the ERC (Stardust 767092). P.H. is Hertie Professor for Neuroscience and supported by the Hertie Foundation. C.L. is supported by the ERC (ERC-2020-AdG, F-addict) and the Swiss National Science Foundations (no. 310030_189188 and CRSII5_186266). M.M. has received funding from the European Union’s Horizon 2020 research and innovation programme under Marie Skłodowska-Curie grant agreement no. 844492. Z.-H.P. is supported by the Ligon Research Center of Vision at Kresge Eye Institute, Dryer Foundation, Herrick Foundation and Research to Prevent Blindness to Department of Ophthalmology, Visual and Anatomical Sciences at Wayne State University School of Medicine. O.Y. is supported by the Joseph and Wolf Lebovic Charitable Foundation Chair for Research in Neuroscience, the ERC (grant no. 819496), the EU Horizon 2020 programme (H2020-ICT-2018-20 DEEPER 101016787) and the Israel Science Foundation (grant no. 3131/20).

Author information

Authors and Affiliations

Authors

Contributions

Introduction (C.L., E.E., J.V., M.M., O.Y., P.H., R.H., V.E. and Z.-H.P.); Experimentation (J.V., M.M., O.Y., P.H. and V.E.); Results (C.L., E.E., J.V., K.R.K., M.M., O.Y., P.H., R.H., R.R.S., V.E. and Z.-H.P.); Applications (C.L., E.E., K.R.K., O.Y., P.H., R.H., R.R.S., V.E. and Z.-H.P.); Reproducibility and data deposition (C.L., E.E., J.V., K.R.K., M.M., O.Y., P.H., R.H., R.R.S., V.E. and Z.-H.P.); Limitations and optimizations (C.L., E.E., J.V., M.M., O.Y., P.H., R.H., V.E. and Z.-H.P.); Outlook (C.L., E.E., O.Y., P.H., R.H., V.E. and Z.-H.P.); Overview of the Primer (O.Y. and P.H.). Authors are listed in alphabetical order.

Corresponding author

Correspondence to Peter Hegemann.

Ethics declarations

Competing interests

Z.-H.P. is a co-inventor on patents related to optogenetic vision restoration and is also a co-founder and scientific advisor of Ray Therapeutics. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Methods Primers thanks John Flannery and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Microelectrode

An electrode with a micrometre-sized tip used to record single-neuron activity.

Optrode

An electrode coupled to an optical fibre used to record and manipulate neural activity in cells expressing an optogenetic actuator.

Optogenetic actuators

Light-sensitive proteins that transiently modify cellular properties during illumination.

Bidirectional voltage modulation

Changing the voltage in the depolarizing (excitatory) or hyperpolarizing (inhibitory) direction.

Immediate early genes

Genes that are rapidly induced by elevated neural activity such as Fos.

Optical clamp

A technique using light and real-time feedback to keep membrane electrical parameters, such as voltage or action potential shape, at a set desired value.

Antidromic activation

Retrograde propagation of an action potential from the axon to the neuronal soma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Emiliani, V., Entcheva, E., Hedrich, R. et al. Optogenetics for light control of biological systems. Nat Rev Methods Primers 2, 55 (2022). https://doi.org/10.1038/s43586-022-00136-4

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s43586-022-00136-4

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research