Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Impact of context-dependent autophagy states on tumor progression

Abstract

Macroautophagy is a cellular quality-control process that degrades proteins, protein aggregates and damaged organelles. Autophagy plays a fundamental role in cancer where, in the presence of stressors (for example, nutrient starvation, hypoxia, mechanical pressure), tumor cells activate it to degrade intracellular substrates and provide energy. Cell-autonomous autophagy in tumor cells and cell-nonautonomous autophagy in the tumor microenvironment and in the host converge on mechanisms that modulate metabolic fitness, DNA integrity and immune escape and, consequently, support tumor growth. In this Review, we will discuss insights into the tumor-modulating roles of autophagy in different contexts and reflect on how future studies using physiological culture systems may help to understand the complexity and open new therapeutic avenues.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Molecular mechanisms of autophagy.
Fig. 2: Cellular responses modulating autophagy.
Fig. 3: Autophagy in the tumor and surrounding microenvironment.
Fig. 4: Autophagy in the tumor-bearing host.

Similar content being viewed by others

References

  1. Mizushima, N. & Komatsu, M. Autophagy: renovation of cells and tissues. Cell 147, 728–741 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Mizushima, N., Yoshimori, T. & Ohsumi, Y. The role of Atg proteins in autophagosome formation. Annu. Rev. Cell Dev. Biol. 27, 107–132 (2011).

    Article  CAS  PubMed  Google Scholar 

  3. Levine, B. & Kroemer, G. Autophagy in the pathogenesis of disease. Cell 132, 27–42 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Levine, B. & Kroemer, G. Biological functions of autophagy genes: a disease perspective. Cell 176, 11–42 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Karsli-Uzunbas, G. et al. Autophagy is required for glucose homeostasis and lung tumor maintenance. Cancer Discov. 4, 914–927 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Pyo, J. O. et al. Overexpression of Atg5 in mice activates autophagy and extends lifespan. Nat. Commun. 4, 2300 (2013).

    Article  PubMed  Google Scholar 

  7. White, E. The role for autophagy in cancer. J. Clin. Invest. 125, 42–46 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Takamura, A. et al. Autophagy-deficient mice develop multiple liver tumors. Genes Dev. 25, 795–800 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yang, A. et al. Autophagy is critical for pancreatic tumor growth and progression in tumors with p53 alterations. Cancer Discov. 4, 905–913 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Degenhardt, K. et al. Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell 10, 51–64 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yang, S. et al. Pancreatic cancers require autophagy for tumor growth. Genes Dev. 25, 717–729 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Poillet-Perez, L. & White, E. Role of tumor and host autophagy in cancer metabolism. Genes Dev. 33, 610–619 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. De Duve, C. & Wattiaux, R. Functions of lysosomes. Annu. Rev. Physiol. 28, 435–492 (1966).

    Article  PubMed  Google Scholar 

  14. Ahlberg, J. & Glaumann, H. Uptake—microautophagy—and degradation of exogenous proteins by isolated rat liver lysosomes. Effects of pH, ATP, and inhibitors of proteolysis. Exp. Mol. Pathol. 42, 78–88 (1985).

    Article  CAS  PubMed  Google Scholar 

  15. Schuck, S. Microautophagy—distinct molecular mechanisms handle cargoes of many sizes. J. Cell Sci. 133, jcs246322 (2020).

  16. Sahu, R. et al. Microautophagy of cytosolic proteins by late endosomes. Dev. Cell 20, 131–139 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Dice, J. F. Peptide sequences that target cytosolic proteins for lysosomal proteolysis. Trends Biochem. Sci. 15, 305–309 (1990).

    Article  CAS  PubMed  Google Scholar 

  18. Arias, E. & Cuervo, A. M. Chaperone-mediated autophagy in protein quality control. Curr. Opin. Cell Biol. 23, 184–189 (2011).

    Article  CAS  PubMed  Google Scholar 

  19. Abada, A. & Elazar, Z. Getting ready for building: signaling and autophagosome biogenesis. EMBO Rep. 15, 839–852 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kimmelman, A. C. & White, E. Autophagy and tumor metabolism. Cell Metab. 25, 1037–1043 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Encarnacion-Rosado, J. & Kimmelman, A. C. Harnessing metabolic dependencies in pancreatic cancers. Nat. Rev. Gastroenterol. Hepatol. 18, 482–492 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Codogno, P., Mehrpour, M. & Proikas-Cezanne, T. Canonical and non-canonical autophagy: variations on a common theme of self-eating. Nat. Rev. Mol. Cell Biol. 13, 7–12 (2011).

    Article  PubMed  Google Scholar 

  23. Sica, V. et al. Organelle-specific initiation of autophagy. Mol. Cell 59, 522–539 (2015).

    Article  CAS  PubMed  Google Scholar 

  24. Kaushik, S. & Cuervo, A. M. The coming of age of chaperone-mediated autophagy. Nat. Rev. Mol. Cell Biol. 19, 365–381 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hosokawa, N. et al. Nutrient-dependent mTORC1 association with the ULK1–Atg13–FIP200 complex required for autophagy. Mol. Biol. Cell 20, 1981–1991 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hosokawa, N. et al. Atg101, a novel mammalian autophagy protein interacting with Atg13. Autophagy 5, 973–979 (2009).

    Article  CAS  PubMed  Google Scholar 

  27. Hamasaki, M. et al. Autophagosomes form at ER–mitochondria contact sites. Nature 495, 389–393 (2013).

    Article  CAS  PubMed  Google Scholar 

  28. Nascimbeni, A. C. et al. ER–plasma membrane contact sites contribute to autophagosome biogenesis by regulation of local PI3P synthesis. EMBO J. 36, 2018–2033 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Suzuki, S. W. et al. Atg13 HORMA domain recruits Atg9 vesicles during autophagosome formation. Proc. Natl Acad. Sci. USA 112, 3350–3355 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Karanasios, E. et al. Dynamic association of the ULK1 complex with omegasomes during autophagy induction. J. Cell Sci. 126, 5224–5238 (2013).

    CAS  PubMed  Google Scholar 

  31. Manifava, M. et al. Dynamics of mTORC1 activation in response to amino acids. eLife 5, e19960 (2016).

  32. Nishimura, T. et al. Autophagosome formation is initiated at phosphatidylinositol synthase-enriched ER subdomains. EMBO J. 36, 1719–1735 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Slobodkin, M. R. & Elazar, Z. The Atg8 family: multifunctional ubiquitin-like key regulators of autophagy. Essays Biochem. 55, 51–64 (2013).

    Article  CAS  PubMed  Google Scholar 

  34. Nishimura, T. et al. FIP200 regulates targeting of Atg16L1 to the isolation membrane. EMBO Rep. 14, 284–291 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kuma, A., Mizushima, N., Ishihara, N. & Ohsumi, Y. Formation of the approximately 350-kDa Apg12–Apg5.Apg16 multimeric complex, mediated by Apg16 oligomerization, is essential for autophagy in yeast. J. Biol. Chem. 277, 18619–18625 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Fujioka, Y., Noda, N. N., Nakatogawa, H., Ohsumi, Y. & Inagaki, F. Dimeric coiled-coil structure of Saccharomyces cerevisiae Atg16 and its functional significance in autophagy. J. Biol. Chem. 285, 1508–1515 (2010).

    Article  CAS  PubMed  Google Scholar 

  37. Saxton, R. A. & Sabatini, D. M. mTOR signaling in growth, metabolism, and disease. Cell 169, 361–371 (2017).

    Article  CAS  PubMed  Google Scholar 

  38. Kim, J., Kundu, M., Viollet, B. & Guan, K. L. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat. Cell Biol. 13, 132–141 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Perera, R. M. et al. Transcriptional control of autophagy–lysosome function drives pancreatic cancer metabolism. Nature 524, 361–365 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yu, L. et al. Termination of autophagy and reformation of lysosomes regulated by mTOR. Nature 465, 942–946 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Grisan, F. et al. PKA compartmentalization links cAMP signaling and autophagy. Cell Death Differ. 28, 2436–2449 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Debnath, J. Detachment-induced autophagy during anoikis and lumen formation in epithelial acini. Autophagy 4, 351–353 (2008).

    Article  PubMed  Google Scholar 

  43. Amaravadi, R. K., Kimmelman, A. C. & Debnath, J. Targeting autophagy in cancer: recent advances and future directions. Cancer Discov. 9, 1167–1181 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Russell, R. C., Yuan, H. X. & Guan, K. L. Autophagy regulation by nutrient signaling. Cell Res. 24, 42–57 (2014).

    Article  CAS  PubMed  Google Scholar 

  45. Sullivan, W. J. et al. Extracellular matrix remodeling regulates glucose metabolism through TXNIP destabilization. Cell 175, 117–132 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Pavel, M. et al. Contact inhibition controls cell survival and proliferation via YAP/TAZ–autophagy axis. Nat. Commun. 9, 2961 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Yorimitsu, T., Nair, U., Yang, Z. & Klionsky, D. J. Endoplasmic reticulum stress triggers autophagy. J. Biol. Chem. 281, 30299–30304 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Rzymski, T. et al. Regulation of autophagy by ATF4 in response to severe hypoxia. Oncogene 29, 4424–4435 (2010).

    Article  CAS  PubMed  Google Scholar 

  49. Rouschop, K. M. et al. The unfolded protein response protects human tumor cells during hypoxia through regulation of the autophagy genes MAP1LC3B and ATG5. J. Clin. Invest. 120, 127–141 (2010).

    Article  CAS  PubMed  Google Scholar 

  50. Gozuacik, D. et al. DAP-kinase is a mediator of endoplasmic reticulum stress-induced caspase activation and autophagic cell death. Cell Death Differ. 15, 1875–1886 (2008).

    Article  CAS  PubMed  Google Scholar 

  51. Hyrskyluoto, A., Reijonen, S., Kivinen, J., Lindholm, D. & Korhonen, L. GADD34 mediates cytoprotective autophagy in mutant huntingtin expressing cells via the mTOR pathway. Exp. Cell Res. 318, 33–42 (2012).

    Article  CAS  PubMed  Google Scholar 

  52. Madden, D. T., Egger, L. & Bredesen, D. E. A calpain-like protease inhibits autophagic cell death. Autophagy 3, 519–522 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. Verfaillie, T., Salazar, M., Velasco, G. & Agostinis, P. Linking ER stress to autophagy: potential implications for cancer therapy. Int. J. Cell Biol. 2010, 930509 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Pena-Oyarzun, D. et al. Hyperosmotic stress stimulates autophagy via polycystin-2. Oncotarget 8, 55984–55997 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Corbet, C. & Feron, O. Tumour acidosis: from the passenger to the driver’s seat. Nat. Rev. Cancer 17, 577–593 (2017).

    Article  CAS  PubMed  Google Scholar 

  56. Corbet, C. et al. Acidosis drives the reprogramming of fatty acid metabolism in cancer cells through changes in mitochondrial and histone acetylation. Cell Metab. 24, 311–323 (2016).

    Article  CAS  PubMed  Google Scholar 

  57. Xu, T., Su, H., Ganapathy, S. & Yuan, Z. M. Modulation of autophagic activity by extracellular pH. Autophagy 7, 1316–1322 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Pellegrini, P. et al. Acidic extracellular pH neutralizes the autophagy-inhibiting activity of chloroquine: implications for cancer therapies. Autophagy 10, 562–571 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Guo, J. Y. & White, E. Autophagy is required for mitochondrial function, lipid metabolism, growth, and fate of KRASG12D-driven lung tumors. Autophagy 9, 1636–1638 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Strohecker, A. M. et al. Autophagy sustains mitochondrial glutamine metabolism and growth of BrafV600E-driven lung tumors. Cancer Discov. 3, 1272–1285 (2013).

    Article  CAS  PubMed  Google Scholar 

  61. Xie, X., Koh, J. Y., Price, S., White, E. & Mehnert, J. M. Atg7 overcomes senescence and promotes growth of BrafV600E-driven melanoma. Cancer Discov. 5, 410–423 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Santanam, U. et al. Atg7 cooperates with Pten loss to drive prostate cancer tumor growth. Genes Dev. 30, 399–407 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wei, H. et al. Suppression of autophagy by FIP200 deletion inhibits mammary tumorigenesis. Genes Dev. 25, 1510–1527 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Gammoh, N. et al. Suppression of autophagy impedes glioblastoma development and induces senescence. Autophagy 12, 1431–1439 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Levy, J. & Romagnolo, B. Autophagy, microbiota and intestinal oncogenesis. Oncotarget 6, 34067–34068 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Levy, J. et al. Intestinal inhibition of Atg7 prevents tumour initiation through a microbiome-influenced immune response and suppresses tumour growth. Nat. Cell Biol. 17, 1062–1073 (2015).

    Article  CAS  PubMed  Google Scholar 

  67. Guo, J. Y. et al. Autophagy provides metabolic substrates to maintain energy charge and nucleotide pools in Ras-driven lung cancer cells. Genes Dev. 30, 1704–1717 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Guo, J. Y. et al. Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis. Genes Dev. 25, 460–470 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Guo, J. Y. et al. Autophagy suppresses progression of K-ras-induced lung tumors to oncocytomas and maintains lipid homeostasis. Genes Dev. 27, 1447–1461 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Singh, R. et al. Autophagy regulates lipid metabolism. Nature 458, 1131–1135 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Santana-Codina, N. et al. NCOA4-mediated ferritinophagy is a pancreatic cancer dependency via maintenance of iron bioavailability for iron-sulfur cluster proteins. Cancer Discov. 12, 2180–2197 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ravichandran, M. et al. Coordinated transcriptional and catabolic programs support iron dependent adaptation to RAS–MAPK pathway inhibition in pancreatic cancer. Cancer Discov. 12, 2198–2219 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Mancias, J. D., Wang, X., Gygi, S. P., Harper, J. W. & Kimmelman, A. C. Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy. Nature 509, 105–109 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Humpton, T. J. et al. Oncogenic KRAS induces NIX-mediated mitophagy to promote pancreatic cancer. Cancer Discov. 9, 1268–1287 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Yang, Y. & White, E. Autophagy suppresses TRP53/p53 and oxidative stress to enable mammalian survival. Autophagy 16, 1355–1357 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Mukhopadhyay, S. et al. Autophagy is required for proper cysteine homeostasis in pancreatic cancer through regulation of SLC7A11. Proc. Natl Acad. Sci. USA 118, e2021475118 (2021).

  77. Mukhopadhyay, S. & Kimmelman, A. C. Autophagy is critical for cysteine metabolism in pancreatic cancer through regulation of SLC7A11. Autophagy 17, 1561–1562 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Mathew, R. et al. Autophagy suppresses tumor progression by limiting chromosomal instability. Genes Dev. 21, 1367–1381 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Mathew, R. & White, E. Why sick cells produce tumors: the protective role of autophagy. Autophagy 3, 502–505 (2007).

    Article  CAS  PubMed  Google Scholar 

  80. Karantza-Wadsworth, V. et al. Autophagy mitigates metabolic stress and genome damage in mammary tumorigenesis. Genes Dev. 21, 1621–1635 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Karantza-Wadsworth, V. & White, E. Role of autophagy in breast cancer. Autophagy 3, 610–613 (2007).

    Article  CAS  PubMed  Google Scholar 

  82. Liu, E. Y. et al. Loss of autophagy causes a synthetic lethal deficiency in DNA repair. Proc. Natl Acad. Sci. USA 112, 773–778 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Park, C., Suh, Y. & Cuervo, A. M. Regulated degradation of Chk1 by chaperone-mediated autophagy in response to DNA damage. Nat. Commun. 6, 6823 (2015).

    Article  CAS  PubMed  Google Scholar 

  84. Wang, Y. et al. Autophagy regulates chromatin ubiquitination in DNA damage response through elimination of SQSTM1/p62. Mol. Cell 63, 34–48 (2016).

    Article  CAS  PubMed  Google Scholar 

  85. Vanzo, R. et al. Autophagy role(s) in response to oncogenes and DNA replication stress. Cell Death Differ. 27, 1134–1153 (2020).

    Article  CAS  PubMed  Google Scholar 

  86. Yamamoto, K., Venida, A., Perera, R. M. & Kimmelman, A. C. Selective autophagy of MHC-I promotes immune evasion of pancreatic cancer. Autophagy 16, 1524–1525 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Yamamoto, K. et al. Autophagy promotes immune evasion of pancreatic cancer by degrading MHC-I. Nature 581, 100–105 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Baginska, J. et al. Granzyme B degradation by autophagy decreases tumor cell susceptibility to natural killer-mediated lysis under hypoxia. Proc. Natl Acad. Sci. USA 110, 17450–17455 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Noman, M. Z. et al. Blocking hypoxia-induced autophagy in tumors restores cytotoxic T-cell activity and promotes regression. Cancer Res. 71, 5976–5986 (2011).

    Article  CAS  PubMed  Google Scholar 

  90. Deng, J. et al. ULK1 inhibition overcomes compromised antigen presentation and restores antitumor immunity in LKB1-mutant lung cancer. Nat. Cancer 2, 503–514 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Okamoto, T. et al. FIP200 suppresses immune checkpoint therapy responses in breast cancers by limiting AZI2/TBK1/IRF signaling independent of its canonical autophagy function. Cancer Res. 80, 3580–3592 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Lawson, K. A. et al. Functional genomic landscape of cancer-intrinsic evasion of killing by T cells. Nature 586, 120–126 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Zhu, X. G. et al. Functional genomics in vivo reveal metabolic dependencies of pancreatic cancer cells. Cell Metab. 33, 211–221 (2021).

    Article  CAS  PubMed  Google Scholar 

  94. Rudnick, J. A. et al. Autophagy in stromal fibroblasts promotes tumor desmoplasia and mammary tumorigenesis. Genes Dev. 35, 963–975 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Sousa, C. M. et al. Erratum: Pancreatic stellate cells support tumour metabolism through autophagic alanine secretion. Nature 540, 150 (2016).

    Article  CAS  PubMed  Google Scholar 

  96. Parker, S. J. et al. Selective alanine transporter utilization creates a targetable metabolic niche in pancreatic cancer. Cancer Discov. 10, 1018–1037 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Endo, S. et al. Autophagy is required for activation of pancreatic stellate cells, associated with pancreatic cancer progression and promotes growth of pancreatic tumors in mice. Gastroenterology 152, 1492–1506 (2017).

    Article  CAS  PubMed  Google Scholar 

  98. Hupfer, A. et al. Matrix stiffness drives stromal autophagy and promotes formation of a protumorigenic niche. Proc. Natl Acad. Sci. USA 118, e2105367118 (2021).

  99. Maes, H. et al. Tumor vessel normalization by chloroquine independent of autophagy. Cancer Cell 26, 190–206 (2014).

    Article  CAS  PubMed  Google Scholar 

  100. Demaria, O. et al. STING activation of tumor endothelial cells initiates spontaneous and therapeutic antitumor immunity. Proc. Natl Acad. Sci. USA 112, 15408–15413 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Yang, H. et al. STING activation reprograms tumor vasculatures and synergizes with VEGFR2 blockade. J. Clin. Invest. 129, 4350–4364 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Takeshita, F., Kobiyama, K., Miyawaki, A., Jounai, N. & Okuda, K. The non-canonical role of Atg family members as suppressors of innate antiviral immune signaling. Autophagy 4, 67–69 (2008).

    Article  CAS  PubMed  Google Scholar 

  103. Wu, Y. et al. Selective autophagy controls the stability of transcription factor IRF3 to balance type I interferon production and immune suppression. Autophagy 17, 1379–1392 (2021).

    Article  CAS  PubMed  Google Scholar 

  104. Prabakaran, T. et al. Attenuation of cGAS–STING signaling is mediated by a p62/SQSTM1-dependent autophagy pathway activated by TBK1. EMBO J. 37, e97858 (2018).

  105. Puleston, D. J. et al. Autophagy is a critical regulator of memory CD8+ T cell formation. eLife 3, e03706 (2014).

  106. Riffelmacher, T. et al. Autophagy-dependent generation of free fatty acids is critical for normal neutrophil differentiation. Immunity 47, 466–480 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Phadwal, K. et al. A novel method for autophagy detection in primary cells: impaired levels of macroautophagy in immunosenescent T cells. Autophagy 8, 677–689 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Wei, J. et al. Autophagy enforces functional integrity of regulatory T cells by coupling environmental cues and metabolic homeostasis. Nat. Immunol. 17, 277–285 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. DeVorkin, L. et al. Autophagy regulation of metabolism is required for CD8+ T cell anti-tumor immunity. Cell Rep. 27, 502–513 (2019).

    Article  CAS  PubMed  Google Scholar 

  110. Frazier, J. P. et al. Multidrug analyses in patients distinguish efficacious cancer agents based on both tumor cell killing and immunomodulation. Cancer Res. 77, 2869–2880 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Chen, D. et al. Publisher Correction: Chloroquine modulates antitumor immune response by resetting tumor-associated macrophages toward M1 phenotype. Nat. Commun. 9, 1808 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Baghdadi, M. et al. TIM-4 glycoprotein-mediated degradation of dying tumor cells by autophagy leads to reduced antigen presentation and increased immune tolerance. Immunity 39, 1070–1081 (2013).

    Article  CAS  PubMed  Google Scholar 

  113. Lock, R., Kenific, C. M., Leidal, A. M., Salas, E. & Debnath, J. Autophagy-dependent production of secreted factors facilitates oncogenic RAS-driven invasion. Cancer Discov. 4, 466–479 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Villarroya-Beltri, C. et al. ISGylation controls exosome secretion by promoting lysosomal degradation of MVB proteins. Nat. Commun. 7, 13588 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Marsh, T., Tolani, B. & Debnath, J. The pleiotropic functions of autophagy in metastasis. J. Cell Sci. 134, jcs247056 (2021).

  116. Lv, Q. et al. DEDD interacts with PI3KC3 to activate autophagy and attenuate epithelial–mesenchymal transition in human breast cancer. Cancer Res. 72, 3238–3250 (2012).

    Article  CAS  PubMed  Google Scholar 

  117. Catalano, M. et al. Autophagy induction impairs migration and invasion by reversing EMT in glioblastoma cells. Mol. Oncol. 9, 1612–1625 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Qiang, L. et al. Regulation of cell proliferation and migration by p62 through stabilization of Twist1. Proc. Natl Acad. Sci. USA 111, 9241–9246 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Li, J. et al. Autophagy promotes hepatocellular carcinoma cell invasion through activation of epithelial–mesenchymal transition. Carcinogenesis 34, 1343–1351 (2013).

    Article  CAS  PubMed  Google Scholar 

  120. Avivar-Valderas, A. et al. Regulation of autophagy during ECM detachment is linked to a selective inhibition of mTORC1 by PERK. Oncogene 32, 4932–4940 (2013).

    Article  CAS  PubMed  Google Scholar 

  121. Chen, N. & Debnath, J. IκB kinase complex (IKK) triggers detachment-induced autophagy in mammary epithelial cells independently of the PI3K–AKT–MTORC1 pathway. Autophagy 9, 1214–1227 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Ma, Z., Myers, D. P., Wu, R. F., Nwariaku, F. E. & Terada, L. S. p66Shc mediates anoikis through RhoA. J. Cell Biol. 179, 23–31 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Kiyono, K. et al. Autophagy is activated by TGF-β and potentiates TGF-β-mediated growth inhibition in human hepatocellular carcinoma cells. Cancer Res. 69, 8844–8852 (2009).

    Article  CAS  PubMed  Google Scholar 

  124. Peng, Y. F. et al. Autophagy inhibition suppresses pulmonary metastasis of HCC in mice via impairing anoikis resistance and colonization of HCC cells. Autophagy 9, 2056–2068 (2013).

    Article  CAS  PubMed  Google Scholar 

  125. Cai, Q., Yan, L. & Xu, Y. Anoikis resistance is a critical feature of highly aggressive ovarian cancer cells. Oncogene 34, 3315–3324 (2015).

    Article  CAS  PubMed  Google Scholar 

  126. Malanchi, I. et al. Interactions between cancer stem cells and their niche govern metastatic colonization. Nature 481, 85–89 (2011).

    Article  PubMed  Google Scholar 

  127. Nazio, F., Bordi, M., Cianfanelli, V., Locatelli, F. & Cecconi, F. Autophagy and cancer stem cells: molecular mechanisms and therapeutic applications. Cell Death Differ. 26, 690–702 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Cufi, S. et al. Autophagy positively regulates the CD44+CD24−/low breast cancer stem-like phenotype. Cell Cycle 10, 3871–3885 (2011).

    Article  CAS  PubMed  Google Scholar 

  129. Wolf, J. et al. A mammosphere formation RNAi screen reveals that ATG4A promotes a breast cancer stem-like phenotype. Breast Cancer Res. 15, R109 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Pei, S. et al. AMPK/FIS1-mediated mitophagy is required for self-renewal of human AML stem cells. Cell Stem Cell 23, 86–100 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Liu, K. et al. Mitophagy controls the activities of tumor suppressor p53 to regulate hepatic cancer stem cells. Mol. Cell 68, 281–292 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Marsh, T. et al. Autophagic degradation of NBR1 restricts metastatic outgrowth during mammary tumor progression. Dev. Cell 52, 591–604 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Kuma, A. et al. The role of autophagy during the early neonatal starvation period. Nature 432, 1032–1036 (2004).

    Article  CAS  PubMed  Google Scholar 

  134. Li, S. et al. A nonautophagic role of ATG5 in regulating cell growth by targeting c-Myc for proteasome-mediated degradation. iScience 24, 103296 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Khayati, K. et al. Transient systemic autophagy inhibition is selectively and irreversibly deleterious to lung cancer. Cancer Res. 82, 4429–4443 (2022).

    Article  CAS  PubMed  Google Scholar 

  136. Poillet-Perez, L. et al. Autophagy maintains tumour growth through circulating arginine. Nature 563, 569–573 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Patil, M. D., Bhaumik, J., Babykutty, S., Banerjee, U. C. & Fukumura, D. Arginine dependence of tumor cells: targeting a chink in cancer’s armor. Oncogene 35, 4957–4972 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Poillet-Perez, L. et al. Autophagy promotes growth of tumors with high mutational burden by inhibiting a T-cell immune response. Nat. Cancer 1, 923–934 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Sliter, D. A. et al. Parkin and PINK1 mitigate STING-induced inflammation. Nature 561, 258–262 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Yang, A. et al. Autophagy sustains pancreatic cancer growth through both cell-autonomous and nonautonomous mechanisms. Cancer Discov. 8, 276–287 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Katheder, N. S. et al. Microenvironmental autophagy promotes tumour growth. Nature 541, 417–420 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Khezri, R. et al. Host autophagy mediates organ wasting and nutrient mobilization for tumor growth. EMBO J. 40, e107336 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Zeh, H. J. et al. A randomized phase II preoperative study of autophagy inhibition with high-dose hydroxychloroquine and gemcitabine/nab-paclitaxel in pancreatic cancer patients. Clin. Cancer Res. 26, 3126–3134 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Malhotra, J. et al. Phase Ib/II study of hydroxychloroquine in combination with chemotherapy in patients with metastatic non-small cell lung cancer (NSCLC). Cancer Treat. Res. Commun. 21, 100158 (2019).

    Article  PubMed  Google Scholar 

  145. Karasic, T. B. et al. Effect of gemcitabine and nab-paclitaxel with or without hydroxychloroquine on patients with advanced pancreatic cancer: a phase 2 randomized clinical trial. JAMA Oncol. 5, 993–998 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Michaud, M. et al. Autophagy-dependent anticancer immune responses induced by chemotherapeutic agents in mice. Science 334, 1573–1577 (2011).

    Article  CAS  PubMed  Google Scholar 

  147. Sanclemente, M. et al. c-RAF ablation induces regression of advanced Kras/Trp53 mutant lung adenocarcinomas by a mechanism independent of MAPK signaling. Cancer Cell 33, 217–228 (2018).

    Article  CAS  PubMed  Google Scholar 

  148. Blasco, R. B. et al. c-Raf, but not B-Raf, is essential for development of K-Ras oncogene-driven non-small cell lung carcinoma. Cancer Cell 19, 652–663 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Kinsey, C. G. et al. Publisher Correction: Protective autophagy elicited by RAF→MEK→ERK inhibition suggests a treatment strategy for RAS-driven cancers. Nat. Med. 25, 861 (2019).

    Article  CAS  PubMed  Google Scholar 

  150. Bryant, K. L. et al. Combination of ERK and autophagy inhibition as a treatment approach for pancreatic cancer. Nat. Med. 25, 628–640 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Lee, C. S. et al. MAP kinase and autophagy pathways cooperate to maintain RAS mutant cancer cell survival. Proc. Natl Acad. Sci. USA 116, 4508–4517 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Mehnert, J. M. et al. BAMM (BRAF Autophagy and MEK inhibition in Melanoma): a phase I/II trial of dabrafenib, trametinib, and hydroxychloroquine in advanced BRAFV600-mutant melanoma. Clin. Cancer Res. 28, 1098–1106 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Goodwin, C. M. et al. Combination therapies with CDK4/6 inhibitors to treat KRAS-mutant pancreatic cancer. Cancer Res. 83, 141–157 (2022).

    Article  Google Scholar 

  154. Stalnecker, C. A. et al. Concurrent inhibition of IGF1R and ERK increases pancreatic cancer sensitivity to autophagy inhibitors. Cancer Res. 82, 586–598 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Sharma, G. et al. PPT1 inhibition enhances the antitumor activity of anti-PD-1 antibody in melanoma. JCI Insight 5, e133225 (2020).

  156. Kirkin, V. History of the selective autophagy research: how did it begin and where does it stand today. J. Mol. Biol. 432, 3–27 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Nakatogawa, H., Suzuki, K., Kamada, Y. & Ohsumi, Y. Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nat. Rev. Mol. Cell Biol. 10, 458–467 (2009).

    Article  CAS  PubMed  Google Scholar 

  158. Cantor, J. R. et al. Physiologic medium rewires cellular metabolism and reveals uric acid as an endogenous inhibitor of UMP synthase. Cell 169, 258–272 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We apologize for the omission of any primary references. This work was supported by NCI grants P01CA117969, R35CA232124, P30CA016087-38 and 1R01CA251726-01A1, the Lustgarten Foundation and an SU2C grant to A.C.K.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alec C. Kimmelman.

Ethics declarations

Competing interests

A.C.K. has financial interests in Vescor Therapeutics and is an inventor on patents pertaining to KRAS-regulated metabolic pathways and redox control pathways in pancreatic cancer, targeting GOT1 as a therapeutic approach, targeting alanine transport and the autophagic control of iron metabolism. A.C.K. is on the scientific advisory board of Rafael/Cornerstone Pharmaceuticals, is an advisor for OncoRev and has been a consultant for Deciphera and AbbVie. The other author declares no competing interests. M.A. is postdoctoral fellow at New York University Langone Health.

Peer review

Peer review information

Nature Cancer thanks Francesco Cecconi and Eileen White for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Assi, M., Kimmelman, A.C. Impact of context-dependent autophagy states on tumor progression. Nat Cancer 4, 596–607 (2023). https://doi.org/10.1038/s43018-023-00546-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43018-023-00546-7

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer