Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Projections of an ice-free Arctic Ocean

Abstract

Observed Arctic sea ice losses are a sentinel of anthropogenic climate change. These reductions are projected to continue with ongoing warming, ultimately leading to an ice-free Arctic (sea ice area <1 million km2). In this Review, we synthesize understanding of the timing and regional variability of such an ice-free Arctic. In the September monthly mean, the earliest ice-free conditions (the first single occurrence of an ice-free Arctic) could occur in 2020–2030s under all emission trajectories and are likely to occur by 2050. However, daily September ice-free conditions are expected approximately 4 years earlier on average, with the possibility of preceding monthly metrics by 10 years. Consistently ice-free September conditions (frequent occurrences of an ice-free Arctic) are anticipated by mid-century (by 2035–2067), with emission trajectories determining how often and for how long the Arctic could be ice free. Specifically, there is potential for ice-free conditions in May–January and August–October by 2100 under a high-emission and low-emission scenario, respectively. In all cases, sea ice losses begin in the European Arctic, proceed to the Pacific Arctic and end in the Central Arctic, if becoming ice free at all. Future research must assess the impact of model selection and recalibration on projections, and assess the drivers of internal variability that can cause early ice-free conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A white to blue Arctic.
Fig. 2: Processes and feedbacks driving Arctic sea ice loss.
Fig. 3: Sensitivity of ice-free Arctic timing to definitions and model selection.
Fig. 4: Probability of ice-free conditions in all months of the year.
Fig. 5: Regional ice-free conditions.

Similar content being viewed by others

Data availability

The CMIP6 sea ice area data is the same as analysed in ref. 10. The underlying SIC data, also used for the spatial plot (Fig. 5), is available on the Earth System Grid Federation (ESGF, https://esgf-node.llnl.gov/search/cmip6/). The data for the CESM2-LE (ref. 112) is available at https://www.cesm.ucar.edu/projects/cvdp-le/data-repository. The data for the CLIVAR Large Ensemble Archive38 is available at https://www.earthsystemgrid.org/dataset/ucar.cgd.ccsm4.CLIVAR_LE.html.

References

  1. Notz, D. & Stroeve, J. Observed Arctic sea-ice loss directly follows anthropogenic CO2 emission. Science 354, 747–750 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Cavalieri, D. J., Parkinson, C. L., Gloersen, P., Comiso, J. C. & Zwally, H. J. Deriving long-term time series of sea ice cover from satellite passive-microwave multisensor data sets. J. Geophys. Res. 104, 15803–15814 (1999).

    Article  ADS  Google Scholar 

  3. Kwok, R. & Rothrock, D. A. Decline in Arctic sea ice thickness from submarine and ICESat records: 1958–2008. Geophys. Res. Lett. 36, L15501 (2009).

    Article  ADS  Google Scholar 

  4. Kacimi, S. & Kwok, R. Arctic snow depth, ice thickness, and volume from ICESat-2 and CryoSat-2: 2018–2021. Geophys. Res. Lett. 49, e2021GL097448 (2022).

    Article  ADS  Google Scholar 

  5. Stroeve, J. & Notz, D. Changing state of Arctic sea ice across all seasons. Environ. Res. Lett. 13, 103001 (2018).

    Article  ADS  Google Scholar 

  6. Meier, W., Fetterer, F., Windnagel, A. K. & Stewart, J. S. Climate data record of passive microwave sea ice concentration, version 4. National Snow and Ice Data Center https://nsidc.org/data/G02202/versions/4 (2021).

  7. England, M., Jahn, A. & Polvani, L. Nonuniform contribution of internal variability to recent Arctic sea ice loss. J. Clim. 32, 4039–4053 (2019).

    Article  ADS  Google Scholar 

  8. Rantanen, M. et al. The Arctic has warmed nearly four times faster than the globe since 1979. Commun. Earth Environ. 3, 168 (2022).

    Article  ADS  Google Scholar 

  9. Parkinson, C. L. & Kellogg, W. Arctic sea ice decay simulated for a CO2-induced temperature rise. Clim. Change 2, 149–162 (1979).

    Article  ADS  CAS  Google Scholar 

  10. Notz, D. & SIMIP Community. Arctic sea ice in CMIP6. Geophys. Res. Lett. 47, e2019GL086749 (2020).

    Article  Google Scholar 

  11. Notz, D. How well must climate models agree with observations? Phil. Trans. R. Soc. A 373, 20140164 (2015).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  12. Jahn, A., Kay, J., Holland, M. & Hall, D. How predictable is the timing of a summer ice-free Arctic? Geophys. Res. Lett. 43, 9113–9120 (2016).

    Article  ADS  Google Scholar 

  13. Knutti, R. et al. A climate model projection weighting scheme accounting for performance and interdependence. Geophys. Res. Lett. 44, 1909–1918 (2017).

    Article  ADS  Google Scholar 

  14. Massonnet, F. et al. Constraining projections of summer Arctic sea ice. Cryosphere 6, 1383–1394 (2012).

    Article  ADS  Google Scholar 

  15. Newton, R. et al. White Arctic vs. blue Arctic: a case study of diverging stakeholder responses to environmental change. Earths Future 4, 396–405 (2016).

    Article  ADS  Google Scholar 

  16. Polyak, L. et al. History of sea ice in the Arctic. Quat. Sci. Rev. 29, 1757–1778 (2010).

    Article  ADS  Google Scholar 

  17. Pistone, K., Eisenman, I. & Ramanathan, V. Observational determination of albedo decrease caused by vanishing Arctic sea ice. Proc. Natl Acad. Sci. USA 111, 3322–3326 (2014).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pistone, K., Eisenman, I. & Ramanathan, V. Radiative heating of an ice-free Arctic Ocean. Geophys. Res. Lett. 46, 7474–7480 (2019).

    Article  ADS  Google Scholar 

  19. Holland, M. & Bitz, C. Polar amplification of climate change in coupled models. Clim. Dyn. 21, 221–232 (2003).

    Article  Google Scholar 

  20. Screen, J. & Simmonds, I. The central role of diminishing sea ice in recent Arctic temperature amplification. Nature 464, 1334–1337 (2010).

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Dai, A., Luo, D., Song, M. & Liu, J. Arctic amplification is caused by sea-ice loss under increasing CO2. Nat. Commun. 10, 121 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  22. Jenkins, M. & Dai, A. The impact of sea-ice loss on Arctic climate feedbacks and their role for Arctic amplification. Geophys. Res. Lett. 48, e2021GL094599 (2021).

    Article  ADS  Google Scholar 

  23. Casas-Prat, M. & Wang, X. Sea ice retreat contributes to projected increases in extreme Arctic Ocean surface waves. Geophys. Res. Lett. 47, e2020GL088100 (2020).

    Article  ADS  Google Scholar 

  24. Waseda, T. et al. Correlated increase of high ocean waves and winds in the ice-free waters of the Arctic Ocean. Sci. Rep. 8, 4489 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  25. Li, J., Ma, Y., Liu, Q., Zhang, W. & Guan, C. Growth of wave height with retreating ice cover in the Arctic. Cold Reg. Sci. Technol. 164, 102790 (2019).

    Article  Google Scholar 

  26. Overeem, I. et al. Sea ice loss enhances wave action at the Arctic coast. Geophys. Res. Lett. https://doi.org/10.1029/2011GL048681 (2011).

  27. Nielsen, D., Pieper, P. & Barkhordarian, A. Increase in Arctic coastal erosion and its sensitivity to warming in the twenty-first century. Nat. Clim. Change 12, 263–270 (2022).

    Article  ADS  Google Scholar 

  28. Irrgang, A. M. et al. Drivers, dynamics and impacts of changing Arctic coasts. Nat. Rev. Earth Environ. 3, 39–54 (2022).

    Article  ADS  Google Scholar 

  29. Learmonth, J. A. et al. Potential effects of climate change on marine mammals. Oceanogr. Mar. Biol. 44, 431 (2006).

    Google Scholar 

  30. Regehr, E. V., Lunn, N. J., Amstrup, S. C. & Stirling, I. Effects of earlier sea-ice breakup on survival and population size of polar bears in western Hudson Bay. J. Wildl. Manag. 71, 2673–2683 (2007).

    Article  Google Scholar 

  31. Laidre, K. L. et al. Quantifying the sensitivity of Arctic marine mammals to climate-induced habitat change. Ecol. Appl. 18, S97–S125 (2008).

    Article  PubMed  Google Scholar 

  32. Renaut, S., Devred, E. & Babin, M. Northward expansion and intensification of phytoplankton growth during the early ice-free season in Arctic. Geophys. Res. Lett. 45, 10,590–10,598 (2018).

    Article  Google Scholar 

  33. Hollowed, A. B., Planque, B. & Loeng, H. Potential movement of fish and shellfish stocks from the sub-Arctic to the Arctic Ocean. Fish. Oceanogr. 22, 355–370 (2013).

    Article  Google Scholar 

  34. Ingvaldsen, R. B. et al. Physical manifestations and ecological implications of Arctic Atlantification. Nat. Rev. Earth Environ. 2, 874–889 (2021).

    Article  ADS  Google Scholar 

  35. Melia, N., Haines, K. & Hawkins, E. Sea ice decline and 21st century trans-Arctic shipping routes. Geophys. Res. Lett. 43, 9720–9728 (2016).

    Article  ADS  Google Scholar 

  36. Schiermeier, Q. The great Arctic oil race begins. Nature 482, 13–14 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  37. Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).

    Article  ADS  Google Scholar 

  38. Deser, C. et al. Insights from Earth system model initial-condition large ensembles and future prospects. Nat. Clim. Change 10, 277–286 (2020).

    Article  ADS  Google Scholar 

  39. Mewes, D. & Jacobi, C. Heat transport pathways into the Arctic and their connections to surface air temperatures. Atmos. Chem. Phys. 19, 3927–3937 (2019).

    Article  ADS  CAS  Google Scholar 

  40. Hahn, L. C., Armour, K. C., Battisti, D. S., Donohoe, A. & Fajber, R. Seasonal changes in atmospheric heat transport to the Arctic under increased CO2. Geophys. Res. Lett. 50, e2023GL105156 (2023).

    Article  ADS  Google Scholar 

  41. Goosse, H. et al. Quantifying climate feedbacks in polar regions. Nat. Commun. 9, 1919 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  42. Kay, J. E. et al. Exposing global cloud biases in the Community Atmosphere Model (CAM) using satellite observations and their corresponding instrument simulators. J. Clim. 25, 5190–5207 (2012).

    Article  ADS  Google Scholar 

  43. Pithan, F. & Mauritsen, T. Arctic amplification dominated by temperature feedbacks in contemporary climate models. Nat. Geosci. 7, 181–184 (2014).

    Article  ADS  CAS  Google Scholar 

  44. Hahn, L. C., Armour, K. C., Zelinka, M. D., Bitz, C. M. & Donohoe, A. Contributions to polar amplification in CMIP5 and CMIP6 models. Front. Earth Sci. https://doi.org/10.3389/feart.2021.710036 (2021).

  45. Bitz, C. M. & Roe, G. H. A mechanism for the high rate of sea ice thinning in the Arctic Ocean. J. Clim. 17, 3623–3632 (2004).

    Article  Google Scholar 

  46. Massonnet, F. et al. Arctic sea-ice change tied to its mean state through thermodynamic processes. Nat. Clim. Change 8, 599–603 (2018).

    Article  ADS  Google Scholar 

  47. Holland, M. M. & Landrum, L. The emergence and transient nature of Arctic amplification in coupled climate models. Front. Earth Sci. 9, 719024 (2021).

    Article  Google Scholar 

  48. Wang, M. & Overland, J. E. A sea ice free summer Arctic within 30 years? Geophys. Res. Lett. https://doi.org/10.1029/2009GL037820 (2009).

  49. Notz, D. & Marotzke, J. Observations reveal external driver for Arctic sea-ice retreat. Geophys. Res. Lett. https://doi.org/10.1029/2012GL051094 (2012).

  50. Kay, J. E., Holland, M. M. & Jahn, A. Inter-annual to multi-decadal Arctic sea ice extent trends in a warming world. Geophys. Res. Let. https://doi.org/10.1029/2011GL048008 (2011).

  51. Mueller, B., Gillett, N., Monahan, A. & Zwiers, F. Attribution of Arctic sea ice decline from 1953 to 2012 to influences from natural, greenhouse gas, and anthropogenic aerosol forcing. J. Clim. 31, 7771–7787 (2018).

    Article  ADS  Google Scholar 

  52. Polvani, L. et al. Substantial twentieth-century Arctic warming caused by ozone-depleting substances. Nat. Clim. Change 10, 130–133 (2020).

    Article  ADS  CAS  Google Scholar 

  53. England, M. R. & Polvani, L. M. The Montreal Protocol is delaying the occurrence of the first ice-free Arctic summer. Proc. Natl Acad. Sci. USA 120, e2211432120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Mahlstein, I. & Knutti, R. September Arctic sea ice predicted to disappear near 2 °C global warming above present. Geophys. Res. Lett. https://doi.org/10.1029/2011JD016709 (2012).

  55. Stroeve, J. & Notz, D. Insights on past and future sea-ice evolution from combining observations and models. Glob. Planet. Change 135, 119–132 (2015).

    Article  ADS  Google Scholar 

  56. Ding, Q. et al. Influence of high-latitude atmospheric circulation changes on summertime Arctic sea ice. Nat. Clim. Change 7, 289–295 (2017).

    Article  ADS  Google Scholar 

  57. Roach, L. & Blanchard-Wrigglesworth, E. Observed winds crucial for Arctic sea ice loss. Geophys. Res. Lett. 49, e2022GL097884 (2022).

    Article  ADS  Google Scholar 

  58. Olonscheck, D., Mauritsen, T. & Notz, D. Arctic sea-ice variability is primarily driven by atmospheric temperature fluctuations. Nat. Geosci. 12, 430–434 (2019).

    Article  ADS  CAS  Google Scholar 

  59. Polyakov, I. V. et al. Fluctuating Atlantic inflows modulate Arctic Atlantification. Science 381, 972–979 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  60. Holland, M. M., Bitz, C. M. & Tremblay, B. Future abrupt reductions in the summer Arctic sea ice. Geophys. Res. Lett. https://doi.org/10.1029/2006GL028024 (2006).

  61. Goosse, H., Arzel, O., Bitz, C. M., de Montety, A. & Vancoppenolle, M. Increased variability of the Arctic summer ice extent in a warmer climate. Geophys. Res. Lett. https://doi.org/10.1029/2009GL040546 (2009).

  62. Mioduszewski, J. R., Vavrus, S., Wang, M., Holland, M. & Landrum, L. Past and future interannual variability in Arctic sea ice in coupled climate models. Cryosphere 13, 113–124 (2019).

    Article  ADS  Google Scholar 

  63. Auclair, G. & Tremblay, L. B. The role of ocean heat transport in rapid sea ice declines in the Community Earth System Model Large Ensemble. J. Geophys. Res. Oceans 123, 8941–8957 (2018).

    Article  ADS  Google Scholar 

  64. Döscher, R. & Koenigk, T. Arctic rapid sea ice loss events in regional coupled climate scenario experiments. Ocean Sci. 9, 217–248 (2013).

    Article  ADS  Google Scholar 

  65. Paquin, J.-P., Döscher, R., Sushama, L. & Koenigk, T. Causes and consequences of mid-21st-century rapid ice loss events simulated by the Rossby Centre regional atmosphere-ocean model. Tellus A Dyn. Meteorol. Oceanogr. https://doi.org/10.3402/tellusa.v65i0.19110 (2013).

  66. Vavrus, S., Holland, M. & Bailey, D. Changes in Arctic clouds during intervals of rapid sea ice loss. Clim. Dyn. 36, 1475–1489 (2011).

    Article  Google Scholar 

  67. Boe, J., Hall, A. & Qu, X. September sea-ice cover in the Arctic Ocean projected to vanish by 2100. Nat. Geosci. 2, 341–343 (2009).

    Article  ADS  CAS  Google Scholar 

  68. Pfirman, S., Haxby, W. F., Colony, R. & Rigor, I. Variability in the Arctic sea ice drift. Geophys. Res. Lett. https://doi.org/10.1029/2004GL020063 (2004).

  69. DeRepentigny, P., Jahn, A., Holland, M. M. & Smith, A. Arctic sea ice in two configurations of the CESM2 during the 20th and 21st centuries. J. Geophys. Res. Oceans 125, e2020JC016133 (2020).

    Article  ADS  Google Scholar 

  70. Wang, B., Zhou, X., Ding, Q. & Liu, J. Increasing confidence in projecting the Arctic ice-free year with emergent constraints. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/ac0b17 (2021).

  71. Zhou, X., Wang, B. & Huang, F. Evaluating sea ice thickness simulation is critical for projecting a summer ice-free Arctic Ocean. Environ. Res. Lett. 17, 114033 (2022).

    Article  ADS  Google Scholar 

  72. Landrum, L. & Holland, M. Extremes become routine in an emerging new Arctic. Nat. Clim. Change 10, 1108–1115 (2020).

    Article  ADS  Google Scholar 

  73. Thackeray, C. & Hall, A. An emergent constraint on future Arctic sea-ice albedo feedback. Nat. Clim. Change 9, 972–978 (2019).

    Article  ADS  Google Scholar 

  74. Snape, T. J. & Forster, P. M. Decline of Arctic sea ice: evaluation and weighting of CMIP5 projections. J. Geophys. Res. Atmos. 119, 546–554 (2014).

    Article  ADS  Google Scholar 

  75. Laliberté, F., Howell, S. E. L. & Kushner, P. J. Regional variability of a projected sea ice-free Arctic during the summer months. Geophys. Res. Lett. 43, 256–263 (2016).

    Article  ADS  Google Scholar 

  76. Jahn, A. Reduced probability of ice-free summers for 1.5 °C compared to 2 °C warming. Nat. Clim. Change 8, 409–413 (2018).

    Article  ADS  Google Scholar 

  77. Bonan, D. B., Schneider, T., Eisenman, I. & Wills, R. C. J. Constraining the date of a seasonally ice-free Arctic using a simple model. Geophys. Res. Lett. 48, e2021GL094309 (2021).

    Article  ADS  Google Scholar 

  78. Kim, Y., Min, S., Gillett, N., Notz, D. & Malinina, E. Observationally-constrained projections of an ice-free Arctic even under a low emission scenario. Nat. Commun. 14, 3139 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  79. Screen, J. A. & Williamson, D. Ice-free Arctic at 1.5 °C? Nat. Clim. Change 7, 230–231 (2017).

    Article  Google Scholar 

  80. Sigmond, M., Fyfe, J. C. & Swart, N. C. Ice-free Arctic projections under the Paris Agreement. Nat. Clim. Change 8, 404–408 (2018).

    Article  ADS  Google Scholar 

  81. Arthun, M., Onarheim, I. H., Dörr, J. & Eldevik, T. The seasonal and regional transition to an ice-free Arctic. Geophys. Res. Lett. 48, e2020GL090825 (2021).

    Article  ADS  Google Scholar 

  82. Ridley, J. K. & Blockley, E. W. Brief communication: solar radiation management not as effective as CO2 mitigation for Arctic sea ice loss in hitting the 1.5 and 2 °C COP climate targets. Cryosphere 12, 3355–3360 (2018).

  83. Stroeve, J. C. et al. Trends in Arctic sea ice extent from CMIP5, CMIP3 and observations. Geophys. Res. Lett. https://doi.org/10.1029/2012GL052676 (2012).

  84. Notz, D. & Stroeve, J. The trajectory towards a seasonally ice-free Arctic Ocean. Curr. Clim. Change Rep. 4, 407–416 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Niederdrenk, A. L. & Notz, D. Arctic sea ice in a 1.5 °C warmer world. Geophys. Res. Lett. 45, 1963–1971 (2018).

    Article  ADS  Google Scholar 

  86. Diebold, F. X. & Rudebusch, G. D. Probability assessments of an ice-free Arctic: comparing statistical and climate model projections. J. Econom. 231, 520–534 (2022).

    Article  MathSciNet  Google Scholar 

  87. Hawkins, E. & Sutton, R. The potential to narrow uncertainty in regional climate predictions. Bull. Amer. Meteor. Soc. 90, 1095–1107 (2009).

    Article  ADS  Google Scholar 

  88. Lorenz, E. N. Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130–141 (1963).

    Article  MathSciNet  Google Scholar 

  89. Holland, M. & Hunke, E. A review of Arctic sea ice climate predictability in large-scale earth system models. Oceanography 35, 20–27 (2022).

    Google Scholar 

  90. Screen, J. A. & Deser, C. Pacific Ocean variability influences the time of emergence of a seasonally ice-free Arctic Ocean. Geophys. Res. Lett. 46, 2222–2231 (2019).

    Article  ADS  Google Scholar 

  91. Blanchard-Wrigglesworth, E., Bitz, C. M. & Holland, M. M. Influence of initial conditions and climate forcing on predicting Arctic sea ice. Geophys. Res. Lett. https://doi.org/10.1029/2011GL048807 (2011).

  92. Senftleben, D., Lauer, A. & Karpechko, A. Constraining uncertainties in CMIP5 projections of September Arctic sea ice extent with observations. J. Clim. 33, 1487–1503 (2020).

    Article  Google Scholar 

  93. Meier, W. N. & Stewart, J. S. Assessing uncertainties in sea ice extent climate indicators. Environ. Res. Lett. 14, 035005 (2019).

    Article  ADS  Google Scholar 

  94. Swart, N. C., Fyfe, J. C., Hawkins, E., Kay, J. E. & Jahn, A. Influence of internal variability on Arctic sea-ice trends. Nat. Clim. Change 5, 86â89 (2015).

    Article  Google Scholar 

  95. Maslowski, W., Kinney, J. C., Higgins, M. & Roberts, A. The future of Arctic sea ice. Annu. Rev. Earth Planet. Sci. 40, 625–654 (2012).

    Article  ADS  CAS  Google Scholar 

  96. Wang, M. & Overland, J. E. A sea ice free summer Arctic within 30 years: an update from CMIP5 models. Geophys. Res. Lett. https://doi.org/10.1029/2012GL052868 (2012).

  97. Liu, J., Curry, J. A., Wang, H. & Horton, R. M. Impact of declining Arctic sea ice on winter snowfall. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.1114910109 (2012).

  98. Docquier, D. & Koenigk, T. Observation-based selection of climate models projects Arctic ice-free summers around 2035. Commun. Earth Environ. 2, 144 (2021).

    Article  ADS  Google Scholar 

  99. Topal, D. & Ding, Q. Atmospheric circulation-constrained model sensitivity recalibrates Arctic climate projections. Nat. Clim. Change 13, 710–718 (2023).

    Article  ADS  Google Scholar 

  100. Khosravi, N. et al. The Arctic Ocean in CMIP6 models: biases and projected changes in temperature and salinity. Earths Future 10, e2021EF002282 (2022).

    Article  ADS  Google Scholar 

  101. Muilwijk, M. et al. Divergence in climate model projections of future Arctic Atlantification. J. Clim. 36, 1727–1748 (2023).

    Article  Google Scholar 

  102. Heuzè, C., Zanowski, H., Karam, S. & Muilwijk, M. The deep Arctic Ocean and Fram Strait in CMIP6 models. J. Clim. 36, 2551–2584 (2023).

    Article  Google Scholar 

  103. O’Neill, B. C. et al. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geosci. Model Dev. 9, 3461–3482 (2016).

    Article  ADS  Google Scholar 

  104. Bonan, D. B., Lehner, F. & Holland, M. M. Partitioning uncertainty in projections of Arctic sea ice. Environ. Res. Lett. 16, 044002 (2021).

    Article  ADS  Google Scholar 

  105. Lindsay, R. W., Zhang, J., Schweiger, A., Steele, M. & Stern, H. Arctic sea ice retreat in 2007 follows thinning trend. J. Clim. 22, 165–176 (2009).

    Article  Google Scholar 

  106. Parkinson, C. L. & Comiso, J. C. On the 2012 record low Arctic sea ice cover: combined impact of preconditioning and an August storm. Geophys. Res. Lett. 40, 1356–1361 (2013).

    Article  ADS  Google Scholar 

  107. Sanderson, B. et al. Community climate simulations to assess avoided impacts in 1.5 °C and 2 °C futures. Earth Syst. Dyn. 8, 827–847 (2017).

    Article  ADS  Google Scholar 

  108. Screen, J. Arctic sea ice at 1.5 and 2 °C. Nat. Clim. Change 8, 362–363 (2018).

    Article  ADS  Google Scholar 

  109. Tietsche, S., Notz, D., Jungclaus, J. H. & Marotzke, J. Recovery mechanisms of Arctic summer sea ice. Geophys. Res. Lett. https://doi.org/10.1029/2010GL045698 (2011).

  110. Armour, K. C., Eisenman, I., Blanchard-Wrigglesworth, E., McCusker, K. E. & Bitz, C. M. The reversibility of sea ice loss in a state of the art climate model. Geophys. Res. Lett. https://doi.org/10.1029/2011GL048739 (2011).

  111. Li, C., Notz, D., Tietsche, S. & Marotzke, J. The transient versus the equilibrium response of sea ice to global warming. J. Clim. 26, 5624–5636 (2013).

    Article  ADS  Google Scholar 

  112. Rodgers, K. B. et al. Ubiquity of human-induced changes in climate variability. Earth Syst. Dyn. 12, 1393–1411 (2021).

    Article  ADS  Google Scholar 

  113. Lebrun, M., Vancoppenolle, M., Madec, G. & Massonnet, F. Arctic sea-ice-free season projected to extend into autumn. Cryosphere 13, 79–96 (2019).

    Article  ADS  Google Scholar 

  114. Tebaldi, C. et al. Climate model projections from the Scenario Model Intercomparison Project (ScenarioMIP) of CMIP6. Earth Syst. Dyn. 12, 253–293 (2021).

    Article  ADS  Google Scholar 

  115. Jahn, A. & Holland, M. M. Implications of Arctic sea ice changes for North Atlantic deep convection and the meridional overturning circulation in CCSM4-CMIP5 simulations. Geophys. Res. Let. 40, 1206–1211 (2013).

    Article  ADS  Google Scholar 

  116. Hamilton, L. & Stroeve, J. 400 predictions: the SEARCH Sea Ice Outlook 2008–2015. Polar Geogr. 39, 274–287 (2016).

    Article  Google Scholar 

  117. Ding, Q. et al. Fingerprints of internal drivers of Arctic sea ice loss in observations and model simulations. Nat. Geosci. 12, 28–33 (2019).

    Article  ADS  CAS  Google Scholar 

  118. Stroeve, J., Holland, M. M., Meier, W., Scambos, T. & Serreze, M. Arctic sea ice decline: faster than forecast. Geophys. Res. Lett. https://doi.org/10.1029/2007GL029703 (2007).

  119. Liu, J., Song, M., Horton, R. M. & Hu, Y. Reducing spread in climate model projections of a September ice-free Arctic. Proc. Natl Acad. Sci. USA 110, 12571–12576 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  120. Rosenblum, E. & Eisenman, I. Faster Arctic sea ice retreat in CMIP5 than in CMIP3 due to volcanoes. J. Clim. 29, 9179–9188 (2016).

    Article  ADS  Google Scholar 

  121. Dörr, J., Notz, D. & Kern, S. UHH sea ice area product. Universität Hamburg https://doi.org/10.25592/uhhfdm.8559 (2021).

  122. Comiso, J. SSM/I Concentrations Using the Bootstrap Algorithm (NASA, 1995).

  123. Cavalieri, D., Gloersen, P. & Campbell, W. Determination of sea ice parameters with the Nimbus 7 SMMR. J. Geophys. Res. 89, 5355–5369 (1984).

    Article  ADS  Google Scholar 

  124. Krylov, A. et al. A shift in heavy and clay mineral provenance indicates a middle Miocene onset of a perennial sea ice cover in the Arctic Ocean. Paleoceanogr. Paleoclimatol. https://doi.org/10.1029/2007PA001497 (2008).

  125. Darby, D. Arctic perennial ice cover over the last 14 million years. Paleoceanogr. Paleoclimatol. https://doi.org/10.1029/2007PA001479 (2008).

  126. Miller, G. et al. Temperature and precipitation history of the Arctic. Quat. Sci. Rev. 29, 1679–1715 (2010).

    Article  ADS  Google Scholar 

  127. Tarduno, J. A. et al. Evidence for extreme climatic warmth from late Cretaceous Arctic vertebrates. Science 282, 2241–2243 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  128. Jenkyns, H., Forster, A., Schouten, S. & Damsté, J. S. S. High temperatures in the late Cretaceous Arctic Ocean. Nature 432, 888–892 (2004).

    Article  ADS  CAS  PubMed  Google Scholar 

  129. Nathorst, A. G. Ueber die reste eines Brotfruchtbaums Artocarpus dicksonii n. sp., aus den cenomanen Kreideablagerungen Grönlands. Kongl. Svenska Vetenskaps-Akad. Hand. 24, 2–9 (1890).

    Google Scholar 

  130. Stein, R. et al. Evidence for ice-free summers in the late Miocene central Arctic Ocean. Nat. Commun. 7, 11148 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  131. Nøgaard-Pedersen, N., Mikkelsen, N. & Kristoffersen, Y. Arctic Ocean record of last two glacial-interglacial cycles off North Greenland/Ellesmere Island — implications for glacial history. Mar. Geol. 244, 93–108 (2007).

    Article  ADS  Google Scholar 

  132. Nørgaard-Pedersen, N., Mikkelsen, N., Lassen, S. J., Kristoffersen, Y. & Sheldon, E. Reduced sea ice concentrations in the Arctic Ocean during the last interglacial period revealed by sediment cores off Northern Greenland. Paleoceanogr. Paleoclimatol. 22, PA1218 (2007).

    ADS  Google Scholar 

  133. Adler, R. E. et al. Sediment record from the western Arctic Ocean with an improved late quaternary age resolution: HOTRAX core HLY0503-8JPC, Mendeleev Ridge. Glob. Planet. Change 68, 18–29 (2009).

    Article  ADS  Google Scholar 

  134. Sime, L. C., Sivankutty, R., Vallet-Malmierca, I., de Boer, A. M. & Sicard, M. Summer surface air temperature proxies point to near-sea-ice-free conditions in the Arctic at 127 ka. Clim. Past 19, 883–900 (2023).

    Article  Google Scholar 

  135. Vermassen, F. et al. A seasonally ice-free Arctic Ocean during the last interglacial. Nat. Geosci. 16, 723–729 (2023).

    Article  ADS  CAS  Google Scholar 

  136. Lozhkin, A. V. & Anderson, P. M. The last interglaciation in northeast Siberia. Quat. Res. 43, 147–158 (1995).

    Article  Google Scholar 

  137. Tremblay, L. B., Schmidt, G. A., Pfirman, S., Newton, R. & DeRepentigny, P. Is ice-rafted sediment in a North Pole marine record evidence for perennial sea-ice cover? Phil. Trans. Roy. Soc. A 373, 2052 (2015).

    Google Scholar 

  138. de Vernal, A. et al. Natural variability of the Arctic Ocean sea ice during the present interglacial. Proc. Natl Acad. Sci. USA 117, 26069–26075 (2020).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  139. Jakobsson, M., Long, A., Ingoĺfsson, O., Kjær, K. H. & Spielhagen, R. F. New insights on Arctic quaternary climate variability from palaeo-records and numerical modelling. Quat. Sci. Rev. 29, 3349–3358 (2010).

    Article  ADS  Google Scholar 

  140. Pfirman, S., Fowler, C., Tremblay, B. & Newton, R. The last Arctic sea ice refuge. Circle 4, 6–8 (2009).

    Google Scholar 

  141. Newton, R., Pfirman, S., Tremblay, L. B. & DeRepentigny, P. Defining the “ice shed” of the Arctic Ocean’s last ice area and its future evolution. Earths Future 9, e2021EF001988 (2021).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

A.J. was supported by an Alexander von Humboldt Fellowship and NSF CAREER award 1847398. M.M.H. acknowledges support from NSF awards 2138788 and 2040538. J.E.K. was supported by NASA PREFIRE award 849K995 and NSF award 2233420. We thank J. Dörr for sharing the sea ice area data calculated for the SIMIP analysis10 and C. Wyburn-Powell for the assistance with regridding of the CMIP6 models for the spatial analysis. We also thank the participants at the Interagency Arctic Research Policy Committee (IARPC) webinar on an ice-free Arctic for the helpful discussions. We acknowledge the World Climate Research Programme, which, through its Working Group on Coupled Modelling, coordinated and promoted CMIP6. We thank the climate modelling groups for producing and making their model output available, the Earth System Grid Federation (ESGF) for archiving the data and providing access, and the multiple funding agencies who support CMIP6 and ESGF. We also acknowledge the US Climate and Ocean: Variability, Predictability and Change (CLIVAR) Working Group on Large Ensembles, the modelling centres that contributed to the CLIVAR Large Ensemble project, and the CESM2-LE project.

Author information

Authors and Affiliations

Authors

Contributions

A.J. decided on the overall scope of the article, wrote the majority of the article, and did all data analyses for the figures in the main article. M.M.H. and J.E.K. contributed to the writing of the manuscript, provided input on the article scope and figures, and edited the manuscript. M.M.H. also performed data analysis for supplementary figures and created one of the supplementary figures.

Corresponding author

Correspondence to Alexandra Jahn.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Earth and Environment thanks Muyin Wang, Dániel Topál and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Albedo

The fraction of incoming shortwave solar radiation that is reflected by a surface, ranging between 0 and 1.

Internal variability

The variability in the climate system attributable to the chaotic nature of the climate system.

Negative feedbacks

Dampening feedbacks in the climate system, reducing an initial perturbation.

Positive feedbacks

Amplifying feedbacks in the climate system, enhancing an initial perturbation.

Sea ice area

(SIA). The total area of sea ice present, without any threshold, calculated as sea ice concentration multiplied by grid area and summed over all Northern Hemisphere grid boxes. Note that sometimes, sea ice area is calculated only for grid cells with at least 15% sea ice cover.

Sea ice extent

(SIE). The area of all grid boxes that have at least 15% sea ice concentration, calculated as sea ice concentration multiplied by the area of all grid boxes with 15% or more sea ice concentration.

Sea ice sensitivity

The change in sea ice area divided by the change in global or Arctic temperature or cumulative CO2 emissions over the same time period.

Shared Socioeconomic Pathway

(SSP). A forcing scenario that is part of the Scenario Model Intercomparison Project of CMIP6.

Tipping point

An irreversible change in an environmental condition.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jahn, A., Holland, M.M. & Kay, J.E. Projections of an ice-free Arctic Ocean. Nat Rev Earth Environ 5, 164–176 (2024). https://doi.org/10.1038/s43017-023-00515-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43017-023-00515-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing