Delineating the evolutionary dynamics of cancer from theory to reality

Uncovering and quantifying the laws of the evolutionary dynamics of cancer, in particular in the context of specific genetic lesions and in individual patients, has the potential to revolutionize precision oncology. Recent technological advances in the study of human cancer have increased access to in vivo human data and have thereby facilitated the confirmation or refutation of existing theoretical models. In this Perspective, we discuss recent work at the intersection of quantitative mathematical models of cancer evolution and patient data that provides insights into different stages of tumor evolution, including premalignant and malignant progression and response to therapy.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Studying the dynamics of cancer through mathematical models, model systems and patient data.
Fig. 2: Mathematical models of cancer initiation and progression.
Fig. 3: Studying evolutionary dynamics of cancer over time and under different conditions.

References

  1. 1.

    Bozic, I. & Nowak, M. A. Cancer. Unwanted evolution. Science 342, 938–939 (2013).

    CAS  PubMed  Article  Google Scholar 

  2. 2.

    Vogelstein, B. et al. Cancer genome landscapes. Science 339, 1546–1558 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  3. 3.

    Tomasetti, C., Li, L. & Vogelstein, B. Stem cell divisions, somatic mutations, cancer etiology, and cancer prevention. Science 355, 1330–1334 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  4. 4.

    Podlaha, O., Riester, M., De, S. & Michor, F. Evolution of the cancer genome. Trends Genet. 28, 155–163 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  5. 5.

    Aktipis, C. A. & Nesse, R. M. Evolutionary foundations for cancer biology. Evol. Appl. 6, 144–159 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  6. 6.

    Ewens, W. J. Mathematical Population Genetics 1: Theoretical Introduction (Springer-Verlag, New York, 2004).

    Google Scholar 

  7. 7.

    Desai, M. M., Fisher, D. S. & Murray, A. W. The speed of evolution and maintenance of variation in asexual populations. Curr. Biol. 17, 385–394 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  8. 8.

    Good, B. H., Rouzine, I. M., Balick, D. J., Hallatschek, O. & Desai, M. M. Distribution of fixed beneficial mutations and the rate of adaptation in asexual populations. Proc. Natl Acad. Sci. USA 109, 4950–4955 (2012).

    CAS  PubMed  Article  Google Scholar 

  9. 9.

    Neher, R. A., Russell, C. A. & Shraiman, B. I. Predicting evolution from the shape of genealogical trees. eLife 3, e03568 (2014).

    PubMed Central  Article  Google Scholar 

  10. 10.

    Korolev, K. S. et al. Selective sweeps in growing microbial colonies. Phys. Biol. 9, 026008 (2012).

    PubMed  PubMed Central  Article  Google Scholar 

  11. 11.

    Waclaw, B. et al. A spatial model predicts that dispersal and cell turnover limit intratumour heterogeneity. Nature 525, 261–264 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  12. 12.

    McGranahan, N. & Swanton, C. Clonal heterogeneity and tumor evolution: past, present, and the future. Cell 168, 613–628 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  13. 13.

    Bozic, I., Gerold, J. M. & Nowak, M. A. Quantifying clonal and subclonal mutations during tumor evolution. PLOS Comput. Biol. 12, e1004731 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  14. 14.

    Fane, M. & Weeraratna, A. T. How the ageing microenvironment influences tumour progression. Nat. Rev. Cancer 20, 89–106 (2020).

    CAS  PubMed  Article  Google Scholar 

  15. 15.

    de Visser, K. E. & Coussens, L. M. The inflammatory tumor microenvironment and its impact on cancer development. Contrib. Microbiol. 13, 118–137 (2006).

    PubMed  Article  Google Scholar 

  16. 16.

    Taniguchi, K. & Karin, M. NF-κB, inflammation, immunity and cancer: coming of age. Nat. Rev. Immunol. 18, 309–324 (2018).

    CAS  PubMed  Article  Google Scholar 

  17. 17.

    Binnewies, M. et al. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat. Med. 24, 541–550 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  18. 18.

    Fridman, W. H., Zitvogel, L., Sautès-Fridman, C. & Kroemer, G. The immune contexture in cancer prognosis and treatment. Nat. Rev. Clin. Oncol. 14, 717–734 (2017).

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Yachida, S. et al. Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature 467, 1114–1117 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. 20.

    Hu, Z. et al. Quantitative evidence for early metastatic seeding in colorectal cancer. Nat. Genet. 51, 1113–1122 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  21. 21.

    Khan, K. H. et al. Longitudinal liquid biopsy and mathematical modeling of clonal evolution forecast time to treatment failure in the PROSPECT-C Phase II colorectal cancer clinical trial. Cancer Discov. 8, 1270–1285 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  22. 22.

    Shendure, J. & Ji, H. Next-generation DNA sequencing. Nat. Biotechnol. 26, 1135–1145 (2008).

    CAS  PubMed  Article  Google Scholar 

  23. 23.

    Salk, J. J., Schmitt, M. W. & Loeb, L. A. Enhancing the accuracy of next-generation sequencing for detecting rare and subclonal mutations. Nat. Rev. Genet. 19, 269–285 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. 24.

    Salk, J. J. et al. Ultra-sensitive TP53 sequencing for cancer detection reveals progressive clonal selection in normal tissue over a century of human lifespan. Cell Rep. 28, 132–144.e3 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. 25.

    Pekin, D. et al. Quantitative and sensitive detection of rare mutations using droplet-based microfluidics. Lab Chip 11, 2156–2166 (2011).

    CAS  PubMed  Article  Google Scholar 

  26. 26.

    Wang, Y. et al. Clonal evolution in breast cancer revealed by single nucleus genome sequencing. Nature 512, 155–160 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. 27.

    Eirew, P. et al. Dynamics of genomic clones in breast cancer patient xenografts at single-cell resolution. Nature 518, 422–426 (2015).

    CAS  PubMed  Article  Google Scholar 

  28. 28.

    Silverbush, D. et al. Simultaneous integration of multi-omics data improves the identification of cancer driver modules. Cell Syst. 8, 456–466.e5 (2019).

    CAS  PubMed  Article  Google Scholar 

  29. 29.

    Parikh, A. R. et al. Liquid versus tissue biopsy for detecting acquired resistance and tumor heterogeneity in gastrointestinal cancers. Nat. Med. 25, 1415–1421 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. 30.

    Friberg, S. & Mattson, S. On the growth rates of human malignant tumors: implications for medical decision making. J. Surg. Oncol. 65, 284–297 (1997).

    CAS  PubMed  Article  Google Scholar 

  31. 31.

    Heuser, L., Spratt, J. S. & Polk, H. C. Jr. Growth rates of primary breast cancers. Cancer 43, 1888–1894 (1979).

    CAS  PubMed  Article  Google Scholar 

  32. 32.

    Norton, L. A Gompertzian model of human breast cancer growth. Cancer Res. 48, 7067–7071 (1988).

    CAS  PubMed  Google Scholar 

  33. 33.

    Spratt, J. A., von Fournier, D., Spratt, J. S. & Weber, E. E. Decelerating growth and human breast cancer. Cancer 71, 2013–2019 (1993).

    CAS  PubMed  Article  Google Scholar 

  34. 34.

    Mayneord, W. V. On a law of growth of Jensen’s rat sarcoma. Am. J. Cancer 16, 841–846 (1932).

    Google Scholar 

  35. 35.

    Schrek, R. A quantitative study of the growth of the Walker rat tumor and the Flexner-Jobling rat carcinoma. Am. J. Cancer 24, 807–822 (1935).

    Article  Google Scholar 

  36. 36.

    Mandonnet, E. et al. Continuous growth of mean tumor diameter in a subset of grade II gliomas. Ann. Neurol. 53, 524–528 (2003).

    PubMed  Article  Google Scholar 

  37. 37.

    Rodriguez-Brenes, I. A., Komarova, N. L. & Wodarz, D. Tumor growth dynamics: insights into evolutionary processes. Trends Ecol. Evol. 28, 597–604 (2013).

    PubMed  Article  Google Scholar 

  38. 38.

    Gerlee, P. The model muddle: in search of tumor growth laws. Cancer Res. 73, 2407–2411 (2013).

    CAS  PubMed  Article  Google Scholar 

  39. 39.

    Alexander, S., Koehl, G. E., Hirschberg, M., Geissler, E. K. & Friedl, P. Dynamic imaging of cancer growth and invasion: a modified skin-fold chamber model. Histochem. Cell Biol. 130, 1147–1154 (2008).

    CAS  PubMed  Article  Google Scholar 

  40. 40.

    Gimbrone, M. A. Jr., Leapman, S. B., Cotran, R. S. & Folkman, J. Tumor dormancy in vivo by prevention of neovascularization. J. Exp. Med. 136, 261–276 (1972).

    PubMed  PubMed Central  Article  Google Scholar 

  41. 41.

    Folkman, J. What is the evidence that tumors are angiogenesis dependent? J. Natl. Cancer Inst. 82, 4–6 (1990).

    CAS  PubMed  Article  Google Scholar 

  42. 42.

    Naumov, G. N., Folkman, J. & Straume, O. Tumor dormancy due to failure of angiogenesis: role of the microenvironment. Clin. Exp. Metastasis 26, 51–60 (2009).

    PubMed  Article  Google Scholar 

  43. 43.

    Demicheli, R. et al. An exponential-Gompertzian description of LoVo cell tumor growth from in vivo and in vitro data. Cancer Res. 49, 6543–6546 (1989).

    CAS  PubMed  Google Scholar 

  44. 44.

    Hart, D., Shochat, E. & Agur, Z. The growth law of primary breast cancer as inferred from mammography screening trials data. Br. J. Cancer 78, 382–387 (1998).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  45. 45.

    Talkington, A. & Durrett, R. Estimating tumor growth rates in vivo. Bull. Math. Biol. 77, 1934–1954 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  46. 46.

    Gruber, M. et al. Growth dynamics in naturally progressing chronic lymphocytic leukaemia. Nature 570, 474–479 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  47. 47.

    Schmid, H. P., McNeal, J. E. & Stamey, T. A. Observations on the doubling time of prostate cancer. The use of serial prostate-specific antigen in patients with untreated disease as a measure of increasing cancer volume. Cancer 71, 2031–2040 (1993).

    CAS  PubMed  Article  Google Scholar 

  48. 48.

    Armitage, P. & Doll, R. The age distribution of cancer and a multi-stage theory of carcinogenesis. Br. J. Cancer 8, 1–12 (1954).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  49. 49.

    Knudson, A. G. Jr. Mutation and cancer: statistical study of retinoblastoma. Proc. Natl Acad. Sci. USA 68, 820–823 (1971).

    PubMed  Article  Google Scholar 

  50. 50.

    MacPherson, D. & Dyer, M. A. Retinoblastoma: from the two-hit hypothesis to targeted chemotherapy. Cancer Res. 67, 7547–7550 (2007).

    CAS  PubMed  Article  Google Scholar 

  51. 51.

    Moolgavkar, S. H. & Knudson, A. G. Jr. Mutation and cancer: a model for human carcinogenesis. J. Natl Cancer Inst. 66, 1037–1052 (1981).

    CAS  PubMed  Article  Google Scholar 

  52. 52.

    Luebeck, E. G. & Moolgavkar, S. H. Multistage carcinogenesis and the incidence of colorectal cancer. Proc. Natl Acad. Sci. USA 99, 15095–15100 (2002).

    CAS  PubMed  Article  Google Scholar 

  53. 53.

    Meza, R., Jeon, J., Moolgavkar, S. H. & Luebeck, E. G. Age-specific incidence of cancer: phases, transitions, and biological implications. Proc. Natl Acad. Sci. USA 105, 16284–16289 (2008).

    CAS  PubMed  Article  Google Scholar 

  54. 54.

    Beerenwinkel, N. et al. Genetic progression and the waiting time to cancer. PLOS Comput. Biol. 3, e225 (2007).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  55. 55.

    Bozic, I. et al. Accumulation of driver and passenger mutations during tumor progression. Proc. Natl Acad. Sci. USA 107, 18545–18550 (2010).

    CAS  PubMed  Article  Google Scholar 

  56. 56.

    Martens, E. A., Kostadinov, R., Maley, C. C. & Hallatschek, O. Spatial structure increases the waiting time for cancer. New J. Phys. 13, 115014 (2011).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  57. 57.

    Durrett, R., Foo, J., Leder, K., Mayberry, J. & Michor, F. Intratumor heterogeneity in evolutionary models of tumor progression. Genetics 188, 461–477 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  58. 58.

    Chowell, D. et al. Modeling the subclonal evolution of cancer cell populations. Cancer Res. 78, 830–839 (2018).

    CAS  PubMed  Article  Google Scholar 

  59. 59.

    Tomasetti, C., Vogelstein, B. & Parmigiani, G. Half or more of the somatic mutations in cancers of self-renewing tissues originate prior to tumor initiation. Proc. Natl Acad. Sci. USA 110, 1999–2004 (2013).

    CAS  PubMed  Article  Google Scholar 

  60. 60.

    McFarland, C. D., Korolev, K. S., Kryukov, G. V., Sunyaev, S. R. & Mirny, L. A. Impact of deleterious passenger mutations on cancer progression. Proc. Natl Acad. Sci. USA 110, 2910–2915 (2013).

    CAS  PubMed  Article  Google Scholar 

  61. 61.

    Axelrod, D. & Kimmel, M. Branching Processes in Biology. (Springer, New York, 2015).

  62. 62.

    Roerink, S. F. et al. Intra-tumour diversification in colorectal cancer at the single-cell level. Nature 556, 457–462 (2018).

    CAS  PubMed  Article  Google Scholar 

  63. 63.

    Petljak, M. et al. Characterizing mutational signatures in human cancer cell lines reveals episodic APOBEC mutagenesis. Cell 176, 1282–1294.e20 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  64. 64.

    Gerstung, M. et al. The evolutionary history of 2,658 cancers. Nature 578, 122–128 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  65. 65.

    Baker, A. M. et al. Quantification of crypt and stem cell evolution in the normal and neoplastic human colon. Cell Rep. 8, 940–947 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  66. 66.

    Nicholson, A. M. et al. Fixation and spread of somatic mutations in adult human colonic epithelium. Cell Stem Cell 22, 909–918.e8 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  67. 67.

    Clevers, H. The cancer stem cell: premises, promises and challenges. Nat. Med. 17, 313–319 (2011).

    CAS  PubMed  Article  Google Scholar 

  68. 68.

    Vermeulen, L. et al. Defining stem cell dynamics in models of intestinal tumor initiation. Science 342, 995–998 (2013).

    CAS  PubMed  Article  Google Scholar 

  69. 69.

    Klein, A. M., Brash, D. E., Jones, P. H. & Simons, B. D. Stochastic fate of p53-mutant epidermal progenitor cells is tilted toward proliferation by UV B during preneoplasia. Proc. Natl Acad. Sci. USA 107, 270–275 (2010).

    CAS  PubMed  Article  Google Scholar 

  70. 70.

    Maley, C. C. et al. Selectively advantageous mutations and hitchhikers in neoplasms: p16 lesions are selected in Barrett’s esophagus. Cancer Res. 64, 3414–3427 (2004).

    CAS  PubMed  Article  Google Scholar 

  71. 71.

    Martinez, P. et al. Dynamic clonal equilibrium and predetermined cancer risk in Barrett’s oesophagus. Nat. Commun. 7, 12158 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  72. 72.

    Bowman, R. L., Busque, L. & Levine, R. L. Clonal hematopoiesis and evolution to hematopoietic malignancies. Cell Stem Cell 22, 157–170 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  73. 73.

    Desai, P. et al. Somatic mutations precede acute myeloid leukemia years before diagnosis. Nat. Med. 24, 1015–1023 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  74. 74.

    Abelson, S. et al. Prediction of acute myeloid leukaemia risk in healthy individuals. Nature 559, 400–404 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  75. 75.

    Martincorena, I. et al. Tumor evolution. High burden and pervasive positive selection of somatic mutations in normal human skin. Science 348, 880–886 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  76. 76.

    Martincorena, I. et al. Universal patterns of selection in cancer and somatic tissues. Cell 171, 1029–1041.e21 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  77. 77.

    Makohon-Moore, A. P. et al. Limited heterogeneity of known driver gene mutations among the metastases of individual patients with pancreatic cancer. Nat. Genet. 49, 358–366 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  78. 78.

    Gerlinger, M. et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N. Engl. J. Med. 366, 883–892 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  79. 79.

    Turajlic, S. et al. Deterministic evolutionary trajectories influence primary tumor growth: TRACERx renal. Cell 173, 595–610.e11 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  80. 80.

    Mitchell, T. J. et al. Timing the landmark events in the evolution of clear cell renal cell cancer: TRACERx renal. Cell 173, 611–623.e17 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  81. 81.

    Sottoriva, A. et al. A Big Bang model of human colorectal tumor growth. Nat. Genet. 47, 209–216 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  82. 82.

    Williams, M. J., Werner, B., Barnes, C. P., Graham, T. A. & Sottoriva, A. Identification of neutral tumor evolution across cancer types. Nat. Genet. 48, 238–244 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  83. 83.

    Ling, S. et al. Extremely high genetic diversity in a single tumor points to prevalence of non-Darwinian cell evolution. Proc. Natl Acad. Sci. USA 112, E6496–E6505 (2015).

    CAS  PubMed  Article  Google Scholar 

  84. 84.

    Tarabichi, M. et al. Neutral tumor evolution? Nat. Genet. 50, 1630–1633 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  85. 85.

    McDonald, T. O., Chakrabarti, S. & Michor, F. Currently available bulk sequencing data do not necessarily support a model of neutral tumor evolution. Nat. Genet. 50, 1620–1623 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  86. 86.

    Bozic, I., Paterson, C. & Waclaw, B. On measuring selection in cancer from subclonal mutation frequencies. PLOS Comput. Biol. 15, e1007368 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  87. 87.

    Sun, R. et al. Between-region genetic divergence reflects the mode and tempo of tumor evolution. Nat. Genet. 49, 1015–1024 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  88. 88.

    Williams, M. J. et al. Measuring the distribution of fitness effects in somatic evolution by combining clonal dynamics with dN/dS ratios. eLife 9, e48714 (2020).

    PubMed  PubMed Central  Article  Google Scholar 

  89. 89.

    Williams, M. J. et al. Quantification of subclonal selection in cancer from bulk sequencing data. Nat. Genet. 50, 895–903 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  90. 90.

    Marusyk, A. et al. Non-cell-autonomous driving of tumour growth supports sub-clonal heterogeneity. Nature 514, 54–58 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  91. 91.

    Archetti, M., Ferraro, D. A. & Christofori, G. Heterogeneity for IGF-II production maintained by public goods dynamics in neuroendocrine pancreatic cancer. Proc. Natl Acad. Sci. USA 112, 1833–1838 (2015).

    CAS  PubMed  Article  Google Scholar 

  92. 92.

    Gatenby, R. A. & Gillies, R. J. A microenvironmental model of carcinogenesis. Nat. Rev. Cancer 8, 56–61 (2008).

    CAS  PubMed  Article  Google Scholar 

  93. 93.

    Anderson, A. R. A., Weaver, A. M., Cummings, P. T. & Quaranta, V. Tumor morphology and phenotypic evolution driven by selective pressure from the microenvironment. Cell 127, 905–915 (2006).

    CAS  PubMed  Article  Google Scholar 

  94. 94.

    Michor, F. et al. Dynamics of chronic myeloid leukaemia. Nature 435, 1267–1270 (2005).

    CAS  PubMed  Article  Google Scholar 

  95. 95.

    Tang, M. et al. Dynamics of chronic myeloid leukemia response to long-term targeted therapy reveal treatment effects on leukemic stem cells. Blood 118, 1622–1631 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  96. 96.

    Wodarz, D. et al. Kinetics of CLL cells in tissues and blood during therapy with the BTK inhibitor ibrutinib. Blood 123, 4132–4135 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  97. 97.

    Schuh, A. et al. Monitoring chronic lymphocytic leukemia progression by whole genome sequencing reveals heterogeneous clonal evolution patterns. Blood 120, 4191–4196 (2012).

    CAS  PubMed  Article  Google Scholar 

  98. 98.

    Burger, J. A. et al. Clonal evolution in patients with chronic lymphocytic leukaemia developing resistance to BTK inhibition. Nat. Commun. 7, 11589 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  99. 99.

    Ahn, I. E. et al. Clonal evolution leading to ibrutinib resistance in chronic lymphocytic leukemia. Blood 129, 1469–1479 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  100. 100.

    Bozic, I. & Nowak, M. A. Timing and heterogeneity of mutations associated with drug resistance in metastatic cancers. Proc. Natl Acad. Sci. USA 111, 15964–15968 (2014).

    CAS  PubMed  Article  Google Scholar 

  101. 101.

    Landau, D. A. et al. The evolutionary landscape of chronic lymphocytic leukemia treated with ibrutinib targeted therapy. Nat. Commun. 8, 2185 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  102. 102.

    Körber, V. et al. Evolutionary trajectories of IDHWT glioblastomas reveal a common path of early tumorigenesis instigated years ahead of initial diagnosis. Cancer Cell 35, 692–704.e12 (2019).

    PubMed  Article  CAS  Google Scholar 

  103. 103.

    Diaz, L. A. Jr. et al. The molecular evolution of acquired resistance to targeted EGFR blockade in colorectal cancers. Nature 486, 537–540 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  104. 104.

    Siravegna, G. et al. Clonal evolution and resistance to EGFR blockade in the blood of colorectal cancer patients. Nat. Med. 21, 795–801 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  105. 105.

    Parseghian, C. M. et al. Anti-EGFR-resistant clones decay exponentially after progression: implications for anti-EGFR re-challenge. Ann. Oncol. 30, 243–249 (2019).

    CAS  PubMed  Article  Google Scholar 

  106. 106.

    Abbosh, C. et al. Phylogenetic ctDNA analysis depicts early-stage lung cancer evolution. Nature 545, 446–451 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  107. 107.

    Newman, A. M. et al. An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage. Nat. Med. 20, 548–554 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  108. 108.

    Zhang, J., Cunningham, J. J., Brown, J. S. & Gatenby, R. A. Integrating evolutionary dynamics into treatment of metastatic castrate-resistant prostate cancer. Nat. Commun. 8, 1816 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  109. 109.

    Kaznatcheev, A., Peacock, J., Basanta, D., Marusyk, A. & Scott, J. G. Fibroblasts and alectinib switch the evolutionary games played by non-small cell lung cancer. Nat. Ecol. Evol. 3, 450–456 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  110. 110.

    Shah, S. P. et al. Mutational evolution in a lobular breast tumour profiled at single nucleotide resolution. Nature 461, 809–813 (2009).

    CAS  PubMed  Article  Google Scholar 

  111. 111.

    Reiter, J. G. et al. Minimal functional driver gene heterogeneity among untreated metastases. Science 361, 1033–1037 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  112. 112.

    Schwarz, R. F. et al. Spatial and temporal heterogeneity in high-grade serous ovarian cancer: a phylogenetic analysis. PLoS Med. 12, e1001789 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  113. 113.

    Gao, R. et al. Punctuated copy number evolution and clonal stasis in triple-negative breast cancer. Nat. Genet. 48, 1119–1130 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Cancer Institute (1R01CA155010-01A1, P01CA206978, U10CA180861). C.J.W. is a Scholar of the Leukemia and Lymphoma Society.

Author information

Affiliations

Authors

Contributions

I.B. and C.J.W. conceived of and wrote this Perspective.

Corresponding author

Correspondence to Ivana Bozic.

Ethics declarations

Competing interests

C.J.W. is founder of Neon Therapeutics and is a member of its scientific advisory board and receives research funding from Pharmacyclics.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bozic, I., Wu, C.J. Delineating the evolutionary dynamics of cancer from theory to reality. Nat Cancer 1, 580–588 (2020). https://doi.org/10.1038/s43018-020-0079-6

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing