Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Remote epitaxy

Abstract

Remote epitaxy is an emerging technology for producing single-crystalline, free-standing thin films and structures. The method uses 2D van der Waals materials as semi-transparent interlayers that enable epitaxy and release of epitaxial layers at the 2D layer interface. Although the principle of remote epitaxy is simple, it is often challenging to perform owing to stringent requirements for sample preparation and procedure control. This Primer provides extensive guidelines on remote epitaxy techniques, from preparing 2D materials to epitaxy processes and layer transfer methods. Depending on the material of interest, the procedure used can vary, which affects the quality. Consequently, in this Primer, key considerations and characterization techniques are provided for respective families of materials. These are intended as a stepping stone to expand the available material choice and improve the quality of materials grown by remote epitaxy. Lastly, the current limitations, possible solutions and future directions of remote epitaxy and its applications are discussed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Remote epitaxy and layer transfer process.
Fig. 2: Equipment for remote epitaxy.
Fig. 3: Characterization of graphene.
Fig. 4: Characterization of remote epitaxial thin films.
Fig. 5: Growth mechanism of ionic and remote epitaxy, and halide perovskite thin film characterization.
Fig. 6: Characterization of microstructures.
Fig. 7: Applications of remote epitaxy.
Fig. 8: Challenges in remote epitaxy.

Similar content being viewed by others

References

  1. Kum, H. et al. Epitaxial growth and layer-transfer techniques for heterogeneous integration of materials for electronic and photonic devices. Nat. Electron. 2, 439–450 (2019). This review introduces existing techniques for layer transfer of single-crystalline membranes.

    Article  Google Scholar 

  2. Yoon, J. et al. GaAs photovoltaics and optoelectronics using releasable multilayer epitaxial assemblies. Nature 465, 329–333 (2010).

    Article  ADS  Google Scholar 

  3. Kum, H. S. et al. Heterogeneous integration of single-crystalline complex-oxide membranes. Nature 578, 75–81 (2020). This paper shows remote epitaxy and 2DLT of complex oxides, from which artificial heterostructures are formed by directly stacking free-standing membranes.

    Article  ADS  Google Scholar 

  4. Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

    Article  Google Scholar 

  5. Horowitz, K. A., Remo, T. W., Smith, B. & Ptak, A. J. A Techno-Economic Analysis and Cost Reduction Roadmap for III–V Solar Cells. Technical Report NREL/TP-6A20-72103 (National Renewable Energy Laboratory, 2018).

  6. Cheng, C. W. et al. Epitaxial lift-off process for gallium arsenide substrate reuse and flexible electronics. Nat. Commun. 4, 1–7 (2013).

    Article  ADS  Google Scholar 

  7. Lu, D. et al. Synthesis of freestanding single-crystal perovskite films and heterostructures by etching of sacrificial water-soluble layers. Nat. Mater. 15, 1255–1260 (2016).

    Article  ADS  Google Scholar 

  8. Bakaul, S. R. et al. Single crystal functional oxides on silicon. Nat. Commun. 7, 1–5 (2016).

    Article  Google Scholar 

  9. Raj, V. et al. Layer transfer by controlled spalling. J. Phys. D Appl. Phys. 46, 152002 (2013).

    Article  Google Scholar 

  10. Bedell, S. W., Lauro, P., Ott, J. A., Fogel, K. & Sadana, D. K. Layer transfer of bulk gallium nitride by controlled spalling. J. Appl. Phys. 122, 025103 (2017).

    Article  ADS  Google Scholar 

  11. Wong, W. S., Sands, T. & Cheung, N. W. Damage-free separation of GaN thin films from sapphire substrates. Appl. Phys. Lett. 72, 599 (1998).

    Article  ADS  Google Scholar 

  12. Kim, Y. et al. Remote epitaxy through graphene enables two-dimensional material-based layer transfer. Nature 544, 340–343 (2017). This paper presents the first demonstration of remote epitaxy, proving that epitaxy can remotely occur through graphene.

    Article  ADS  Google Scholar 

  13. Novoselov, K. S. et al. Electric field in atomically thin carbon films. Science 306, 666–669 (2004).

    Article  ADS  Google Scholar 

  14. Shim, J. et al. Controlled crack propagation for atomic precision handling of wafer-scale two-dimensional materials. Science 362, 665–670 (2018). This paper demonstrates the principles of 2DLT and the role of stressor layers, which are theoretically investigated and experimentally shown.

    Article  ADS  Google Scholar 

  15. Kong, W. et al. Polarity governs atomic interaction through two-dimensional materials. Nat. Mater. 17, 999–1004 (2018). This paper investigates the impact of material polarity on the strength of remote interaction, which reveals the limits on the interlayer thickness for remote epitaxy.

    Article  ADS  Google Scholar 

  16. Jeong, J. et al. Remote heteroepitaxy of GaN microrod heterostructures for deformable light-emitting diodes and wafer recycle. Sci. Adv. 6, eaaz5180 (2020). This paper reports flexible blue LEDs realized by remote epitaxy of GaN micro-rods.

    Article  ADS  Google Scholar 

  17. Qu, Y. et al. Long-range orbital hybridization in remote epitaxy: the nucleation mechanism of GaN on different substrates via single-layer graphene. ACS Appl. Mater. Interfaces 14, 2263–2274 (2022).

    Article  Google Scholar 

  18. Li, X. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312–1314 (2009).

    Article  ADS  Google Scholar 

  19. Emtsev, K. V. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mater. 8, 203–207 (2009).

    Article  ADS  Google Scholar 

  20. Nguyen, V. L. et al. Layer-controlled single-crystalline graphene film with stacking order via Cu–Si alloy formation. Nat. Nanotechnol. 15, 861–867 (2020).

    Article  ADS  Google Scholar 

  21. Wang, M. et al. Single-crystal, large-area, fold-free monolayer graphene. Nature 596, 519–524 (2021).

    Article  ADS  Google Scholar 

  22. Kong, W. et al. Path towards graphene commercialization from lab to market. Nat. Nanotechnol. 14, 927–938 (2019).

    Article  ADS  Google Scholar 

  23. Lee, J. H. et al. Wafer-scale growth of single-crystal monolayer graphene on reusable hydrogen-terminated germanium. Science 344, 286–289 (2014).

    Article  ADS  Google Scholar 

  24. Hwang, J. et al. Van der waals epitaxial growth of graphene on sapphire by chemical vapor deposition without a metal catalyst. ACS Nano 7, 385–395 (2013).

    Article  Google Scholar 

  25. Chen, Z. et al. Direct growth of wafer-scale highly oriented graphene on sapphire. Sci. Adv. 7, eabk0115 (2021).

    Article  ADS  Google Scholar 

  26. Wang, H. et al. Primary nucleation-dominated chemical vapor deposition growth for uniform graphene monolayers on dielectric substrate. J. Am. Chem. Soc. 141, 11004–11008 (2019).

    Article  Google Scholar 

  27. Chen, Z., Qi, Y., Chen, X., Zhang, Y. & Liu, Z. Direct CVD growth of graphene on traditional glass: methods and mechanisms. Adv. Mater. 31, 1803639 (2019).

    Article  Google Scholar 

  28. Toh, C. T. et al. Synthesis and properties of free-standing monolayer amorphous carbon. Nature 577, 199–203 (2020).

    Article  ADS  Google Scholar 

  29. Hong, S. et al. Ultralow-dielectric-constant amorphous boron nitride. Nature 582, 511–514 (2020).

    Article  ADS  Google Scholar 

  30. Kim, H. et al. Impact of 2D–3D heterointerface on remote epitaxial interaction through graphene. ACS Nano 15, 10587–10596 (2021). This paper unveils the impact of graphene transfer methods and interface properties on remote epitaxy.

    Article  Google Scholar 

  31. Kim, H. et al. Role of transferred graphene on atomic interaction of GaAs for remote epitaxy. J. Appl. Phys. 130, 174901 (2021).

    Article  ADS  Google Scholar 

  32. Phillips, J. C. Ionicity of the chemical bond in crystals. Rev. Mod. Phys. 42, 317 (1970).

    Article  ADS  Google Scholar 

  33. Qiao, K. et al. Graphene buffer layer on SiC as a release layer for high-quality freestanding semiconductor membranes. Nano Lett. 21, 4013–4020 (2021). This paper shows the use of transfer-free graphene and graphene buffer on SiC for remote epitaxy and substrate reuse.

    Article  ADS  Google Scholar 

  34. Kim, J. et al. Principle of direct van der Waals epitaxy of single-crystalline films on epitaxial graphene. Nat. Commun. 5, 4836 (2014).

    Article  ADS  Google Scholar 

  35. Chen, Z. et al. Improved epitaxy of AlN film for deep-ultraviolet light-emitting diodes enabled by graphene. Adv. Mater. 31, 1807345 (2019).

    Article  Google Scholar 

  36. Chang, H. et al. Quasi-2D growth of aluminum nitride film on graphene for boosting deep ultraviolet light-emitting diodes. Adv. Sci. 7, 2001272 (2020).

    Article  Google Scholar 

  37. Morkoç, H. Handbook of Nitride Semiconductors and Devices: Material Properties, Physics and Growth Vol. 1 (Wiley-VCH, 2009).

  38. Tarsa, E. J. et al. Homoepitaxial growth of GaN under Ga-stable and N-stable conditions by plasma-assisted molecular beam epitaxy. J. Appl. Phys. 82, 5472 (1998).

    Article  ADS  Google Scholar 

  39. Hiramatsu, K. et al. Growth mechanism of GaN grown on sapphire with A1N buffer layer by MOVPE. J. Cryst. Growth 115, 628–633 (1991).

    Article  ADS  Google Scholar 

  40. Journot, T. et al. Remote epitaxy using graphene enables growth of stress-free GaN. Nanotechnology 30, 505603 (2019).

    Article  Google Scholar 

  41. Jeong, J. et al. Transferable, flexible white light-emitting diodes of GaN p–n junction microcrystals fabricated by remote epitaxy. Nano Energy 86, 106075 (2021).

    Article  Google Scholar 

  42. Wang, P. et al. Graphene-assisted molecular beam epitaxy of AlN for AlGaN deep-ultraviolet light-emitting diodes. Appl. Phys. Lett. 116, 171905 (2020).

    Article  ADS  Google Scholar 

  43. Ren, F. et al. Van der Waals epitaxy of nearly single-crystalline nitride films on amorphous graphene-glass wafer. Sci. Adv. 7, eabf5011 (2021).

    Article  ADS  Google Scholar 

  44. Chen, Y. et al. Progress and challenges in transfer of large-area graphene films. Adv. Sci. 3, 1500343 (2016).

    Article  Google Scholar 

  45. Park, J.-H. et al. Influence of temperature-dependent substrate decomposition on graphene for separable GaN growth. Adv. Mater. Interfaces 6, 1900821 (2019).

    Article  Google Scholar 

  46. Amano, H., Sawaki, N., Akasaki, I. & Toyoda, Y. Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer. Appl. Phys. Lett. 48, 353 (1998).

    Article  ADS  Google Scholar 

  47. Kawasaki, M. et al. Atomic control of the SrTiO3 crystal surface. Science 266, 1540–1542 (1994).

    Article  ADS  Google Scholar 

  48. Jiang, J. et al. Carrier lifetime enhancement in halide perovskite via remote epitaxy. Nat. Commun. 10, 4145 (2019). This paper demonstrates the reduction of dislocations and improvement of optoelectronic properties from remote epitaxy of halide perovskite on NaCl.

    Article  ADS  Google Scholar 

  49. Shao, Y. et al. Grain boundary dominated ion migration in polycrystalline organic–inorganic halide perovskite films. Energy Environ. Sci. 9, 1752–1759 (2016).

    Article  Google Scholar 

  50. Jena, A. K., Kulkarni, A. & Miyasaka, T. Halide perovskite photovoltaics: background, status, and future prospects. Chem. Rev. 119, 3036–3103 (2019).

    Article  Google Scholar 

  51. Liu, X. K. et al. Metal halide perovskites for light-emitting diodes. Nat. Mater. 20, 10–21 (2020).

    Article  ADS  Google Scholar 

  52. Lei, L. et al. Metal halide perovskites for laser applications. Adv. Funct. Mater. 31, 2010144 (2021).

    Article  Google Scholar 

  53. Wang, L., King, I., Chen, P., Bates, M. & Lunt, R. R. Epitaxial and quasiepitaxial growth of halide perovskites: new routes to high end optoelectronics. APL Mater. 8, 100904 (2020).

    Article  ADS  Google Scholar 

  54. Zhou, Z., Qiao, H. W., Hou, Y., Yang, H. G. & Yang, S. Epitaxial halide perovskite-based materials for photoelectric energy conversion. Energy Environ. Sci. 14, 127–157 (2021).

    Article  Google Scholar 

  55. Shi, E. & Dou, L. Halide perovskite epitaxial heterostructures. Acc. Mater. Res. 1, 213–224 (2020).

    Article  Google Scholar 

  56. Wang, Y. et al. High-temperature ionic epitaxy of halide perovskite thin film and the hidden carrier dynamics. Adv. Mater. 29, 1702643 (2017).

    Article  Google Scholar 

  57. Chen, Y. et al. Strain engineering and epitaxial stabilization of halide perovskites. Nature 577, 209–215 (2020).

    Article  ADS  Google Scholar 

  58. Wang, L. et al. Unlocking the single-domain epitaxy of halide perovskites. Adv. Mater. Interfaces 4, 1701003 (2017).

    Article  Google Scholar 

  59. Jeong, J. et al. Remote homoepitaxy of ZnO microrods across graphene layers. Nanoscale 10, 22970–22980 (2018).

    Article  Google Scholar 

  60. Jeong, J. et al. Remote heteroepitaxy across graphene: hydrothermal growth of vertical ZnO microrods on graphene-coated GaN substrate. Appl. Phys. Lett. 113, 233103 (2018).

    Article  ADS  Google Scholar 

  61. Choi, J. et al. Facet-selective morphology-controlled remote epitaxy of ZnO microcrystals via wet chemical synthesis. Sci. Rep. 11, 22697 (2021).

    Article  ADS  Google Scholar 

  62. Lin, Y. T., Yeh, T. W., Nakajima, Y. & Dapkus, P. D. Catalyst-free GaN nanorods synthesized by selective area growth. Adv. Funct. Mater. 24, 3162–3171 (2014).

    Article  Google Scholar 

  63. Li, S. et al. Dependence of N-polar GaN rod morphology on growth parameters during selective area growth by MOVPE. J. Cryst. Growth 364, 149–154 (2013).

    Article  ADS  Google Scholar 

  64. Jeong, J. et al. Selective-area remote epitaxy of ZnO microrods using multilayer-monolayer-patterned graphene for transferable and flexible device fabrications. ACS Appl. Nano Mater. 3, 8920–8930 (2020). This paper demonstrates a method to control the position of microstructures in remote epitaxy.

    Article  Google Scholar 

  65. Jin, D. K. et al. Position-controlled remote epitaxy of ZnO for mass-transfer of as-deployed semiconductor microarrays. APL Mater. 9, 051102 (2021).

    Article  ADS  Google Scholar 

  66. Du, D. et al. Epitaxy, exfoliation, and strain-induced magnetism in rippled Heusler membranes. Nat. Commun. 12, 2494 (2021).

    Article  ADS  Google Scholar 

  67. Koma, A., Sunouchi, K. & Miyajima, T. Fabrication of ultrathin heterostructures with van der Waals epitaxy. J. Vac. Sci. Technol. B Microelectron. Process. Phenom. 3, 724 (1985).

    Article  ADS  Google Scholar 

  68. Mohseni, P. K. et al. Monolithic III–V nanowire solar cells on graphene via direct van der Waals epitaxy. Adv. Mater. 26, 3755–3760 (2014).

    Article  Google Scholar 

  69. Lin, Z., Huang, Y. & Duan, X. Van der Waals thin-film electronics. Nat. Electron. 2, 378–388 (2019).

    Article  Google Scholar 

  70. Liu, Y. et al. Van der Waals heterostructures and devices. Nat. Rev. Mater. 1, 16042 (2016).

    Article  ADS  Google Scholar 

  71. Bae, S. H. et al. Integration of bulk materials with two-dimensional materials for physical coupling and applications. Nat. Mater. 18, 550–560 (2019).

    Article  ADS  Google Scholar 

  72. Li, X. et al. Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Lett. 9, 4359–4363 (2009).

    Article  ADS  Google Scholar 

  73. Qian, Y. et al. Universal 2D material film transfer using a novel low molecular weight polyvinyl acetate. Appl. Surf. Sci. 534, 147650 (2020).

    Article  Google Scholar 

  74. Rang Lim, Y. et al. Resist- and etching-free patterning mediated by predefined photosensitive polyimide for two-dimensional semiconductor-based photodetectors. Adv. Mater. Interfaces 8, 2001817 (2021).

    Article  Google Scholar 

  75. Manzo, S. et al. Pinhole-seeded lateral epitaxy and exfoliation on graphene-terminated surfaces. Preprint at https://doi.org/10.48550/arXiv.2106.00721 (2021).

  76. Zhao, Z. D. et al. Hydride vapor phase epitaxy of GaN on self-organized patterned graphene masks. Mater. Lett. 153, 152–154 (2015).

    Article  Google Scholar 

  77. Lee, J. Y. et al. Multiple epitaxial lateral overgrowth of GaN thin films using a patterned graphene mask by metal organic chemical vapor deposition. J. Appl. Crystallogr. 53, 1502–1508 (2020).

    Article  Google Scholar 

  78. Ferrari, A. C. Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid. State Commun. 143, 47–57 (2007).

    Article  ADS  Google Scholar 

  79. Emery, J. D. et al. Chemically resolved interface structure of epitaxial graphene on SiC(0001). Phys. Rev. Lett. 111, 215501 (2013).

    Article  ADS  Google Scholar 

  80. Nemes-Incze, P., Osváth, Z., Kamarás, K. & Biró, L. P. Anomalies in thickness measurements of graphene and few layer graphite crystals by tapping mode atomic force microscopy. Carbon 46, 1435–1442 (2008).

    Article  Google Scholar 

  81. Takahashi, K., Yamada, K., Kato, H., Hibino, H. & Homma, Y. In situ scanning electron microscopy of graphene growth on polycrystalline Ni substrate. Surf. Sci. 606, 728–732 (2012).

    Article  ADS  Google Scholar 

  82. Ferrari, A. C. & Basko, D. M. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 8, 235–246 (2013).

    Article  ADS  Google Scholar 

  83. Koh, Y. K., Bae, M. H., Cahill, D. G. & Pop, E. Reliably counting atomic planes of few-layer graphene (n > 4). ACS Nano 5, 269–274 (2011).

    Article  Google Scholar 

  84. Gass, M. H. et al. Free-standing graphene at atomic resolution. Nat. Nanotechnol. 3, 676–681 (2008).

    Article  ADS  Google Scholar 

  85. Neubeck, S. et al. Direct determination of the crystallographic orientation of graphene edges by atomic resolution imaging. Appl. Phys. Lett. 97, 053110 (2010).

    Article  ADS  Google Scholar 

  86. Wang, G. C. & Lu, T. M. RHEED Transmission Mode and Pole Figures: Thin Film and Nanostructure Texture Analysis (Springer, 2014).

  87. Birkholz, M. Thin Film Analysis by X-Ray Scattering (Wiley, 2006).

  88. Ul-Hamid, A. A Beginners’ Guide to Scanning Electron Microscopy (Springer International, 2018).

  89. Schwartz, A. J., Kumar, M., Adams, B. L. & Field, D. P. Electron Backscatter Diffraction in Materials Science (Springer US, 2009).

  90. Giannuzzi, L. A. & Stevie, F. A. Introduction to Focused Ion Beams: Instrumentation, Theory, Techniques and Practice (Springer US, 2005).

  91. Williams, D. B. & Carter, C. B. Transmission Electron Microscopy: a Textbook for Materials Science (Springer US, 2009).

  92. Cao, M. C. et al. Theory and practice of electron diffraction from single atoms and extended objects using an EMPAD. Microscopy 67, i150–i161 (2018).

    Article  Google Scholar 

  93. Lu, N., Wang, J., Oviedo, J. P., Lian, G. & Kim, M. J. Atomic resolution scanning transmission electron microscopy of two-dimensional layered transition metal dichalcogenides. Appl. Microsc. 45, 225–229 (2015).

    Article  Google Scholar 

  94. Huang, P. Y. et al. Grains and grain boundaries in single-layer graphene atomic patchwork quilts. Nature 469, 389–392 (2011).

    Article  ADS  Google Scholar 

  95. Bae, S. H. et al. Graphene-assisted spontaneous relaxation towards dislocation-free heteroepitaxy. Nat. Nanotechnol. 15, 272–276 (2020). This paper investigates a spontaneous relaxation mechanism on graphene that can lead to improved material quality in remote heteroepitaxy.

    Article  ADS  Google Scholar 

  96. Besnard, A., Ardigo, M. R., Imhoff, L. & Jacquet, P. Curvature radius measurement by optical profiler and determination of the residual stress in thin films. Appl. Surf. Sci. 487, 356–361 (2019).

    Article  ADS  Google Scholar 

  97. Moram, M. A. et al. On the origin of threading dislocations in GaN films. J. Appl. Phys. 106, 073513 (2009).

    Article  ADS  Google Scholar 

  98. Si, M. et al. A ferroelectric semiconductor field-effect transistor. Nat. Electron. 2, 580–586 (2019).

    Article  Google Scholar 

  99. Salahuddin, S. & Datta, S. Use of negative capacitance to provide voltage amplification for low power nanoscale devices. Nano Lett. 8, 405–410 (2008).

    Article  ADS  Google Scholar 

  100. Abel, S. et al. Large Pockels effect in micro- and nanostructured barium titanate integrated on silicon. Nat. Mater. 18, 42–47 (2018).

    Article  ADS  Google Scholar 

  101. García De Arquer, F. P., Armin, A., Meredith, P. & Sargent, E. H. Solution-processed semiconductors for next-generation photodetectors. Nat. Rev. Mater. 2, 16100 (2017).

    Article  ADS  Google Scholar 

  102. Yu, W. et al. Single crystal hybrid perovskite field-effect transistors. Nat. Commun. 9, 5354 (2018).

    Article  ADS  Google Scholar 

  103. Shi, J. A structurally unstable semiconductor stabilized and enhanced by strain. Nature 577, 171–172 (2020).

    Article  ADS  Google Scholar 

  104. Li, J., Shan, Z. & Ma, E. Elastic strain engineering for unprecedented materials properties. MRS Bull. 39, 108–114 (2014).

    Article  Google Scholar 

  105. Cao, A. et al. Design and fabrication of an artificial compound eye for multi-spectral imaging. Micromachines 10, 208 (2019).

    Article  Google Scholar 

  106. Tang, X., Ackerman, M. M., Chen, M. & Guyot-Sionnest, P. Dual-band infrared imaging using stacked colloidal quantum dot photodiodes. Nat. Photonics 13, 277–282 (2019).

    Article  ADS  Google Scholar 

  107. Zou, Y. et al. in Proc. SPIE 11703, AI and Optical Data Sciences II Vol. 11703 (eds Jalali, B. & Kitayama, K.) 127–132 (SPIE, 2021).

  108. Ma, J., Yu, W., Liang, P., Li, C. & Jiang, J. FusionGAN: a generative adversarial network for infrared and visible image fusion. Inf. Fusion 48, 11–26 (2019).

    Article  Google Scholar 

  109. Yao, P. et al. Fully hardware-implemented memristor convolutional neural network. Nature 577, 641–646 (2020).

    Article  ADS  Google Scholar 

  110. Woźniak, S., Pantazi, A., Bohnstingl, T. & Eleftheriou, E. Deep learning incorporating biologically inspired neural dynamics and in-memory computing. Nat. Mach. Intell. 2, 325–336 (2020).

    Article  Google Scholar 

  111. Wang, Z. et al. Resistive switching materials for information processing. Nat. Rev. Mater. 5, 173–195 (2020).

    Article  ADS  Google Scholar 

  112. Kaspar, C., Ravoo, B. J., van der Wiel, W. G., Wegner, S. V. & Pernice, W. H. P. The rise of intelligent matter. Nature 594, 345–355 (2021).

    Article  ADS  Google Scholar 

  113. Gu, L. et al. A biomimetic eye with a hemispherical perovskite nanowire array retina. Nature 581, 278–282 (2020).

    Article  ADS  Google Scholar 

  114. Rao, Z. et al. Curvy, shape-adaptive imagers based on printed optoelectronic pixels with a kirigami design. Nat. Electron. 4, 513–521 (2021).

    Article  Google Scholar 

  115. Yeon, H. et al. Long-term reliable physical health monitoring by sweat pore-inspired perforated electronic skins. Sci. Adv. 7, eabg8459 (2021).

    Article  ADS  Google Scholar 

  116. Ryu, H., Wu, H., Rao, F. & Zhu, W. Ferroelectric tunneling junctions based on aluminum oxide/zirconium-doped hafnium oxide for neuromorphic computing. Sci. Rep. 9, 20383 (2019).

    Article  ADS  Google Scholar 

  117. Huang, J.-L. et al. in Proc. 2017 IEEE 30th International Conference on Micro Electro Mechanical Systems (MEMS) 1188–1191 (Institute of Electrical and Electronics Engineers, 2017).

  118. Guo, Z. et al. Self-powered sound detection and recognition sensors based on flexible polyvinylidene fluoride–trifluoroethylene films enhanced by in-situ polarization. Sens. Actuators A Phys. 306, 111970 (2020).

    Article  Google Scholar 

  119. Deng, J. et al. A tactile sensing textile with bending-independent pressure perception and spatial acuity. Carbon 149, 63–70 (2019).

    Article  Google Scholar 

  120. Zhang, Z., Tian, Z., Mei, Y. & Di, Z. Shaping and structuring 2D materials via kirigami and origami. Mater. Sci. Eng. R Rep. 145, 100621 (2021).

    Article  Google Scholar 

  121. Wang, W. et al. Kirigami/origami-based soft deployable reflector for optical beam steering. Adv. Funct. Mater. 27, 1604214 (2017).

    Article  Google Scholar 

  122. Otoole, M., Lindell, D. B. & Wetzstein, G. Confocal non-line-of-sight imaging based on the light-cone transform. Nature 555, 338–341 (2018).

    Article  ADS  Google Scholar 

  123. Alaskar, Y. et al. Towards van der Waals epitaxial growth of GaAs on Si using a graphene buffer layer. Adv. Funct. Mater. 24, 6629–6638 (2014).

    Article  Google Scholar 

  124. Anyebe, E. A. & Kesaria, M. Recent advances in the Van der Waals epitaxy growth of III–V semiconductor nanowires on graphene. Nano Select 2, 688–711 (2021).

    Article  Google Scholar 

  125. Khan, A. et al. Direct CVD growth of graphene on technologically important dielectric and semiconducting substrates. Adv. Sci. 5, 1800050 (2018).

    Article  Google Scholar 

  126. Zhang, Y. et al. Capillary transfer of soft films. Proc. Natl Acad. Sci. USA 117, 5210–5216 (2020).

    Article  ADS  MATH  Google Scholar 

  127. Song, S. W. et al. Direct 2D-to-3D transformation of pen drawings. Sci. Adv. 7, eabf3804 (2021).

    Article  ADS  Google Scholar 

  128. Yu, J. et al. Van der Waals coherent epitaxy of GaN and InGaN/GaN multi-quantum-well via a graphene inserted layer. Opt. Mater. Express 11, 4118–4129 (2021).

    Article  ADS  Google Scholar 

  129. Badokas, K. et al. Remote epitaxy of GaN via graphene on GaN/sapphire templates. J. Phys. D Appl. Phys. 54, 205103 (2021).

    Article  ADS  Google Scholar 

  130. Chang, J.-H. et al. MOVPE growth of GaN via graphene layers on GaN/sapphire templates. Nanomaterials 12, 785 (2022).

    Article  Google Scholar 

  131. Guo, Y. et al. A reconfigurable remotely epitaxial VO2 electrical heterostructure. Nano Lett. 20, 33–42 (2020).

    Article  ADS  Google Scholar 

  132. Jia, R. et al. Van der Waals epitaxy and remote epitaxy of LiNbO3 thin films by pulsed laser deposition. J. Vac. Sci. Technol. A Vac. Surf. Films 39, 040405 (2021).

    Article  ADS  Google Scholar 

  133. Lu, Z. et al. Remote epitaxy of copper on sapphire through monolayer graphene buffer. Nanotechnology 29, 445702 (2018).

    Article  ADS  Google Scholar 

  134. Wang, D. et al. Remote heteroepitaxy of atomic layered hafnium disulfide on sapphire through hexagonal boron nitride. Nanoscale 11, 9310–9318 (2019).

    Article  Google Scholar 

  135. Chae, S. et al. Lattice transparency of graphene. Nano Lett. 17, 1711–1718 (2017).

    Article  ADS  Google Scholar 

  136. Kim, Y. et al. Fabrication of a microcavity prepared by remote epitaxy over monolayer molybdenum disulfide. ACS Nano 16, 2399–2406 (2022).

    Article  Google Scholar 

  137. Franchi, S., Trevisi, G., Seravalli, L. & Frigeri, P. Quantum dot nanostructures and molecular beam epitaxy. Prog. Cryst. Growth Charact. Mater. 47, 166–195 (2003).

    Article  Google Scholar 

  138. Nakamura, F., Kim, Y. D., Yoon, E., Forbes, D. V. & Coleman, J. J. Thickness monitoring of GaAs growth by surface photoabsorption in metalorganic chemical vapor deposition. J. Appl. Phys. 83, 775–778 (1998).

    Article  ADS  Google Scholar 

  139. Gatzen, H. H., Saile, V. & Leuthold, J. in Micro and Nano Fabrication Ch. 6, 313–395 (Springer, 2015).

  140. Ferrari, A. C. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2006).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Defense Advanced Research Projects Agency Young Faculty Award (award no. 029584-00001), the US Department of Energy’s Office of Energy Efficiency and Renewable Energy (EERE) under the Solar Energy Technologies Office (award no. DE-EE0008558) and the Air Force Research Laboratory (no. FA9453-21-C-0717). H.S.K. acknowledges support by Yonsei University Research Fund of 2021-22-0338. Y.J.H. and J. Jeong acknowledge support by the National Research Foundation (NRF) of South Korea (NRF-2021R1A5A1032996; 2020R1F1A1074477).

Author information

Authors and Affiliations

Authors

Contributions

Introduction (H.K. and J.K.); Experimentation (all authors); Results (C.S.C., S.L., J. Jiang and J.S.); Applications (all authors); Reproducibility and data deposition (Y.M. and S.-H.B.); Limitations and optimizations (M.P., K.L., J. Ji, Y.K. and H.S.K.); Outlook (H.K. and J.K.); Overview of the Primer (all authors).

Corresponding authors

Correspondence to Wei Kong, Hyun S. Kum, Sang-Hoon Bae, Kyusang Lee, Young Joon Hong, Jian Shi or Jeehwan Kim.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Methods Primers thanks Zhaolong Chen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Epitaxial layer

The thin and planar layer of a film formed by an epitaxy process, often abbreviated as epilayer.

Van der Waals (vdW) materials

Materials with strong in-plane atomic bonds but weak out-of-plane vdW interactions.

Electrostatic potential

The amount of work needed to move an electric charge.

2D material-based layer transfer

Exfoliation and transfer of layers at the interface formed by 2D materials.

Wet transfer process

Transfer of 2D materials onto a target substrate in liquid.

Dry transfer process

Transfer of 2D materials onto a target substrate without liquid at the interface between the 2D material and the substrate.

Direct growth

The formation of materials directly on the target substrate instead of forming them elsewhere and then transferring them onto the target substrate.

III–V compound semiconductors

Compound semiconductors composed of group III (such as aluminium, gallium, indium) and group V (such as arsenic, phosphorus, antimony), typically forming zinc-blende crystal structures.

III–N

A special form of III–V compound semiconductors with nitrogen as a group V element, typically forming wurtzite crystal structures.

Pulsed laser deposition

An epitaxial growth technique that uses short pulses of high-intensity lasers to ablate a polycrystalline target material onto a single-crystalline substrate.

Pockels coefficient

A coefficient that quantifies the phenomena in which the refractive index of a medium changes proportional to the strength of the applied electric field.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, H., Chang, C.S., Lee, S. et al. Remote epitaxy. Nat Rev Methods Primers 2, 40 (2022). https://doi.org/10.1038/s43586-022-00122-w

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s43586-022-00122-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing