Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Short- and long-term variability of the Antarctic and Greenland ice sheets

Abstract

The variability of the Antarctic and Greenland ice sheets occurs on various timescales and is important for projections of sea level rise; however, there are substantial uncertainties concerning future ice-sheet mass changes. In this Review, we explore the degree to which short-term fluctuations and extreme glaciological events reflect the ice sheets’ long-term evolution and response to ongoing climate change. Short-term (decadal or shorter) variations in atmospheric or oceanic conditions can trigger amplifying feedbacks that increase the sensitivity of ice sheets to climate change. For example, variability in ocean-induced and atmosphere-induced melting can trigger ice thinning, retreat and/or collapse of ice shelves, grounding-line retreat, and ice flow acceleration. The Antarctic Ice Sheet is especially prone to increased melting and ice sheet collapse from warm ocean currents, which could be accentuated with increased climate variability. In Greenland both high and low melt anomalies have been observed since 2012, highlighting the influence of increased interannual climate variability on extreme glaciological events and ice sheet evolution. Failing to adequately account for such variability can result in biased projections of multi-decadal ice mass loss. Therefore, future research should aim to improve climate and ocean observations and models, and develop sophisticated ice sheet models that are directly constrained by observational records and can capture ice dynamical changes across various timescales.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Antarctic and Greenland ice mass change.
Fig. 2: Key processes influencing ice sheet mass balance.
Fig. 3: Past, present and future changes of the Antarctic Ice Sheet.
Fig. 4: Past and future Greenland air temperature and sea level contribution between 1850 and 2100.
Fig. 5: Atmospheric circulation and associated surface temperature changes.

Similar content being viewed by others

References

  1. Hanna, E. et al. Mass balance of the ice sheets and glaciers — progress since AR5 and challenges. Earth-Sci. Rev. 201, 102976 (2020).

    Article  ADS  Google Scholar 

  2. Jia, Y., Xiao, K., Lin, M. & Zhang, X. Analysis of global sea level change based on multi-source data. Remote Sens. 14, 4854 (2022).

    Article  ADS  Google Scholar 

  3. Fox-Kemper, B., Hewitt, H. T. & Xiao, C. et al. in IPCC: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth 794 Assessment Report of the Intergovernmental Panel on Climate Change (eds Masson-Delmotte, V. et al.) 1211–1361 (Cambridge Univ. Press, 2021).

  4. Rack, W. & Rott, H. Pattern of retreat and disintegration of the Larsen B Ice Shelf, Antarctic Peninsula. Ann. Glaciol. 39, 505–510 (2004).

    Article  ADS  Google Scholar 

  5. Scambos, T. et al. Ice shelf disintegration by plate bending and hydro-fracture: satellite observations and model results of the 2008 Wilkins Ice Shelf break-ups. Earth Planet. Sci. Lett. 280, 51–60 (2009).

    Article  ADS  CAS  Google Scholar 

  6. Beckmann, J. & Winkelmann, R. Effects of extreme melt events on ice flow and sea level rise of the Greenland Ice Sheet. Cryosphere 17, 3083–3099 (2023).

    Article  ADS  Google Scholar 

  7. Grazioli, J. et al. Katabatic winds diminish precipitation contribution to the Antarctic ice mass balance. Proc. Natl Acad. Sci. USA 114, 10858–10863 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  8. Das, I. et al. Influence of persistent wind scour on the surface mass balance of Antarctica. Nat. Geosci. 6, 367–371 (2013).

    Article  ADS  CAS  Google Scholar 

  9. Medley, B., Lenaerts, J. T. M., Dattler, M., Keenan, E. & Wever, N. Predicting Antarctic net snow accumulation at the kilometer scale and its impact on observed height changes. Geophys. Res. Lett. 49, e2022GL099330 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  10. Maclennan, M. L., Lenaerts, J. T. M., Shields, C. & Wille, J. D. Contribution of atmospheric rivers to Antarctic precipitation. Geophys. Res. Lett. 49, e2022GL100585 (2022).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  11. Wille, J. D. et al. Antarctic atmospheric river climatology and precipitation impacts. J. Geophys. Res. Atmos. 126, e2020JD033788 (2021).

    Article  ADS  Google Scholar 

  12. Mattingly, K. S., Mote, T. L. & Fettweis, X. Atmospheric river impacts on Greenland Ice Sheet surface mass balance. J. Geophys. Res. Atmos. 123, 8538–8560 (2018).

    Article  ADS  Google Scholar 

  13. Turner, J. et al. The dominant role of extreme precipitation events in Antarctic snowfall variability. Geophys. Res. Lett. 46, 3502–3511 (2019).

    Article  ADS  Google Scholar 

  14. Box, J. E. et al. Greenland Ice Sheet rainfall, heat and albedo feedback impacts from the mid‐August 2021 atmospheric river. Geophys. Res. Lett. 49, e2021GL097356 (2022).

    Article  ADS  Google Scholar 

  15. Lenaerts, J. T. M., Medley, B., van den Broeke, M. R. & Wouters, B. Observing and modeling ice sheet surface mass balance. Rev. Geophys. 57, 376–420 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  16. Ekaykin, A. A., Kozachek, A. V., Ya. Lipenkov, V. & Shibaev, Y. A. Multiple climate shifts in the Southern Hemisphere over the past three centuries based on central Antarctic snow pits and core studies. Ann. Glaciol. 55, 259–266 (2014).

    Article  ADS  CAS  Google Scholar 

  17. Ekaykin, A. A. et al. The changes in isotope composition and accumulation of snow at Vostok station, East Antarctica, over the past 200 years. Ann. Glaciol. 39, 569–575 (2004).

    Article  ADS  CAS  Google Scholar 

  18. Hanna, E., Cropper, T. E., Hall, R. J., Cornes, R. C. & Barriendos, M. Extended North Atlantic Oscillation and Greenland blocking indices 1800–2020 from new meteorological reanalysis. Atmosphere 13, 436 (2022).

    Article  ADS  Google Scholar 

  19. Hofer, S., Tedstone, A. J., Fettweis, X. & Bamber, J. L. Decreasing cloud cover drives the recent mass loss on the Greenland Ice Sheet. Sci. Adv. 3, e1700584 (2017).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  20. Noël, B., van de Berg, W. J., Lhermitte, S. & van den Broeke, M. R. Rapid ablation zone expansion amplifies north Greenland mass loss. Sci. Adv. 5, eaaw0123 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  21. Hermann, M., Papritz, L. & Wernli, H. Lagrangian analysis of the dynamical and thermodynamic drivers of Greenland melt events during 1979-2017. Weather Clim. Dyn. 1, 497–518 (2020).

    Article  ADS  Google Scholar 

  22. Shahi, S., Abermann, J., Heinrich, G., Prinz, R. & Schöner, W. Regional variability and trends of temperature inversions in Greenland. J. Clim. 33, 9391–9407 (2020).

    Article  ADS  Google Scholar 

  23. Tedesco, M. et al. The darkening of the Greenland Ice Sheet: trends, drivers, and projections (1981–2100). Cryosphere 10, 477–496 (2016).

    Article  ADS  Google Scholar 

  24. Van Tricht, K. et al. Clouds enhance Greenland Ice Sheet meltwater runoff. Nat. Commun. 7, 10266 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Ding, Q. et al. Tropical forcing of the recent rapid Arctic warming in northeastern Canada and Greenland. Nature 509, 209–212 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Hanna, E., Cropper, T. E., Hall, R. J. & Cappelen, J. Greenland Blocking Index 1851–2015: a regional climate change signal. Int. J. Climatol. 36, 4847–4861 (2016).

    Article  Google Scholar 

  27. Rignot, E. et al. Four decades of Antarctic Ice Sheet mass balance from 1979–2017. Proc. Natl Acad. Sci. 116, 1095–1103 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. Perren, B. B. et al. Southward migration of the Southern Hemisphere westerly winds corresponds with warming climate over centennial timescales. Commun. Earth Environ. 1, 58 (2020).

    Article  ADS  Google Scholar 

  29. Steig, E. J., Ding, Q., Battisti, D. S. & Jenkins, A. Tropical forcing of circumpolar deep water inflow and outlet glacier thinning in the Amundsen Sea Embayment, West Antarctica. Ann. Glaciol. 53, 19–28 (2012).

    Article  ADS  Google Scholar 

  30. Verfaillie, D. et al. The circum-Antarctic ice-shelves respond to a more positive Southern Annular Mode with regionally varied melting. Commun. Earth Environ. 3, 139 (2022).

    Article  ADS  Google Scholar 

  31. Medley, B. & Thomas, E. R. Increased snowfall over the Antarctic Ice Sheet mitigated twentieth-century sea-level rise. Nat. Clim. Chang. 9, 34–39 (2019).

    Article  ADS  CAS  Google Scholar 

  32. Munneke, P. K. et al. Elevation change of the Greenland Ice Sheet due to surface mass balance and firn processes, 1960–2014. Cryosphere 9, 2009–2025 (2015).

    Article  ADS  Google Scholar 

  33. van den Broeke, M. Depth and density of the Antarctic firn layer. Arct. Antarct. Alp. Res. 40, 432–438 (2008).

    Article  ADS  Google Scholar 

  34. Wood, M. et al. Ocean forcing drives glacier retreat in Greenland. Sci. Adv. 7, eaba7282 (2021).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  35. Jenkins, A. et al. West Antarctic Ice Sheet retreat in the Amundsen Sea driven by decadal oceanic variability. Nat. Geosci. 11, 733–738 (2018).

    Article  ADS  CAS  Google Scholar 

  36. Slater, D. A. & Straneo, F. Submarine melting of glaciers in Greenland amplified by atmospheric warming. Nat. Geosci. 15, 794–799 (2022).

    Article  ADS  CAS  Google Scholar 

  37. Straneo, F. & Heimbach, P. North Atlantic warming and the retreat of Greenland’s outlet glaciers. Nature 504, 36–43 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  38. Fried, M. J. et al. Reconciling drivers of seasonal terminus advance and retreat at 13 Central West Greenland tidewater glaciers. J. Geophys. Res. 123, 1590–1607 (2018).

    Article  Google Scholar 

  39. O’Leary, M. & Christoffersen, P. Calving on tidewater glaciers amplified by submarine frontal melting. Cryosphere 7, 119–128 (2013).

    Article  ADS  Google Scholar 

  40. Catania, G. A., Stearns, L. A., Moon, T. A., Enderlin, E. M. & Jackson, R. H. Future evolution of Greenland’s marine‐terminating outlet glaciers. J. Geophys. Res. Earth Surf. 125, e2018JF00487 (2020).

    Article  Google Scholar 

  41. Bindschadler, R. et al. Getting around Antarctica: new high-resolution mappings of the grounded and freely-floating boundaries of the Antarctic Ice Sheet created for the International Polar Year. Cryosphere 5, 569–588 (2011).

    Article  ADS  Google Scholar 

  42. Smith, B. et al. Pervasive ice sheet mass loss reflects competing ocean and atmosphere processes. Science 368, 1239–1242 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  43. Pritchard, H. D. et al. Antarctic ice-sheet loss driven by basal melting of ice shelves. Nature 484, 502–505 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  44. Herraiz-Borreguero, L. & Naveira Garabato, A. C. Poleward shift of circumpolar deep water threatens the East Antarctic Ice Sheet. Nat. Clim. Chang. 12, 728–734 (2022).

    Article  ADS  Google Scholar 

  45. Greene, C. A., Gardner, A. S., Schlegel, N.-J. & Fraser, A. D. Antarctic calving loss rivals ice-shelf thinning. Nature 609, 948–953 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  46. Miles, B. W. J., Stokes, C. R. & Jamieson, S. S. R. Pan-ice-sheet glacier terminus change in East Antarctica reveals sensitivity of Wilkes Land to sea-ice changes. Sci. Adv. 2, e1501350 (2016).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  47. Greene, C. A., Blankenship, D. D., Gwyther, D. E., Silvano, A. & van Wijk, E. Wind causes Totten Ice Shelf melt and acceleration. Sci. Adv. 3, e1701681 (2017).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  48. Christie, F. D. W., Steig, E. J., Gourmelen, N., Tett, S. F. B. & Bingham, R. G. Inter-decadal climate variability induces differential ice response along Pacific-facing West Antarctica. Nat. Commun. 14, 93 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  49. Cook, A. J. et al. Ocean forcing of glacier retreat in the western Antarctic Peninsula. Science 353, 283–286 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  50. Naughten, K. A. et al. Simulated twentieth‐century ocean warming in the Amundsen Sea, West Antarctica. Geophys. Res. Lett. 49, e2021GL094566 (2022).

    Article  ADS  Google Scholar 

  51. Nakayama, Y., Cai, C. & Seroussi, H. Impact of subglacial freshwater discharge on Pine Island Ice Shelf. Geophys. Res. Lett. 48, e2021GL093923 (2021).

    Article  ADS  Google Scholar 

  52. Dow, C. F., Ross, N., Jeofry, H., Siu, K. & Siegert, M. J. Antarctic basal environment shaped by high-pressure flow through a subglacial river system. Nat. Geosci. 15, 892–898 (2022).

    Article  ADS  CAS  Google Scholar 

  53. Christie, F. D. W. et al. Antarctic ice-shelf advance driven by anomalous atmospheric and sea-ice circulation. Nat. Geosci. 15, 356–362 (2022).

    Article  ADS  CAS  Google Scholar 

  54. Aoki, S. Breakup of land-fast sea ice in Lützow-Holm Bay, East Antarctica, and its teleconnection to tropical Pacific sea surface temperatures. Geophys. Res. Lett. 44, 3219–3227 (2017).

    Article  ADS  Google Scholar 

  55. Bromwich, D. H., Chen, B. & Hines, K. M. Global atmospheric impacts induced by year-round open water adjacent to Antarctica. J. Geophys. Res. Atmos. 103, 11173–11189 (1998).

    Article  ADS  Google Scholar 

  56. Wu, X., Budd, W. F., Lytle, V. I. & Massom, R. A. The effect of snow on Antarctic sea ice simulations in a coupled atmosphere-sea ice model. Clim. Dyn. 15, 127–143 (1999).

    Article  Google Scholar 

  57. Spolaor, A. et al. Halogen species record Antarctic sea ice extent over glacial–interglacial periods. Atmos. Chem. Phys. 13, 6623–6635 (2013).

    Article  ADS  Google Scholar 

  58. Landais, A. et al. Interglacial Antarctic–Southern Ocean climate decoupling due to moisture source area shifts. Nat. Geosci. 14, 918–923 (2021).

    Article  ADS  CAS  Google Scholar 

  59. Crosta, X. et al. Antarctic sea ice over the past 130,000 years, part 1: a review of what proxy records tell us. Clim. Past 18, 1729–1756 (2022).

    Article  Google Scholar 

  60. Massom, R. A. et al. Antarctic ice shelf disintegration triggered by sea ice loss and ocean swell. Nature 558, 383–389 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  61. Bell, R. E., Banwell, A. F., Trusel, L. D. & Kingslake, J. Antarctic surface hydrology and impacts on ice-sheet mass balance. Nat. Clim. Chang. 8, 1044–1052 (2018).

    Article  ADS  Google Scholar 

  62. Nienow, P. W., Sole, A. J., Slater, D. A. & Cowton, T. R. Recent advances in our understanding of the role of meltwater in the Greenland Ice Sheet system. Curr. Clim. Change Rep. 3, 330–344 (2017).

    Article  Google Scholar 

  63. Goelzer, H. et al. The future sea-level contribution of the Greenland Ice Sheet: a multi-model ensemble study of ISMIP6. Cryosphere 14, 3071–3096 (2020).

    Article  ADS  Google Scholar 

  64. Payne, A. J. et al. Future sea level change under Coupled Model Intercomparison Project Phase 5 and Phase 6 scenarios from the Greenland and Antarctic ice sheets. Geophys. Res. Lett. 48, e2020GL091741 (2021).

    Article  ADS  Google Scholar 

  65. Trusel, L. D. et al. Divergent trajectories of Antarctic surface melt under two twenty-first-century climate scenarios. Nat. Geosci. 8, 927–932 (2015).

    Article  ADS  CAS  Google Scholar 

  66. Jakobs, C. L., Reijmer, C. H., van den Broeke, M. R., van de Berg, W. J. & van Wessem, J. M. Spatial variability of the snowmelt‐albedo feedback in Antarctica. J. Geophys. Res. Earth Surf. 126, e2020JF005696 (2021).

    Article  ADS  Google Scholar 

  67. Arthur, J. F., Stokes, C., Jamieson, S. S. R., Rachel Carr, J. & Leeson, A. A. Recent understanding of Antarctic supraglacial lakes using satellite remote sensing. Prog. Phys. Geogr. Earth Environ. 44, 837–869 (2020).

    Article  Google Scholar 

  68. IMBIE Team Mass balance of the Greenland Ice Sheet from 1992 to 2018. Nature 579, 233–239 (2020).

    Article  ADS  Google Scholar 

  69. Banwell, A. F., Wever, N., Dunmire, D. & Picard, G. Quantifying Antarctic‐wide ice‐shelf surface melt volume using microwave and firn model data: 1980 to 2021. Geophys. Res. Lett. 50, e2023GL102744 (2023).

    Article  ADS  Google Scholar 

  70. Banwell, A. F. & Macayeal, D. R. Ice-shelf fracture due to viscoelastic flexure stress induced by fill/drain cycles of supraglacial lakes. Antarct. Sci. 27, 587–597 (2015).

    Article  ADS  Google Scholar 

  71. Lai, C.-Y. et al. Vulnerability of Antarctica’s ice shelves to meltwater-driven fracture. Nature 584, 574–578 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  72. van Wessem, J. M., van den Broeke, M. R., Wouters, B. & Lhermitte, S. Variable temperature thresholds of melt pond formation on Antarctic ice shelves. Nat. Clim. Chang. 13, 161–166 (2023).

    Article  ADS  Google Scholar 

  73. Alley, K. E., Scambos, T. A., Miller, J. Z., Long, D. G. & MacFerrin, M. Quantifying vulnerability of Antarctic ice shelves to hydrofracture using microwave scattering properties. Remote Sens. Environ. 210, 297–306 (2018).

    Article  ADS  Google Scholar 

  74. Scambos, T. A. Glacier acceleration and thinning after ice shelf collapse in the Larsen B Embayment, Antarctica. Geophys. Res. Lett. 31, L18402 (2004).

    Article  ADS  Google Scholar 

  75. Williams, J. J., Gourmelen, N. & Nienow, P. Dynamic response of the Greenland Ice Sheet to recent cooling. Sci. Rep. 10, 1647 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  76. Tuckett, P. A. et al. Rapid accelerations of Antarctic Peninsula outlet glaciers driven by surface melt. Nat. Commun. 10, 4311 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  77. Boxall, K., Christie, F. D. W., Willis, I. C., Wuite, J. & Nagler, T. Seasonal land-ice-flow variability in the Antarctic Peninsula. Cryosphere 16, 3907–3932 (2022).

    Article  ADS  Google Scholar 

  78. Payne, T., Nowicki, S., Goelzer, H. and the ISMIP6 Team. Contrasting contributions to future sea level under CMIP5 and CMIP6 scenarios from the Greenland and Antarctic ice sheets. https://doi.org/10.5194/egusphere-egu2020-11667 (2020).

  79. Jamieson, S. S. R. et al. Ice-stream stability on a reverse bed slope. Nat. Geosci. 5, 799–802 (2012).

    Article  ADS  CAS  Google Scholar 

  80. Bart, P. J., DeCesare, M., Rosenheim, B. E., Majewski, W. & McGlannan, A. A centuries-long delay between a paleo-ice-shelf collapse and grounding-line retreat in the Whales Deep Basin, eastern Ross Sea, Antarctica. Sci. Rep. 8, 12392 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  81. Dowdeswell, J. A. et al. Delicate seafloor landforms reveal past Antarctic grounding-line retreat of kilometers per year. Science 368, 1020–1024 (2020).

    Article  CAS  PubMed  Google Scholar 

  82. Graham, A. G. C. et al. Rapid retreat of Thwaites Glacier in the pre-satellite era. Nat. Geosci. 15, 706–713 (2022).

    Article  ADS  CAS  Google Scholar 

  83. Barletta, V. R. et al. Observed rapid bedrock uplift in Amundsen Sea Embayment promotes ice-sheet stability. Science 360, 1335–1339 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  84. Whitehouse, P. L. Glacial isostatic adjustment modelling: historical perspectives, recent advances, and future directions. Earth Surf. Dyn. 6, 401–429 (2018).

    Article  ADS  Google Scholar 

  85. Milillo, P. et al. Heterogeneous retreat and ice melt of Thwaites Glacier, West Antarctica. Sci. Adv. 5, eaau3433 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  86. Park, J. W. et al. Sustained retreat of the Pine Island Glacier. Geophys. Res. Lett. 40, 2137–2142 (2013).

    Article  ADS  Google Scholar 

  87. Hill, E. A. et al. The stability of present-day Antarctic grounding lines — part 1: no indication of marine ice sheet instability in the current geometry. Cryosphere 17, 3739–3759 (2023).

    Article  ADS  Google Scholar 

  88. Reese, R. et al. The stability of present-day Antarctic grounding lines — part 2: onset of irreversible retreat of Amundsen Sea glaciers under current climate on centennial timescales cannot be excluded. Cryosphere 17, 3761–3783 (2023).

    Article  ADS  Google Scholar 

  89. Rignot, E., Mouginot, J., Morlighem, M., Seroussi, H. & Scheuchl, B. Widespread, rapid grounding line retreat of Pine Island, Thwaites, Smith, and Kohler glaciers, West Antarctica, from 1992 to 2011. Geophys. Res. Lett. 41, 3502–3509 (2014).

    Article  ADS  Google Scholar 

  90. Joughin, I., Smith, B. E. & Medley, B. Marine ice sheet collapse potentially under way for the Thwaites Glacier Basin, West Antarctica. Science 344, 735–738 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  91. Schoof, C. Ice sheet grounding line dynamics: steady states, stability, and hysteresis. J. Geophys. Res. Earth Surf. 112, F03S28 (2007).

    Article  ADS  Google Scholar 

  92. DeConto, R. M. et al. The Paris Climate Agreement and future sea-level rise from Antarctica. Nature 593, 83–89 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  93. Pollard, D., DeConto, R. M. & Alley, R. B. Potential Antarctic Ice Sheet retreat driven by hydrofracturing and ice cliff failure. Earth Planet. Sci. Lett. 412, 112–121 (2015).

    Article  ADS  CAS  Google Scholar 

  94. DeConto, R. M. & Pollard, D. Contribution of Antarctica to past and future sea-level rise. Nature 531, 591–597 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  95. Crawford, A. J. et al. Marine ice-cliff instability modeling shows mixed-mode ice-cliff failure and yields calving rate parameterization. Nat. Commun. 12, 2701 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  96. Padman, L., Howard, S. L., Orsi, A. H. & Muench, R. D. Tides of the northwestern Ross Sea and their impact on dense outflows of Antarctic Bottom Water. Deep Sea Res. Part II Top. Stud. Oceanogr. 56, 818–834 (2009).

    Article  ADS  Google Scholar 

  97. Stewart, A. L., Klocker, A. & Menemenlis, D. Circum‐Antarctic shoreward heat transport derived from an eddy‐ and tide‐resolving simulation. Geophys. Res. Lett. 45, 834–845 (2018).

    Article  ADS  Google Scholar 

  98. Padman, L., Siegfried, M. R. & Fricker, H. A. Ocean tide influences on the Antarctic and Greenland ice sheets. Rev. Geophys. 56, 142–184 (2018).

    Article  ADS  Google Scholar 

  99. Richter, O., Gwyther, D. E., King, M. A. & Galton-Fenzi, B. K. The impact of tides on Antarctic ice shelf melting. Cryosphere 16, 1409–1429 (2022).

    Article  ADS  Google Scholar 

  100. Chen, H., Rignot, E., Scheuchl, B. & Ehrenfeucht, S. Grounding zone of Amery ice shelf, Antarctica, from differential synthetic‐aperture radar interferometry. Geophys. Res. Lett. 50, e2022GL102430 (2023).

    Article  ADS  Google Scholar 

  101. Ciracì, E. et al. Melt rates in the kilometer-size grounding zone of Petermann Glacier, Greenland, before and during a retreat. Proc. Natl Acad. Sci. USA 120, e2220924120 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Davison, B. J. et al. Sea level rise from West Antarctic mass loss significantly modified by large snowfall anomalies. Nat. Commun. 14, 1479 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  103. Adusumilli, S., Fricker, H. A., Medley, B., Padman, L. & Siegfried, M. R. Interannual variations in meltwater input to the Southern Ocean from Antarctic ice shelves. Nat. Geosci. 13, 616–620 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  104. Jenkins, A. et al. Decadal ocean forcing and Antarctic Ice Sheet response: lessons from the Amundsen Sea. Oceanography 29, 106–117 (2016).

    Article  Google Scholar 

  105. Paolo, F. S. et al. Response of Pacific-sector Antarctic ice shelves to the El Niño/Southern Oscillation. Nat. Geosci. 11, 121–126 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  106. Gwyther, D. E., O’Kane, T. J., Galton-Fenzi, B. K., Monselesan, D. P. & Greenbaum, J. S. Intrinsic processes drive variability in basal melting of the Totten Glacier ice shelf. Nat. Commun. 9, 3141 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  107. Hattermann, T. et al. Observed interannual changes beneath Filchner-Ronne Ice Shelf linked to large-scale atmospheric circulation. Nat. Commun. 12, 2961 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  108. Domack, E. et al. Stability of the Larsen B Ice Shelf on the Antarctic Peninsula during the Holocene epoch. Nature 436, 681–685 (2005).

    Article  ADS  CAS  PubMed  Google Scholar 

  109. Leeson, A. A., Forster, E., Rice, A., Gourmelen, N. & Wessem, J. M. Evolution of supraglacial lakes on the Larsen B Ice Shelf in the decades before it collapsed. Geophys. Res. Lett. 47, e2019 GL085591 (2020).

    Article  Google Scholar 

  110. Banwell, A. F., MacAyeal, D. R. & Sergienko, O. V. Breakup of the Larsen B Ice Shelf triggered by chain reaction drainage of supraglacial lakes. Geophys. Res. Lett. 40, 5872–5876 (2013).

    Article  ADS  Google Scholar 

  111. Scambos, T. A., Hulbe, C., Fahnestock, M. & Bohlander, J. The link between climate warming and break-up of ice shelves in the Antarctic Peninsula. J. Glaciol. 46, 516–530 (2000).

    Article  ADS  Google Scholar 

  112. Robel, A. A. & Banwell, A. F. A speed limit on ice shelf collapse through hydrofracture. Geophys. Res. Lett. 46, 12092–12100 (2019).

    Article  ADS  Google Scholar 

  113. Pritchard, H. D. & Vaughan, D. G. Widespread acceleration of tidewater glaciers on the Antarctic Peninsula. J. Geophys. Res. 112, F03S29 (2007).

    ADS  Google Scholar 

  114. Wille, J. D. et al. Intense atmospheric rivers can weaken ice shelf stability at the Antarctic Peninsula. Commun. Earth Environ. 3, 90 (2022).

    Article  ADS  Google Scholar 

  115. Bozkurt, D., Rondanelli, R., Marín, J. C. & Garreaud, R. Foehn event triggered by an atmospheric river underlies record‐setting temperature along continental Antarctica. J. Geophys. Res. 123, 3871–3892 (2018).

    Article  Google Scholar 

  116. Hodgson, D. A., Jordan, T. A., Ross, N., Riley, T. R. & Fretwell, P. T. Drainage and refill of an Antarctic Peninsula subglacial lake reveal an active subglacial hydrological network. Cryosphere 16, 4797–4809 (2022).

    Article  ADS  Google Scholar 

  117. Bintanja, R., van de Wal, R. S. W. & Oerlemans, J. Modelled atmospheric temperatures and global sea levels over the past million years. Nature 437, 125–128 (2005).

    Article  ADS  CAS  PubMed  Google Scholar 

  118. Bronselaer, B. et al. Change in future climate due to Antarctic meltwater. Nature 564, 53–58 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  119. Sadai, S., Condron, A., DeConto, R. & Pollard, D. Future climate response to Antarctic Ice Sheet melt caused by anthropogenic warming. Sci. Adv. 6, eaaz1169 (2020).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  120. Silvano, A. et al. Freshening by glacial meltwater enhances melting of ice shelves and reduces formation of Antarctic Bottom Water. Sci. Adv. 4, eaap9467 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  121. Dutton, A. et al. Sea-level rise due to polar ice-sheet mass loss during past warm periods. Science 349, aaa4019 (2015).

    Article  CAS  PubMed  Google Scholar 

  122. Dumitru, O. A. et al. Constraints on global mean sea level during Pliocene warmth. Nature 574, 233–236 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  123. Sangiorgi, F. et al. Southern Ocean warming and Wilkes Land ice sheet retreat during the mid-Miocene. Nat. Commun. 9, 317 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  124. Naish, T. et al. Obliquity-paced Pliocene West Antarctic Ice Sheet oscillations. Nature 458, 322–328 (2009).

    Article  ADS  CAS  PubMed  Google Scholar 

  125. Cook, C. P. et al. Dynamic behaviour of the East Antarctic Ice Sheet during Pliocene warmth. Nat. Geosci. 6, 765–769 (2013).

    Article  ADS  CAS  Google Scholar 

  126. Wilson, D. J. et al. Ice loss from the East Antarctic Ice Sheet during late Pleistocene interglacials. Nature 561, 383–386 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  127. Crotti, I. et al. Wilkes subglacial basin ice sheet response to Southern Ocean warming during late Pleistocene interglacials. Nat. Commun. 13, 5328 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  128. Blackburn, T. et al. Ice retreat in Wilkes Basin of East Antarctica during a warm interglacial. Nature 583, 554–559 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  129. Tewari, K., Mishra, S. K., Salunke, P. & Dewan, A. Future projections of temperature and precipitation for Antarctica. Environ. Res. Lett. 17, 014029 (2022).

    Article  ADS  Google Scholar 

  130. Dunmire, D., Lenaerts, J. T. M., Datta, R. T. & Gorte, T. Antarctic surface climate and surface mass balance in the Community Earth System Model version 2 during the satellite era and into the future (1979–2100). Cryosphere 16, 4163–4184 (2022).

    Article  ADS  Google Scholar 

  131. Edwards, T. L. et al. Projected land ice contributions to twenty-first-century sea level rise. Nature 593, 74–82 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  132. Jourdain, N. C., Mathiot, P., Burgard, C., Caillet, J. & Kittel, C. Ice shelf basal melt rates in the Amundsen Sea at the end of the 21st century. Geophys. Res. Lett. 49, e2022GL100629 (2022).

    Article  ADS  Google Scholar 

  133. Golledge, N. R. et al. Global environmental consequences of twenty-first-century ice-sheet melt. Nature 566, 65–72 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  134. Hellmer, H. H., Kauker, F., Timmermann, R., Determann, J. & Rae, J. Twenty-first-century warming of a large Antarctic ice-shelf cavity by a redirected coastal current. Nature 485, 225–228 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  135. Hellmer, H. H., Kauker, F., Timmermann, R. & Hattermann, T. The fate of the southern Weddell Sea continental shelf in a warming climate. J. Clim. 30, 4337–4350 (2017).

    Article  ADS  Google Scholar 

  136. Naughten, K. A. et al. Two-timescale response of a large Antarctic Ice Shelf to climate change. Nat. Commun. 12, 1991 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  137. Christianson, K. et al. Sensitivity of Pine Island Glacier to observed ocean forcing. Geophys. Res. Lett. 43, 10817–10825 (2016).

    Article  ADS  Google Scholar 

  138. Milillo, P. et al. Rapid glacier retreat rates observed in West Antarctica. Nat. Geosci. 15, 48–53 (2022).

    Article  ADS  CAS  Google Scholar 

  139. Goldberg, D. N. et al. Representing grounding line migration in synchronous coupling between a marine ice sheet model and a z-coordinate ocean model. Ocean Model. 125, 45–60 (2018).

    Article  ADS  Google Scholar 

  140. De Rydt, J., De Rydt, J. & Gudmundsson, G. H. Coupled ice shelf‐ocean modeling and complex grounding line retreat from a seabed ridge. J. Geophys. Res. Earth Surf. 121, 865–880 (2016).

    Article  ADS  Google Scholar 

  141. Seroussi, H. et al. ISMIP6 Antarctica: a multi-model ensemble of the Antarctic Ice Sheet evolution over the 21st century. Cryosphere 14, 3033–3070 (2020).

    Article  ADS  Google Scholar 

  142. Dutrieux, P. et al. Strong sensitivity of Pine Island ice-shelf melting to climatic variability. Science 343, 174–178 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  143. Smith, J. A. et al. Sub-ice-shelf sediments record history of twentieth-century retreat of Pine Island Glacier. Nature 541, 77–80 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  144. Holland, P. R., Bracegirdle, T. J., Dutrieux, P., Jenkins, A. & Steig, E. J. West Antarctic ice loss influenced by internal climate variability and anthropogenic forcing. Nat. Geosci. 12, 718–724 (2019).

    Article  ADS  CAS  Google Scholar 

  145. Holland, P. R. et al. Anthropogenic and internal drivers of wind changes over the Amundsen Sea, West Antarctica, during the 20th and 21st centuries. Cryosphere 16, 5085–5105 (2022).

    Article  ADS  Google Scholar 

  146. Batchelor, C. L. et al. Rapid, buoyancy-driven ice-sheet retreat of hundreds of metres per day. Nature 617, 105–110 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  147. Tedesco, M. & Fettweis, X. Unprecedented atmospheric conditions (1948–2019) drive the 2019 exceptional melting season over the Greenland Ice Sheet. Cryosphere 14, 1209–1223 (2020).

    Article  ADS  Google Scholar 

  148. Otosaka, I. N. et al. Mass balance of the Greenland and Antarctic ice sheets from 1992 to 2020. Earth Syst. Sci. Data 15, 1597–1616 (2023).

    Article  ADS  Google Scholar 

  149. Moon, T. A. et al. NOAA Arctic Report Card 2022: Greenland Ice Sheet. https://doi.org/10.25923/C430-HB50 (2022).

  150. Bartholomew, I. D. et al. Seasonal variations in Greenland Ice Sheet motion: inland extent and behaviour at higher elevations. Earth Planet. Sci. Lett. 307, 271–278 (2011).

    Article  ADS  CAS  Google Scholar 

  151. Rathmann, N. M. et al. Highly temporally resolved response to seasonal surface melt of the Zachariae and 79N outlet glaciers in northeast Greenland. Geophys. Res. Lett. 44, 9805–9814 (2017).

    Article  ADS  Google Scholar 

  152. Larsen, S. H. et al. Outlet glacier flow response to surface melt: based on analysis of a high-resolution satellite data set. J. Glaciol. 69, 1047–1055 (2023).

    Article  ADS  Google Scholar 

  153. Moon, T. et al. Distinct patterns of seasonal Greenland glacier velocity. Geophys. Res. Lett. 41, 7209–7216 (2014).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  154. Stevens, L. A. et al. Tidewater-glacier response to supraglacial lake drainage. Nat. Commun. 13, 6065 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  155. Solgaard, A. M., Noël, D. R. & Hviberg, C. S. Seasonal patterns of Greenland ice velocity from Sentinel-1 SAR data linked to runoff. Geophys. Res. Lett. 49, e2022GL100343 (2022).

    Article  ADS  Google Scholar 

  156. Mattingly, K. S., Ramseyer, C. A., Rosen, J. J., Mote, T. L. & Muthyala, R. Increasing water vapor transport to the Greenland Ice Sheet revealed using self-organizing maps: increasing Greenland moisture transport. Geophys. Res. Lett. 43, 9250–9258 (2016).

    Article  ADS  Google Scholar 

  157. Hanna, E. et al. Greenland surface air temperature changes from 1981 to 2019 and implications for ice‐sheet melt and mass‐balance change. Int. J. Climatol. 41, E1336–E1352 (2021).

    Article  Google Scholar 

  158. Niwano, M. et al. Rainfall on the Greenland Ice Sheet: present-day climatology from a high-resolution non-hydrostatic polar regional climate model. Geophys. Res. Lett. 48, e2021GL092942 (2021).

    Article  ADS  Google Scholar 

  159. Nettles, M. et al. Step-wise changes in glacier flow speed coincide with calving and glacial earthquakes at Helheim Glacier, Greenland. Geophys. Res. Lett. 35, L24503 (2008).

    Article  ADS  Google Scholar 

  160. Cassotto, R. et al. Non-linear glacier response to calving events, Jakobshavn Isbræ, Greenland. J. Glaciol. 65, 39–54 (2019).

    Article  ADS  Google Scholar 

  161. Amundson, J. M., Truffer, M. & Zwinger, T. Tidewater glacier response to individual calving events. J. Glaciol. 68, 1117–1126 (2022).

    Article  ADS  Google Scholar 

  162. Khan, S. A., Wahr, J., Bevis, M., Velicogna, I. & Kendrick, E. Spread of ice mass loss into Northwest Greenland observed by GRACE and GPS. Geophys. Res. Lett. 37, L06501 (2010).

    Article  ADS  Google Scholar 

  163. Chauché, N., Hubbard, A., Gascard, J. C. & Box, J. E. Ice–ocean interaction and calving front morphology at two west Greenland tidewater outlet glaciers. Cryosphere 8, 1457–1468 (2014).

    Article  ADS  Google Scholar 

  164. Cook, S. et al. Modelling environmental influences on calving at Helheim Glacier in eastern Greenland. Cryosphere 8, 827–841 (2014).

    Article  ADS  Google Scholar 

  165. Catania, G. A. et al. Geometric controls on tidewater glacier retreat in central western Greenland. J. Geophys. Res. Earth Surf. 123, 2024–2038 (2018).

    Article  ADS  Google Scholar 

  166. Enderlin, E. M., Howat, I. M. & Vieli, A. High sensitivity of tidewater outlet glacier dynamics to shape. Cryosphere 7, 1007–1015 (2013).

    Article  ADS  Google Scholar 

  167. de Juan, J. et al. Sudden increase in tidal response linked to calving and acceleration at a large Greenland outlet glacier. Geophys. Res. Lett. 37, L12501 (2010).

    ADS  Google Scholar 

  168. van Dongen, E. et al. Tides modulate crevasse opening prior to a major calving event at Bowdoin Glacier, Northwest Greenland. J. Glaciol. 66, 113–123 (2020).

    Article  Google Scholar 

  169. Ma, Y. & Bassis, J. N. The effect of submarine melting on calving from marine terminating glaciers. J. Geophys. Res. 124, 334–346 (2019).

    Article  Google Scholar 

  170. van Dongen, E. C. H. et al. Numerical modeling shows increased fracturing due to melt-undercutting prior to major calving at Bowdoin Glacier. Front. Earth Sci. 8, 253 (2020).

    Article  ADS  Google Scholar 

  171. Cassotto, R., Fahnestock, M., Amundson, J. M., Truffer, M. & Joughin, I. Seasonal and interannual variations in ice melange and its impact on terminus stability, Jakobshavn Isbræ, Greenland. J. Glaciol. 61, 76–88 (2015).

    Article  ADS  Google Scholar 

  172. Moon, T., Joughin, I. & Smith, B. Seasonal to multiyear variability of glacier surface velocity, terminus position, and sea ice/ice mélange in Northwest Greenland. J. Geophys. Res. 120, 818–833 (2015).

    Article  Google Scholar 

  173. Box, J. E. et al. Greenland Ice Sheet climate disequilibrium and committed sea-level rise. Nat. Clim. Chang. 12, 808–813 (2022).

    Article  ADS  Google Scholar 

  174. Fettweis, X. et al. GrSMBMIP: intercomparison of the modelled 1980–2012 surface mass balance over the Greenland Ice Sheet. Cryosphere 14, 3935–3958 (2020).

    Article  ADS  Google Scholar 

  175. Trusel, L. D. et al. Nonlinear rise in Greenland runoff in response to post-industrial Arctic warming. Nature 564, 104–108 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  176. Box, J. E. et al. Greenland Ice Sheet mass balance reconstruction. Part I: net snow accumulation (1600–2009). J. Clim. 26, 3919–3934 (2013).

    Article  ADS  Google Scholar 

  177. MacFerrin, M. et al. Rapid expansion of Greenland’s low-permeability ice slabs. Nature 573, 403–407 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  178. Culberg, R., Schroeder, D. M. & Chu, W. Extreme melt season ice layers reduce firn permeability across Greenland. Nat. Commun. 12, 2336 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  179. Tedstone, A. J. & Machguth, H. Increasing surface runoff from Greenland’s firn areas. Nat. Clim. Chang. 12, 672–676 (2022).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  180. Ryan, J. C. et al. Greenland Ice Sheet surface melt amplified by snowline migration and bare ice exposure. Sci. Adv. 5, eaav3738 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  181. Horlings, A. N., Christianson, K. & Miège, C. Expansion of firn aquifers in Southeast Greenland. J. Geophys. Res. 127, e2022JF006753 (2022).

    Article  ADS  Google Scholar 

  182. NEEM community members. Eemian interglacial reconstructed from a Greenland folded ice core. Nature 493, 489–494 (2013).

    Article  ADS  Google Scholar 

  183. Vinther, B. M. et al. Holocene thinning of the Greenland Ice Sheet. Nature 461, 385–388 (2009).

    Article  ADS  CAS  PubMed  Google Scholar 

  184. Sasgen, I. et al. Return to rapid ice loss in Greenland and record loss in 2019 detected by the GRACE-FO satellites. Commun. Earth Environ. 1, 8 (2020).

    Article  ADS  Google Scholar 

  185. Mankoff, K. D. et al. Greenland Ice Sheet mass balance from 1840 through next week. Earth Syst. Sci. Data 13, 5001–5025 (2021).

    Article  ADS  Google Scholar 

  186. Fettweis, X. et al. Reconstructions of the 1900–2015 Greenland Ice Sheet surface mass balance using the regional climate MAR model. Cryosphere 11, 1015–1033 (2017).

    Article  ADS  Google Scholar 

  187. Noël, B., Lenaerts, J. T. M., Lipscomb, W. H., Thayer-Calder, K. & van den Broeke, M. R. Peak refreezing in the Greenland firn layer under future warming scenarios. Nat. Commun. 13, 6870 (2022).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  188. Noël, B., van Kampenhout, L., Lenaerts, J. T. M., van de Berg, W. J. & van den Broeke, M. R. A 21st century warming threshold for sustained Greenland Ice Sheet mass loss. Geophys. Res. Lett. 48, e2020GL090471 (2021).

    Article  ADS  Google Scholar 

  189. clec’h, S. L. et al. Assessment of the Greenland Ice Sheet–atmosphere feedbacks for the next century with a regional atmospheric model coupled to an ice sheet model. Cryosphere 13, 373–395 (2019).

    Article  ADS  Google Scholar 

  190. Boberg, F., Mottram, R., Hansen, N., Yang, S. & Langen, P. L. Uncertainties in projected surface mass balance over the polar ice sheets from dynamically downscaled EC-Earth models. Cryosphere 16, 17–33 (2022).

    Article  ADS  Google Scholar 

  191. Robinson, A., Calov, R. & Ganopolski, A. Multistability and critical thresholds of the Greenland Ice Sheet. Nat. Clim. Chang. 2, 429–432 (2012).

    Article  ADS  Google Scholar 

  192. Aschwanden, A. et al. Contribution of the Greenland Ice Sheet to sea level over the next millennium. Sci. Adv. 5, eaav9396 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  193. Gregory, J. M., George, S. E. & Smith, R. S. Large and irreversible future decline of the Greenland Ice Sheet. Cryosphere 14, 4299–4322 (2020).

    Article  ADS  Google Scholar 

  194. Ultee, L., Felikson, D., Minchew, B., Stearns, L. A. & Riel, B. Helheim Glacier ice velocity variability responds to runoff and terminus position change at different timescales. Nat. Commun. 13, 6022 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  195. Holland, D. M., Thomas, R. H., de Young, B., Ribergaard, M. H. & Lyberth, B. Acceleration of Jakobshavn Isbræ triggered by warm subsurface ocean waters. Nat. Geosci. 1, 659–664 (2008).

    Article  ADS  CAS  Google Scholar 

  196. Barnett, J., Holmes, F. A. & Kirchner, N. Modelled dynamic retreat of Kangerlussuaq Glacier, East Greenland, strongly influenced by the consecutive absence of an ice mélange in Kangerlussuaq Fjord. J. Glaciol. 69, 433–444 (2022).

    Article  Google Scholar 

  197. Christian, J. E. et al. The contrasting response of outlet glaciers to interior and ocean forcing. Cryosphere 14, 2515–2535 (2020).

    Article  ADS  Google Scholar 

  198. Grinsted, A. et al. Accelerating ice flow at the onset of the Northeast Greenland ice stream. Nat. Commun. 13, 5589 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  199. Zwally, H. J. et al. Surface melt-induced acceleration of Greenland ice-sheet flow. Science 297, 218–222 (2002).

    Article  ADS  CAS  PubMed  Google Scholar 

  200. Wal et al. Self-regulation of ice flow varies across the ablation area in south-west Greenland. Cryosphere 9, 603–611 (2015).

    Article  ADS  Google Scholar 

  201. Tedstone, A. J. et al. Decadal slowdown of a land-terminating sector of the Greenland Ice Sheet despite warming. Nature 526, 692–695 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  202. Sole, A. et al. Winter motion mediates dynamic response of the Greenland Ice Sheet to warmer summers. Geophys. Res. Lett. 40, 3940–3944 (2013).

    Article  ADS  Google Scholar 

  203. Andersen, M. L. et al. Quantitative estimates of velocity sensitivity to surface melt variations at a large Greenland outlet glacier. J. Glaciol. 57, 609–620 (2011).

    Article  ADS  Google Scholar 

  204. Doyle, S. H. et al. Persistent flow acceleration within the interior of the Greenland Ice Sheet. Geophys. Res. Lett. 41, 899–905 (2014).

    Article  ADS  Google Scholar 

  205. Clason, C. C. et al. Modelling the transfer of supraglacial meltwater to the bed of Leverett Glacier, Southwest Greenland. Cryosphere 9, 123–138 (2015).

    Article  ADS  Google Scholar 

  206. Doyle, S. H. et al. Amplified melt and flow of the Greenland Ice Sheet driven by late-summer cyclonic rainfall. Nat. Geosci. 8, 647–653 (2015).

    Article  ADS  CAS  Google Scholar 

  207. Rignot, E. & Kanagaratnam, P. Changes in the velocity structure of the Greenland Ice Sheet. Science 311, 986–990 (2006).

    Article  ADS  CAS  PubMed  Google Scholar 

  208. Bassis, J. N. The statistical physics of iceberg calving and the emergence of universal calving laws. J. Glaciol. 57, 3–16 (2011).

    Article  ADS  Google Scholar 

  209. Luckman, A., Murray, T., de Lange, R. & Hanna, E. Rapid and synchronous ice-dynamic changes in East Greenland. Geophys. Res. Lett. 33, L03503 (2006).

    Article  ADS  Google Scholar 

  210. Csatho, B., Schenk, T., Van Der Veen, C. J. & Krabill, W. B. Intermittent thinning of Jakobshavn Isbræ, West Greenland, since the little ice age. J. Glaciol. 54, 131–144 (2008).

    Article  ADS  Google Scholar 

  211. Nick, F. M., Vieli, A., Howat, I. M. & Joughin, I. Large-scale changes in Greenland outlet glacier dynamics triggered at the terminus. Nat. Geosci. 2, 110–114 (2009).

    Article  ADS  CAS  Google Scholar 

  212. Felikson, D. et al. Inland thinning on the Greenland Ice Sheet controlled by outlet glacier geometry. Nat. Geosci. 10, 366–369 (2017).

    Article  ADS  CAS  Google Scholar 

  213. Khan, S. A. et al. Extensive inland thinning and speed-up of Northeast Greenland Ice Stream. Nature 611, 727–732 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  214. Kehrl, L. M., Joughin, I., Shean, D. E., Floricioiu, D. & Krieger, L. Seasonal and interannual variabilities in terminus position, glacier velocity, and surface elevation at Helheim and Kangerlussuaq glaciers from 2008 to 2016. J. Geophys. Res. 122, 1635–1652 (2017).

    Article  Google Scholar 

  215. Robel, A. A., Seroussi, H. & Roe, G. H. Marine ice sheet instability amplifies and skews uncertainty in projections of future sea-level rise. Proc. Natl Acad. Sci. USA 116, 14887–14892 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  216. Felikson, D., Nowicki, S., Nias, I., Morlighem, M. & Seroussi, H. Seasonal tidewater glacier terminus oscillations bias multi-decadal projections of ice mass change. J. Geophys. Res. 127, e2021JF006249 (2022).

    Article  ADS  Google Scholar 

  217. Tapley, B. D. et al. Contributions of GRACE to understanding climate change. Nat. Clim. Chang. 5, 358–369 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  218. Rees, E. R. et al. Absolute frequency readout derived from ULE cavity for next generation geodesy missions. Opt. Express 29, 26014–26027 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  219. Flechtner, F. et al. What can be expected from the GRACE-FO laser ranging interferometer for Earth science applications? Surv. Geophys. 37, 453–470 (2016).

    Article  ADS  Google Scholar 

  220. ESA Earth and Mission Science Division & NASA Earth Science Division. Next Generation Gravity Mission as a Mass-change And Geosciences International Constellation (MAGIC) Mission Requirements Document (eds Haagmans, R. & Tsaoussi, L.) (ESA and NASA, 2020).

  221. Davis, P. E. D. et al. Suppressed basal melting in the eastern Thwaites Glacier grounding zone. Nature 614, 479–485 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  222. Schmidt, B. E. et al. Heterogeneous melting near the Thwaites Glacier grounding line. Nature 614, 471–478 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  223. Vaňková, I. & Nicholls, K. W. Ocean variability beneath the Filchner‐Ronne ice shelf inferred from basal melt rate time series. J. Geophys. Res. Ocean. 127, e2022JC018879 (2022).

    Article  ADS  Google Scholar 

  224. Sutherland, D. A. et al. Direct observations of submarine melt and subsurface geometry at a tidewater glacier. Science 365, 369–374 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  225. Morlighem, M. et al. Deep glacial troughs and stabilizing ridges unveiled beneath the margins of the Antarctic Ice Sheet. Nat. Geosci. 13, 132–137 (2020).

    Article  ADS  CAS  Google Scholar 

  226. Colleoni, F. et al. Spatio-temporal variability of processes across Antarctic ice-bed-ocean interfaces. Nat. Commun. 9, 2289 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  227. Zheng, L. et al. Greenland Ice Sheet daily surface melt flux observed from space. Geophys. Res. Lett. 49, e2021GL096690 (2022).

    Article  ADS  Google Scholar 

  228. Banwell, A. F., Willis, I. C., Macdonald, G. J., Goodsell, B. & MacAyeal, D. R. Direct measurements of ice-shelf flexure caused by surface meltwater ponding and drainage. Nat. Commun. 10, 730 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  229. Stibal, M. et al. Algae drive enhanced darkening of bare ice on the Greenland Ice Sheet. Geophys. Res. Lett. 44, 11,463–11,471 (2017).

    Article  Google Scholar 

  230. Khazendar, A. et al. Author correction: Interruption of two decades of Jakobshavn Isbrae acceleration and thinning as regional ocean cools. Nat. Geosci. 12, 493–493 (2019).

    Article  ADS  CAS  Google Scholar 

  231. Truffer, M. & Fahnestock, M. Climate change: rethinking ice sheet time scales. Science 315, 1508–1510 (2007).

    Article  CAS  PubMed  Google Scholar 

  232. Mouginot, J. et al. Fast retreat of Zachariæ Isstrøm, Northeast Greenland. Science 350, 1357–1361 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  233. Phillips, T., Rajaram, H. & Steffen, K. Cryo-hydrologic warming: a potential mechanism for rapid thermal response of ice sheets. Geophys. Res. Lett. 37, L20503 (2010).

    Article  ADS  Google Scholar 

  234. van de Wal, R. S. W. et al. A high-end estimate of sea level rise for practitioners. Earths Future 10, e2022EF002751 (2022).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  235. Fettweis, X. et al. Brief communication ‘Important role of the mid-tropospheric atmospheric circulation in the recent surface melt increase over the Greenland Ice Sheet’. Cryosphere 7, 241–248 (2013).

    Article  ADS  Google Scholar 

  236. Topál, D. et al. Discrepancies between observations and climate models of large-scale wind-driven Greenland melt influence sea-level rise projections. Nat. Commun. 13, 6833 (2022).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  237. Topál, D. & Ding, Q. Atmospheric circulation-constrained model sensitivity recalibrates Arctic climate projections. Nat. Clim. Chang. 13, 710–718 (2023).

    Article  ADS  Google Scholar 

  238. Delhasse, A., Fettweis, X., Kittel, C., Amory, C. & Agosta, C. Brief communication: Impact of the recent atmospheric circulation change in summer on the future surface mass balance of the Greenland Ice Sheet. Cryosphere 12, 3409–3418 (2018).

    Article  ADS  Google Scholar 

  239. Benn, D. I., Cowton, T., Todd, J. & Luckman, A. Glacier calving in Greenland. Curr. Clim. Chang. Rep. 3, 282–290 (2017).

    Article  Google Scholar 

  240. Sun, S., Cornford, S. L., Moore, J. C., Gladstone, R. & Zhao, L. Ice shelf fracture parameterization in an ice sheet model. Cryosphere 11, 2543–2554 (2017).

    Article  ADS  Google Scholar 

  241. Krug, J., Weiss, J., Gagliardini, O. & Durand, G. Combining damage and fracture mechanics to model calving. Cryosphere 8, 2101–2117 (2014).

    Article  ADS  Google Scholar 

  242. Smith, R. S. et al. Coupling the U.K. Earth System Model to dynamic models of the Greenland and Antarctic ice sheets. J. Adv. Model. Earth Syst. 13, e2021MS002520 (2021).

    Article  ADS  Google Scholar 

  243. Bradley, A. T., Bett, D. T., Dutrieux, P., De Rydt, J. & Holland, P. R. The influence of Pine Island ice shelf calving on basal melting. J. Geophys. Res. Ocean. 127, e2022JC018621 (2022).

    Article  ADS  Google Scholar 

  244. Reese, R., Levermann, A., Albrecht, T., Seroussi, H. & Winkelmann, R. The role of history and strength of the oceanic forcing in sea level projections from Antarctica with the Parallel Ice Sheet Model. Cryosphere 14, 3097–3110 (2020).

    Article  ADS  Google Scholar 

  245. Jourdain, N. C. et al. A protocol for calculating basal melt rates in the ISMIP6 Antarctic Ice Sheet projections. Cryosphere 14, 3111–3134 (2020).

    Article  ADS  Google Scholar 

  246. Burgard, C., Jourdain, N. C., Reese, R., Jenkins, A. & Mathiot, P. An assessment of basal melt parameterisations for Antarctic ice shelves. Cryosphere 16, 4931–4975 (2022).

    Article  ADS  Google Scholar 

  247. Muntjewerf, L. et al. Description and demonstration of the coupled Community Earth System Model v2 - Community Ice Sheet Model v2 (CESM2-CISM2). J. Adv. Model. Earth Syst. 13, e2020MS002356 (2021).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  248. Siahaan, A. et al. The Antarctic contribution to 21st-century sea-level rise predicted by the UK Earth System Model with an interactive ice sheet. Cryosphere 16, 4053–4086 (2022).

    Article  ADS  Google Scholar 

  249. Diener, T. et al. Acceleration of dynamic ice loss in Antarctica from satellite gravimetry. Front. Earth Sci. 9, 741789 (2021).

    Article  Google Scholar 

  250. Ivins, E. R. et al. Antarctic contribution to sea level rise observed by GRACE with improved GIA correction. J. Geophys. Res. Solid Earth 118, 3126–3141 (2013).

    Article  ADS  Google Scholar 

  251. Sasgen, I. et al. Antarctic ice-mass balance 2003 to 2012: regional reanalysis of GRACE satellite gravimetry measurements with improved estimate of glacial-isostatic adjustment based on GPS uplift rates. Cryosphere 7, 1499–1512 (2013).

    Article  ADS  Google Scholar 

  252. Peltier, W. R., Argus, D. F. & Drummond, R. Space geodesy constrains ice age terminal deglaciation: the Global ICE-6G_C (VM5a) model. J. Geophys. Res. Solid Earth 120, 450–487 (2015).

    Article  ADS  Google Scholar 

  253. Khan, S. A. et al. Geodetic measurements reveal similarities between post-Last Glacial Maximum and present-day mass loss from the Greenland Ice Sheet. Sci. Adv. 2, e1600931 (2016).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  254. McKay, R. M. et al. in Antarctic Climate Evolution 2nd edn, (eds Florindo, F. et al.) 41–164 (2022).

  255. Dorschel, B. et al. The International Bathymetric Chart of the Southern Ocean version 2. Sci. Data 9, 275 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  256. Box, J. E. Greenland Ice Sheet mass balance reconstruction. Part II: surface mass balance (1840-2010). J. Clim. 26, 6974–6989 (2013).

    Article  ADS  Google Scholar 

  257. Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).

    Article  ADS  Google Scholar 

  258. Box, J. E. et al. Greenland Ice Sheet rainfall climatology, extremes and atmospheric river rapids. Meteorol. Appl. 30, e2134 (2023).

    Article  ADS  Google Scholar 

  259. Mouginot et al. Forty-six years of Greenland Ice Sheet mass balance from 1972 to 2018. Proc. Natl Acad. Sci. USA 116, 9239–9244 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  260. Sasgen et al. Arctic glaciers record wavier circumpolar winds. Nat. Clim. Chang. 12, 249–255 (2022).

    Article  ADS  Google Scholar 

  261. Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).

    Article  ADS  Google Scholar 

  262. Kanamitsu, M. et al. NCEP-DOE AMIP-II reanalysis (R-2). Bull. Am. Meteorol. Soc. 83, 1631–1643 (2002).

    Article  ADS  Google Scholar 

  263. Kobayashi, S. et al. The JRA-55 reanalysis: general specifications and basic characteristics. J. Meteorol. Soc. Jpn 93, 5–48 (2015).

    Article  ADS  Google Scholar 

  264. Gelaro, R. et al. The Modern-Era Retrospective analysis for Research and Applications, version 2 (MERRA-2). J. Clim. 30, 5419–5454 (2017).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the World Climate Research Programme’s Climate & Cryosphere core project, the International Arctic Science Committee and SCAR for co-sponsoring an ISMASS workshop that led to this collaboration. E.H. and A. Silvano acknowledge funding from NERC (NE/W005875/1, NE/Y000129/1 and NE/V014285/1). F.D.W.C. acknowledges funding from the Prince Albert II of Monaco Foundation. R.R. was supported by the TiPACCs project, which receives funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement number 820575. J.D.R. was supported by a UKRI Future Leaders Fellowship (grant agreement no MR/W011816/1). H.G. received funding from the EU’s Horizon 2020 Research and Innovation Programme under grant agreement number 869304, PROTECT and the Research Council of Norway under projects 295046 and 324639. L.D.S. acknowledges funding from the PNRA19_00022 project. F.C. acknowledges funding from the PNRA18_00002 project and from the SCAR INSTANT Programme. R.M. received funding from the EU’s Horizon Europe Programme under grant agreement number 101060452, OCEAN:ICE. I.S. acknowledges funding by the Helmholtz Climate Initiative REKLIM (Regional Climate Change), a joint research project of the Helmholtz Association of German Research Centres (HGF). A.G. acknowledges financial support from the New Zealand Ministry for Business Innovation and Employment (grant number ANTA1801; Antarctic Science Platform). The authors thank S. Hanna for the help with figure preparation.

Author information

Authors and Affiliations

Authors

Contributions

E.H. designed and co-ordinated the Review and raised support for the ISMASS workshop. E.H., J.E.B., S.B., F.D.W.C., C.H., M.M., D.T., L.D.S. and A. Silvano led the writing, and all authors contributed to the writing and discussion of ideas. I.S. designed Fig. 1, D.T. designed Figs. 2 and 5, F.C. designed Fig. 3 and J.E.B. designed Fig. 4.

Corresponding author

Correspondence to Edward Hanna.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Earth & Environment thanks Tom Cowton, Deborah Verfaillie and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Argo: https://argo.ucsd.edu/

ESA Harmony: https://www.eoportal.org/satellite-missions/harmony

MEOP: https://www.meop.net/

NISAR: https://nisar.jpl.nasa.gov/

RINGS: https://www.scar.org/science/rings/about/

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hanna, E., Topál, D., Box, J.E. et al. Short- and long-term variability of the Antarctic and Greenland ice sheets. Nat Rev Earth Environ 5, 193–210 (2024). https://doi.org/10.1038/s43017-023-00509-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43017-023-00509-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing