Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

A guide to the optogenetic regulation of endogenous molecules

Abstract

Genetically encoded tools for the regulation of endogenous molecules (RNA, DNA elements and protein) are needed to study and control biological processes with minimal interference caused by protein overexpression and overactivation of signaling pathways. Here we focus on light-controlled optogenetic tools (OTs) that allow spatiotemporally precise regulation of gene expression and protein function. To control endogenous molecules, OTs combine light-sensing modules from natural photoreceptors with specific protein or nucleic acid binders. We discuss OT designs and group OTs according to the principles of their regulation. We outline characteristics of OT performance, discuss considerations for their use in vivo and review available OTs and their applications in cells and in vivo. Finally, we provide a brief outlook on the development of OTs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structural domains in OTs and principles of OT regulation.
Fig. 2: Examples of OTs for the regulation of endogenous proteins.
Fig. 3: Selected applications of OTs for regulation of endogenous proteins.
Fig. 4: Examples of OTs for the regulation of endogenous genes.
Fig. 5: Select applications of OTs for regulation of endogenous genes.

Similar content being viewed by others

References

  1. Chow, B. Y. & Boyden, E. S. Optogenetics and translational medicine. Sci. Transl. Med. 5, 177ps175 (2013).

    Google Scholar 

  2. Goglia, A. G. & Toettcher, J. E. A bright future: optogenetics to dissect the spatiotemporal control of cell behavior. Curr. Opin. Chem. Biol. 48, 106–113 (2019).

    Article  CAS  PubMed  Google Scholar 

  3. Rost, B. R., Schneider-Warme, F., Schmitz, D. & Hegemann, P. Optogenetic tools for subcellular applications in neuroscience. Neuron 96, 572–603 (2017).

    Article  CAS  PubMed  Google Scholar 

  4. Leopold, A. V. & Verkhusha, V. V. Light control of RTK activity: from technology development to translational research. Chem. Sci. 11, 10019–10034 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mansouri, M., Strittmatter, T. & Fussenegger, M. Light-controlled mammalian cells and their therapeutic applications in synthetic biology. Adv. Sci. 6, 1800952 (2018).

    Article  CAS  Google Scholar 

  6. Han, H. A., Pang, J. K. S. & Soh, B.-S. Mitigating off-target effects in CRISPR/Cas9-mediated in vivo gene editing. J. Mol. Med. 98, 615–632 (2020).

    Article  CAS  PubMed  Google Scholar 

  7. Gibson, T. J., Seiler, M. & Veitia, R. A. The transience of transient overexpression. Nat. Methods 10, 715–721 (2013).

    Article  CAS  PubMed  Google Scholar 

  8. Brechun, K. E., Arndt, K. M. & Woolley, G. A. Strategies for the photo-control of endogenous protein activity. Curr. Opin. Struct. Biol. 45, 53–58 (2017).

    Article  CAS  PubMed  Google Scholar 

  9. Marschall, A. L. J. & Dübel, S. Antibodies inside of a cell can change its outside: can intrabodies provide a new therapeutic paradigm? Comput. Struct. Biotechnol. J. 14, 304–308 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hamley, I. W. Small bioactive peptides for biomaterials design and therapeutics. Chem. Rev. 117, 14015–14041 (2017).

    Article  CAS  PubMed  Google Scholar 

  11. Richter, F. et al. Engineering of temperature- and light-switchable Cas9 variants. Nucleic Acids Res. 44, 10003–10014 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Richter, F. et al. Switchable Cas9. Curr. Opin. Biotechnol. 48, 119–126 (2017).

    Article  CAS  PubMed  Google Scholar 

  13. Nihongaki, Y., Kawano, F., Nakajima, T. & Sato, M. Photoactivatable CRISPR–Cas9 for optogenetic genome editing. Nat. Biotechnol. 33, 755–760 (2015).

    Article  CAS  PubMed  Google Scholar 

  14. Nihongaki, Y., Yamamoto, S., Kawano, F., Suzuki, H. & Sato, M. CRISPR–Cas9-based photoactivatable transcription system. Chem. Biol. 22, 169–174 (2015).

    Article  CAS  PubMed  Google Scholar 

  15. Polstein, L. R. & Gersbach, C. A. A light-inducible CRISPR–Cas9 system for control of endogenous gene activation. Nat. Chem. Biol. 11, 198–200 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Shcherbakova, D. M., Stepanenko, O. V., Turoverov, K. K. & Verkhusha, V. V. Near-infrared fluorescent proteins: multiplexing and optogenetics across scales. Trends Biotechnol. 36, 1230–1243 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hoffmann, M. D., Bubeck, F., Eils, R. & Niopek, D. Controlling cells with light and LOV. Adv. Biosyst. 2, 1800098 (2018).

    Article  Google Scholar 

  18. Kichuk, T. C., Carrasco-López, C. & Avalos, J. L. Lights up on organelles: optogenetic tools to control subcellular structure and organization. Wiley Interdiscip. Rev. Syst. Biol. Med. 13, e1500 (2021).

    CAS  Google Scholar 

  19. Dagliyan, O. et al. Rational design of a ligand-controlled protein conformational switch. Proc. Natl Acad. Sci. USA 110, 6800–6804 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dagliyan, O. et al. Engineering extrinsic disorder to control protein activity in living cells. Science 354, 1441–1444 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Guntas, G. et al. Engineering an improved light-induced dimer (iLID) for controlling the localization and activity of signaling proteins. Proc. Natl Acad. Sci. USA 112, 112–117 (2015).

    Article  CAS  PubMed  Google Scholar 

  22. Yazawa, M., Sadaghiani, A. M., Hsueh, B. & Dolmetsch, R. E. Induction of protein–protein interactions in live cells using light. Nat. Biotechnol. 27, 941–945 (2009).

    Article  CAS  PubMed  Google Scholar 

  23. Zoltowski, B. D. et al. Conformational switching in the fungal light sensor Vivid. Science 316, 1054–1057 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kawano, F., Suzuki, H., Furuya, A. & Sato, M. Engineered pairs of distinct photoswitches for optogenetic control of cellular proteins. Nat. Commun. 6, 6256 (2015).

    Article  CAS  PubMed  Google Scholar 

  25. Kennedy, M. J. et al. Rapid blue-light-mediated induction of protein interactions in living cells. Nat. Methods 7, 973–975 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Taslimi, A. et al. An optimized optogenetic clustering tool for probing protein interaction and function. Nat. Commun. 5, 4925 (2014).

    Article  CAS  PubMed  Google Scholar 

  27. Che, D. L., Duan, L., Zhang, K. & Cui, B. The dual characteristics of light-induced cryptochrome 2, homo-oligomerization and heterodimerization, for optogenetic manipulation in mammalian cells. ACS Synth. Biol. 4, 1124–1135 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lu, X., Shen, Y. & Campbell, R. E. Engineering photosensory modules of non-opsin-based optogenetic actuators. Int. J. Mol. Sci. 21, 6522 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  29. Zhou, X. X., Fan, L. Z., Li, P., Shen, K. & Lin, M. Z. Optical control of cell signaling by single-chain photoswitchable kinases. Science 355, 836–842 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Shemetov, A. A., Oliinyk, O. S. & Verkhusha, V. V. How to increase brightness of near-infrared fluorescent proteins in mammalian cells. Cell Chem. Biol. 24, 758–766 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kaberniuk, A. A., Shemetov, A. A. & Verkhusha, V. V. A bacterial phytochrome-based optogenetic system controllable with near-infrared light. Nat. Methods 13, 591–597 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Redchuk, T. A., Omelina, E. S., Chernov, K. G. & Verkhusha, V. V. Near-infrared optogenetic pair for protein regulation and spectral multiplexing. Nat. Chem. Biol. 13, 633–639 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ryu, M.-H. & Gomelsky, M. Near-infrared light responsive synthetic c-di-GMP module for optogenetic applications. ACS Synth. Biol. 3, 802–810 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Shao, J. et al. Synthetic far-red light-mediated CRISPR–dCas9 device for inducing functional neuronal differentiation. Proc. Natl Acad. Sci. USA 115, E6722–E6730 (2018). This paper demonstrates the power of deeply penetrating nontoxic NIR light to control optogenetic systems for activation of gene expression. Development of simpler NIR systems will overcome limitations of the reported multicomponent system.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wilton, E. E., Opyr, M. P., Kailasam, S., Kothe, R. F. & Wieden, H. J. sdAb-DB: the Single Domain Antibody Database. ACS Synth. Biol. 7, 2480–2484 (2018).

    Article  CAS  PubMed  Google Scholar 

  36. Konermann, S. et al. Optical control of mammalian endogenous transcription and epigenetic states. Nature 500, 472–476 (2013). This paper describes one of the first optogenetic systems for control of endogenous genes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Redchuk, T. A. et al. Optogenetic regulation of endogenous proteins. Nat. Commun. 11, 605 (2020). This paper describes a technique for optogenetic control of endogenous proteins using intact iBs. This control is achieved by using light-induced intracellular relocalization of OTs and their target proteins.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gil, A. A. et al. Optogenetic control of protein binding using light-switchable nanobodies. Nat. Commun. 11, 4044 (2020). This paper describes a means for optogenetic control of nanobody affinity, which was achieved by insertion of the light-sensing AsLOV2 domain in specific loops in the nanobody.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yu, D. et al. Optogenetic activation of intracellular antibodies for direct modulation of endogenous proteins. Nat. Methods 16, 1095–1100 (2019). This paper reports engineering of light-controlled nanobodies, which are reconstituted from split fragments upon illumination.

    Article  CAS  PubMed  Google Scholar 

  40. Muyldermans, S. Nanobodies: natural single-domain antibodies. Annu. Rev. Biochem. 82, 775–797 (2013).

    Article  CAS  PubMed  Google Scholar 

  41. Zuo, J. et al. Institute Collection and Analysis of Nanobodies (iCAN): a comprehensive database and analysis platform for nanobodies. BMC Genomics 18, 797 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Chandler, P. G. & Buckle, A. M. Development and differentiation in monobodies based on the fibronectin type 3 domain. Cells 9, 610 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  43. Škrlec, K., Štrukelj, B. & Berlec, A. Non-immunoglobulin scaffolds: a focus on their targets. Trends Biotechnol. 33, 408–418 (2015).

    Article  PubMed  CAS  Google Scholar 

  44. Minkiewicz, P., Iwaniak, A. & Darewicz, M. BIOPEP-UWM database of bioactive peptides: current opportunities. Int. J. Mol. Sci. 20, 5978 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  45. Wang, J. et al. StraPep: a structure database of bioactive peptides. Database 2018, bay038 (2018).

    PubMed Central  Google Scholar 

  46. Wang, Y. et al. NeuroPep: a comprehensive resource of neuropeptides. Database 2015, bav038 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Jayakanthan, M. et al. ZifBASE: a database of zinc finger proteins and associated resources. BMC Genomics 10, 421 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Fu, F. & Voytas, D. F. Zinc Finger Database (ZiFDB) v2.0: a comprehensive database of C2H2 zinc fingers and engineered zinc finger arrays. Nucleic Acids Res. 41, D452–D455 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Abudayyeh, O. O. et al. RNA targeting with CRISPR–Cas13. Nature 550, 280–284 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Niopek, D., Wehler, P., Roensch, J., Eils, R. & Di Ventura, B. Optogenetic control of nuclear protein export. Nat. Commun. 7, 10624 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhou, X. X. et al. A single-chain photoswitchable CRISPR–Cas9 architecture for light-inducible gene editing and transcription. ACS Chem. Biol. 13, 443–448 (2018).

    Article  CAS  PubMed  Google Scholar 

  52. Stone, O. J. et al. Optogenetic control of cofilin and αTAT in living cells using Z-lock. Nat. Chem. Biol. 15, 1183–1190 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Yamada, M., Nagasaki, S. C., Ozawa, T. & Imayoshi, I. Light-mediated control of gene expression in mammalian cells. Neurosci. Res. 152, 66–77 (2020).

    Article  CAS  PubMed  Google Scholar 

  54. Ma, G. et al. Optogenetic engineering to probe the molecular choreography of STIM1-mediated cell signaling. Nat. Commun. 11, 1039 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Repina, N. A. et al. Engineered illumination devices for optogenetic control of cellular signaling dynamics. Cell Rep. 31, 107737 (2020).

    Article  CAS  PubMed  Google Scholar 

  56. Tyssowski, K. M. & Gray, J. M. Blue light increases neuronal activity-regulated gene expression in the absence of optogenetic proteins. eNeuro 6, ENEURO.0085-19.2019 (2019).

  57. Carrasco-Lopez, C. et al. Development of light-responsive protein binding in the monobody non-immunoglobulin scaffold. Nat. Commun. 11, 4045 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wehler, P. & Di Ventura, B. Engineering optogenetic control of endogenous p53 protein levels. Appl. Sci. 9, 2095 (2019).

    Article  CAS  Google Scholar 

  59. Pazgier, M. et al. Structural basis for high-affinity peptide inhibition of p53 interactions with MDM2 and MDMX. Proc. Natl Acad. Sci. USA 106, 4665–4670 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Yi, J. J., Wang, H., Vilela, M., Danuser, G. & Hahn, K. M. Manipulation of endogenous kinase activity in living cells using photoswitchable inhibitory peptides. ACS Synth. Biol. 3, 788–795 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Cunniff, B., McKenzie, A. J., Heintz, N. H. & Howe, A. K. AMPK activity regulates trafficking of mitochondria to the leading edge during cell migration and matrix invasion. Mol. Biol. Cell 27, 2662–2674 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Murakoshi, H. et al. Kinetics of endogenous CaMKII required for synaptic plasticity revealed by optogenetic kinase inhibitor. Neuron 94, 690 (2017).

    Article  CAS  PubMed  Google Scholar 

  63. Schmidt, D., Tillberg, P. W., Chen, F. & Boyden, E. S. A fully genetically encoded protein architecture for optical control of peptide ligand concentration. Nat. Commun. 5, 3019 (2014).

    Article  PubMed  CAS  Google Scholar 

  64. Rao, M. V., Chu, P. H., Hahn, K. M. & Zaidel-Bar, R. An optogenetic tool for the activation of endogenous diaphanous-related formins induces thickening of stress fibers without an increase in contractility. Cytoskeleton 70, 394–407 (2013).

    Article  CAS  PubMed  Google Scholar 

  65. Baarlink, C., Wang, H. & Grosse, R. Nuclear actin network assembly by formins regulates the SRF coactivator MAL. Science 340, 864–867 (2013).

    Article  CAS  PubMed  Google Scholar 

  66. Paonessa, F. et al. Regulation of neural gene transcription by optogenetic inhibition of the RE1-silencing transcription factor. Proc. Natl Acad. Sci. USA 113, E91–E100 (2016).

    Article  CAS  PubMed  Google Scholar 

  67. He, L. et al. Near-infrared photoactivatable control of Ca2+ signaling and optogenetic immunomodulation. eLife 4, e10024 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Kim, S. et al. Non-invasive optical control of endogenous Ca2+ channels in awake mice. Nat. Commun. 11, 210 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kyung, T. et al. Optogenetic control of endogenous Ca2+ channels in vivo. Nat. Biotechnol. 33, 1092–1096 (2015).

    Article  CAS  PubMed  Google Scholar 

  70. Jeon, D. et al. Observational fear learning involves affective pain system and Cav1.2 Ca2+ channels in ACC. Nat. Neurosci. 13, 482–488 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Redchuk, T. A., Kaberniuk, A. A. & Verkhusha, V. V. Near-infrared light-controlled systems for gene transcription regulation, protein targeting and spectral multiplexing. Nat. Protoc. 13, 1121–1136 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Redchuk, T. A., Karasev, M. M., Omelina, E. S. & Verkhusha, V. V. Near-infrared light-controlled gene expression and protein targeting in neurons and non-neuronal cells. Chembiochem 19, 1334–1340 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Yumerefendi, H. et al. Control of protein activity and cell fate specification via light-mediated nuclear translocation. PLoS ONE 10, e0128443 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Deng, W. et al. Tunable light and drug induced depletion of target proteins. Nat. Commun. 11, 304 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Bubeck, F. et al. Engineered anti-CRISPR proteins for optogenetic control of CRISPR–Cas9. Nat. Methods 15, 924–927 (2018). This paper reports an original strategy for optogenetic regulation of gene function, which is based on control of the anti-CRISPR protein AcrIIA4 through an inserted AsLOV2 light-sensing domain.

    Article  CAS  PubMed  Google Scholar 

  76. Hoffmann, M. D. et al. Optogenetic control of Neisseria meningitidis Cas9 genome editing using an engineered, light-switchable anti-CRISPR protein. Nucleic Acids Res. 49, e29 (2021).

    Article  CAS  PubMed  Google Scholar 

  77. Zetsche, B., Volz, S. E. & Zhang, F. A split-Cas9 architecture for inducible genome editing and transcription modulation. Nat. Biotechnol. 33, 139–142 (2015).

    Article  CAS  PubMed  Google Scholar 

  78. Nihongaki, Y. et al. CRISPR–Cas9-based photoactivatable transcription systems to induce neuronal differentiation. Nat. Methods 14, 963–966 (2017). This paper reports an improved optogenetic system for transcriptional activation of endogenous genes. CPTS2.0 and Split-CPTS2.0 achieve sufficiently high levels of gene activation to induce biological responses.

    Article  CAS  PubMed  Google Scholar 

  79. Polstein, L. R. & Gersbach, C. A. Light-inducible spatiotemporal control of gene activation by customizable zinc finger transcription factors. J. Am. Chem. Soc. 134, 16480–16483 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kim, J. H. et al. LADL: light-activated dynamic looping for endogenous gene expression control. Nat. Methods 16, 633–639 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Yu, Y. et al. Engineering a far-red light-activated split-Cas9 system for remote-controlled genome editing of internal organs and tumors. Sci. Adv. 6, eabb1777 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Zhao, J., Li, B., Ma, J., Jin, W. & Ma, X. Photoactivatable RNA N6-methyladenosine editing with CRISPR–Cas13. Small 16, 1907301 (2020). This paper reports one of the first means for photoactivated RNA editing though dCas13 and light-induced protein dimerizers.

    Article  CAS  Google Scholar 

  83. Qi, F. et al. A synthetic light-switchable system based on CRISPR Cas13a regulates the expression of lncRNA MALAT1 and affects the malignant phenotype of bladder cancer cells. Int. J. Biol. Sci. 15, 1630–1636 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Blomeier, T. et al. Blue light-operated CRISPR/Cas13b-mediated mRNA knockdown (Lockdown). Adv. Biol. 5, e2000307 (2021).

  85. Pilsl, S., Morgan, C., Choukeife, M., Möglich, A. & Mayer, G. Optoribogenetic control of regulatory RNA molecules. Nat. Commun. 11, 4825 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Wang, D., Tai, P. W. L. & Gao, G. Adeno-associated virus vector as a platform for gene therapy delivery. Nat. Rev. Drug Discov. 18, 358–378 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Wanisch, K. & Yáñez-Muñoz, R. J. Integration-deficient lentiviral vectors: a slow coming of age. Mol. Ther. 17, 1316–1332 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Crystal, R. G. Adenovirus: the first effective in vivo gene delivery vector. Hum. Gene Ther. 25, 3–11 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Fomicheva, A., Zhou, C., Sun, Q. Q. & Gomelsky, M. Engineering adenylate cyclase activated by near-infrared window light for mammalian optogenetic applications. ACS Synth. Biol. 8, 1314–1324 (2019).

    Article  CAS  PubMed  Google Scholar 

  90. Berglund, K., Birkner, E., Augustine, G. J. & Hochgeschwender, U. Light-emitting channelrhodopsins for combined optogenetic and chemical-genetic control of neurons. PLoS ONE 8, e59759 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Proshkina, G. M., Shramova, E. I., Shilova, O. N., Ryabova, A. V. & Deyev, S. M. Phototoxicity of flavoprotein miniSOG induced by bioluminescence resonance energy transfer in genetically encoded system NanoLuc–miniSOG is comparable with its LED-excited phototoxicity. J. Photochem. Photobiol., B 188, 107–115 (2018).

    Article  CAS  Google Scholar 

  92. Kim, C. K., Cho, K. F., Kim, M. W. & Ting, A. Y. Luciferase–LOV BRET enables versatile and specific transcriptional readout of cellular protein–protein interactions. eLife 8, e43826 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Samineni, V. K. et al. Fully implantable, battery-free wireless optoelectronic devices for spinal optogenetics. Pain 158, 2108–2116 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Fridy, P. C. et al. A robust pipeline for rapid production of versatile nanobody repertoires. Nat. Methods 11, 1253–1260 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Helma, J., Cardoso, M. C., Muyldermans, S. & Leonhardt, H. Nanobodies and recombinant binders in cell biology. J. Cell Biol. 209, 633–644 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Kaberniuk, A. A., Baloban, M., Monakhov, M. V., Shcherbakova, D. M. & Verkhusha, V. V. Single-component near-infrared optogenetic systems for gene transcription regulation. Nat. Commun. 12, 3859 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants EY030705 (to D.M.S.) and GM122567 from the US National Institutes of Health, 322226 from the Academy of Finland and 21-64-00025 from the Russian Science Foundation (all to V.V.V.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vladislav V. Verkhusha or Daria M. Shcherbakova.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Methods thanks Barbara Di Ventura, Moritoshi Sato and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Nina Vogt was the primary editor on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Table 1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manoilov, K.Y., Verkhusha, V.V. & Shcherbakova, D.M. A guide to the optogenetic regulation of endogenous molecules. Nat Methods 18, 1027–1037 (2021). https://doi.org/10.1038/s41592-021-01240-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41592-021-01240-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing