Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

ARTIFICIAL INTELLIGENCE

Deep learning links histology, molecular signatures and prognosis in cancer

Deep learning can be used to predict genomic alterations on the basis of morphological features learned from digital histopathology. Two independent pan-cancer studies now show that automated learning from digital pathology slides and genomics can potentially delineate broader classes of molecular signatures and prognostic associations across cancer types.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Comparison of the two pan-cancer deep-learning-based approaches to unveil genotypes information from whole slide images.

References

  1. 1.

    El-Deiry, W. S. et al. CA Cancer J. Clin. 69, 305–343 (2019).

    PubMed  PubMed Central  Google Scholar 

  2. 2.

    Mobadersany, P. et al. Proc. Natl Acad. Sci. USA 115, E2970–E2979 (2018).

    CAS  Article  Google Scholar 

  3. 3.

    Coudray, N. et al. Nat. Med. 24, 1559–1567 (2018).

    CAS  Article  Google Scholar 

  4. 4.

    Campanella, G. et al. Nat. Med. 25, 1301–1309 (2019).

    CAS  Article  Google Scholar 

  5. 5.

    Ehteshami Bejnordi, B. et al. J. Am. Med. Assoc. 318, 2199–2210 (2017).

    Article  Google Scholar 

  6. 6.

    Topol, E. J. Nat. Med. 25, 44–56 (2019).

    CAS  Article  Google Scholar 

  7. 7.

    Tizhoosh, H. R. & Pantanowitz, L. J. Pathol. Inform. 9, 38 (2018).

    Article  Google Scholar 

  8. 8.

    Kazandjian, D. et al. Clin. Cancer Res. 22, 1307–1312 (2016).

    CAS  Article  Google Scholar 

  9. 9.

    Kather, J. N. et al. Nat. Med. 25, 1054–1056 (2019).

    CAS  Article  Google Scholar 

  10. 10.

    Sha, L. et al. J. Pathol. Inform. 10, 24 (2019).

    Article  Google Scholar 

  11. 11.

    Schaumberg, A. J., Rubin, M. A. & Fuchs, T. J. bioRxiv https://doi.org/10.1101/064279 (2018).

    Article  Google Scholar 

  12. 12.

    Sun, M. et al. Cancers (Basel) 11, 1579 (2019).

    CAS  Article  Google Scholar 

  13. 13.

    Kather, J. N. et al. Nat. Can. https://doi.org/10.1038/s43018-020-0087-6 (2020).

    Article  Google Scholar 

  14. 14.

    Fu, Y. et al. Nat. Can. https://doi.org/10.1038/s43018-020-0085-8 (2020).

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Nicolas Coudray or Aristotelis Tsirigos.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Coudray, N., Tsirigos, A. Deep learning links histology, molecular signatures and prognosis in cancer. Nat Cancer 1, 755–757 (2020). https://doi.org/10.1038/s43018-020-0099-2

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing