Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Firn on ice sheets

A Publisher Correction to this article was published on 12 February 2024

This article has been updated

Abstract

Most of the Greenland and Antarctic ice sheets are covered with firn — the transitional material between snow and glacial ice. Firn is vital for understanding ice-sheet mass balance and hydrology, and palaeoclimate. In this Review, we synthesize knowledge of firn, including its formation, observation, modelling and relevance to ice sheets. The refreezing of meltwater in the pore space of firn currently prevents 50% of meltwater in Greenland from running off into the ocean and protects Antarctic ice shelves from catastrophic collapse. Continued atmospheric warming could inhibit future protection against mass loss. For example, warming in Greenland has already contributed to a 5% reduction in firn pore space since 1980. All projections of future firn change suggest that surface meltwater will have an increasing impact on firn, with melt occurring tens to hundreds of kilometres further inland in Greenland, and more extensively on Antarctic ice shelves. Although progress in observation and modelling techniques has led to a well-established understanding of firn, the large uncertainties associated with meltwater percolation processes (refreezing, ice-layer formation and storage) must be reduced further. A tighter integration of modelling components (firn, atmosphere and ice-sheet models) will also be needed to better simulate ice-sheet responses to anthropogenic warming and to quantify future sea-level rise.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic representation of important ice-sheet features.
Fig. 2: Current metrics for firn on the Antarctic and Greenland ice sheets.
Fig. 3: Effects of meltwater on firn structure.
Fig. 4: Firn facies and features on the polar ice sheets.
Fig. 5: Modelling and observational techniques.
Fig. 6: Future metrics for firn on the Antarctic and Greenland ice sheets.

Similar content being viewed by others

Change history

References

  1. van den Broeke, M. Depth and density of the Antarctic firn layer. Arct. Antarct. Alp. Res. 40, 432–438 (2008).

    Article  ADS  Google Scholar 

  2. Medley, B., Neumann, T. A., Zwally, H. J., Smith, B. E. & Stevens, C. M. Simulations of firn processes over the Greenland and Antarctic ice sheets: 1980–2021. Cryosphere 16, 3971–4011 (2022).

    Article  ADS  Google Scholar 

  3. Brils, M., Kuipers Munneke, P., van de Berg, W. J. & van den Broeke, M. Improved representation of the contemporary Greenland ice sheet firn layer by IMAU-FDM v1.2G. Geosci. Model. Dev. 15, 7121–7138 (2022).

    Article  ADS  Google Scholar 

  4. Veldhuijsen, S. B. M., van de Berg, W. J., Brils, M., Kuipers Munneke, P. & van den Broeke, M. R. Characteristics of the 1979–2020 Antarctic firn layer simulated with IMAU-FDM v1.2A. Cryosphere 17, 1675–1696 (2023).

    Article  ADS  Google Scholar 

  5. Verjans, V. et al. Uncertainty in East Antarctic firn thickness constrained using a model ensemble approach. Geophys. Res. Lett. 48, e2020GL092060 (2021).

    Article  ADS  Google Scholar 

  6. Winther, J.-G., Jespersen, M. N. & Liston, G. E. Blue-ice areas in Antarctica derived from NOAA AVHRR satellite data. J. Glaciol. 47, 325–334 (2001).

    Article  ADS  Google Scholar 

  7. Noël, B., Lenaerts, J. T. M., Lipscomb, W. H., Thayer-Calder, K. & van den Broeke, M. R. Peak refreezing in the Greenland firn layer under future warming scenarios. Nat. Commun. 13, 6870 (2022).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  8. Noël, B. et al. Modelling the climate and surface mass balance of polar ice sheets using RACMO2 — Part 1: Greenland (1958–2016). Cryosphere 12, 811–831 (2018).

    Article  ADS  Google Scholar 

  9. van Wessem, J. M. et al. Modelling the climate and surface mass balance of polar ice sheets using RACMO2 — Part 2: Antarctica (1979–2016). Cryosphere 12, 1479–1498 (2018).

    Article  ADS  Google Scholar 

  10. Shepherd, A. et al. Mass balance of the Antarctic ice sheet from 1992 to 2017. Nature 558, 219–222 (2018).

    Article  ADS  Google Scholar 

  11. Kuipers Munneke, P. et al. Elevation change of the Greenland Ice Sheet due to surface mass balance and firn processes, 1960–2014. Cryosphere 9, 2009–2025 (2015).

    Article  ADS  Google Scholar 

  12. Ligtenberg, S. R. M., Horwath, M., van den Broeke, M. R. & Legrésy, B. Quantifying the seasonal ‘breathing’ of the Antarctic ice sheet. Geophys. Res. Lett. 39, L23501 (2012).

    Article  ADS  Google Scholar 

  13. van den Broeke, M. R. et al. Contrasting current and future surface melt rates on the ice sheets of Greenland and Antarctica: lessons from in situ observations and climate models. PLOS Clim. 2, e0000203 (2023).

    Article  Google Scholar 

  14. Jullien, N., Tedstone, A. J., Machguth, H., Karlsson, N. B. & Helm, V. Greenland ice sheet ice slab expansion and thickening. Geophys. Res. Lett. 50, e2022GL100911 (2023).

    Article  ADS  Google Scholar 

  15. Miller, O. et al. Hydrology of a perennial firn aquifer in southeast Greenland: an overview driven by field data. Water Resour. Res. 56, e2019WR026348 (2020).

    Article  ADS  Google Scholar 

  16. Montgomery, L. N. et al. Investigation of firn aquifer structure in southeastern Greenland using active source seismology. Front. Earth Sci. https://doi.org/10.3389/feart.2017.00010 (2017).

  17. Horlings, A. N., Christianson, K. & Miège, C. Expansion of firn aquifers in Southeast Greenland. J. Geophys. Res. Earth Surf. 127, e2022JF006753 (2022).

    Article  ADS  Google Scholar 

  18. Poinar, K. et al. Drainage of Southeast Greenland firn aquifer water through crevasses to the bed. Front. Earth Sci. 5, 5 (2017).

    Article  ADS  Google Scholar 

  19. Ligtenberg, S. R. M., van de Berg, W. J., van den Broeke, M. R., Rae, J. G. L. & van Meijgaard, E. Future surface mass balance of the Antarctic ice sheet and its influence on sea level change, simulated by a regional atmospheric climate model. Clim. Dyn. 41, 867–884 (2013).

    Article  Google Scholar 

  20. Lenaerts, J. T. M., Gettelman, A., Van Tricht, K., van Kampenhout, L. & Miller, N. B. Impact of cloud physics on the Greenland ice sheet near-surface climate: a study with the community atmosphere model. J. Geophys. Res. Atmos. 125, e2019JD031470 (2020).

    Article  ADS  Google Scholar 

  21. Vignon, É., Roussel, M.-L., Gorodetskaya, I. V., Genthon, C. & Berne, A. Present and future of rainfall in Antarctica. Geophys. Res. Lett. 48, e2020GL092281 (2021).

    Article  ADS  Google Scholar 

  22. Kittel, C. et al. Clouds drive differences in future surface melt over the Antarctic ice shelves. Cryosphere 16, 2655–2669 (2022).

    Article  ADS  Google Scholar 

  23. Fettweis, X. et al. Estimating the Greenland ice sheet surface mass balance contribution to future sea level rise using the regional atmospheric climate model MAR. Cryosphere 7, 469–489 (2013).

    Article  ADS  Google Scholar 

  24. Lenaerts, J. T. M., Medley, B., van den Broeke, M. R. & Wouters, B. Observing and modeling ice sheet surface mass balance. Rev. Geophys. 57, 376–420 (2019).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  25. Wang, W., Zender, C. S., van As, D., Fausto, R. S. & Laffin, M. K. Greenland surface melt dominated by solar and sensible heating. Geophys. Res. Lett. 48, e2020GL090653 (2021).

    Article  ADS  Google Scholar 

  26. Bennartz, R. et al. July 2012 Greenland melt extent enhanced by low-level liquid clouds. Nature 496, 83–86 (2013).

    Article  CAS  PubMed  ADS  Google Scholar 

  27. Lawson, R. P. & Gettelman, A. Impact of Antarctic mixed-phase clouds on climate. Proc. Natl. Acad. Sci. USA 111, 18156–18161 (2014).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  28. Amory, C. et al. Seasonal variations in drag coefficient over a sastrugi-covered snowfield in coastal East Antarctica. Bound. Layer Meteorol. 164, 107–133 (2017).

    Article  ADS  Google Scholar 

  29. Medley, B. & Thomas, E. R. Increased snowfall over the Antarctic Ice Sheet mitigated twentieth-century sea-level rise. Nat. Clim. Change 9, 34–39 (2019).

    Article  CAS  ADS  Google Scholar 

  30. Nicolas, J. P. et al. January 2016 extensive summer melt in West Antarctica favoured by strong El Niño. Nat. Commun. 8, 15799 (2017).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  31. Goodwin, B. P., Mosley-Thompson, E., Wilson, A. B., Porter, S. E. & Sierra-Hernandez, M. R. Accumulation variability in the Antarctic Peninsula: the role of large-scale atmospheric oscillations and their interactions. J. Clim. 29, 2579–2596 (2016).

    Article  ADS  Google Scholar 

  32. Marshall, G. J., Thompson, D. W. J. & van den Broeke, M. R. The signature of Southern Hemisphere atmospheric circulation patterns in Antarctic precipitation. Geophys. Res. Lett. 44(11), 580–11,589 (2017).

    Google Scholar 

  33. Pettersen, C., Henderson, S. A., Mattingly, K. S., Bennartz, R. & Breeden, M. L. The critical role of Euro-Atlantic blocking in promoting snowfall in central Greenland. J. Geophys. Res. Atmos. 127, e2021JD035776 (2022).

    Article  ADS  Google Scholar 

  34. Sodemann, H., Schwierz, C. & Wernli, H. Interannual variability of Greenland winter precipitation sources: Lagrangian moisture diagnostic and North Atlantic Oscillation influence. J. Geophys. Res. Atmos. https://doi.org/10.1029/2007JD008503 (2008).

  35. Pfeffer, W. T., Meier, M. F. & Illangasekare, T. H. Retention of Greenland runoff by refreezing: implications for projected future sea level change. J. Geophys. Res. Ocean. 96, 22117–22124 (1991).

    Article  ADS  Google Scholar 

  36. Trusel, L. D., Frey, K. E. & Das, S. B. Antarctic surface melting dynamics: enhanced perspectives from radar scatterometer data. J. Geophys. Res. Earth Surf. https://doi.org/10.1029/2011JF002126 (2012).

  37. Fettweis, X., Tedesco, M., van den Broeke, M. & Ettema, J. Melting trends over the Greenland ice sheet (1958–2009) from spaceborne microwave data and regional climate models. Cryosphere 5, 359–375 (2011).

    Article  ADS  Google Scholar 

  38. Amory, C. et al. Performance of MAR (v3.11) in simulating the drifting-snow climate and surface mass balance of Adélie Land, East Antarctica. Geosci. Model. Dev. 14, 3487–3510 (2021).

    Article  ADS  Google Scholar 

  39. Lenaerts, J. T. M. et al. Meltwater produced by wind–albedo interaction stored in an East Antarctic ice shelf. Nat. Clim. Change 7, 58–62 (2017).

    Article  ADS  Google Scholar 

  40. Arioli, S., Picard, G., Arnaud, L. & Favier, V. Dynamics of the snow grain size in a windy coastal area of Antarctica from continuous in situ spectral-albedo measurements. Cryosphere 17, 2323–2342 (2023).

    Article  ADS  Google Scholar 

  41. Brun, E. Investigation on wet-snow metamorphism in respect of liquid-water content. Ann. Glaciol. 13, 22–26 (1989).

    Article  ADS  Google Scholar 

  42. Box, J. E. et al. Greenland ice sheet albedo feedback: thermodynamics and atmospheric drivers. Cryosphere 6, 821–839 (2012).

    Article  ADS  Google Scholar 

  43. Jakobs, C. L., Reijmer, C. H., van den Broeke, M. R., van de Berg, W. J. & van Wessem, J. M. Spatial variability of the snowmelt–albedo feedback in Antarctica. J. Geophys. Res. Earth Surf. 126, e2020JF005696 (2021).

    Article  ADS  Google Scholar 

  44. Fettweis, X. et al. Reconstructions of the 1900–2015 Greenland ice sheet surface mass balance using the regional climate MAR model. Cryosphere 11, 1015–1033 (2017).

    Article  ADS  Google Scholar 

  45. MacFerrin, M. et al. Rapid expansion of Greenland’s low-permeability ice slabs. Nature 573, 403–407 (2019).

    Article  CAS  PubMed  ADS  Google Scholar 

  46. Machguth, H. et al. Greenland meltwater storage in firn limited by near-surface ice formation. Nat. Clim. Change 6, 390–393 (2016).

    Article  ADS  Google Scholar 

  47. Tedstone, A. J. & Machguth, H. Increasing surface runoff from Greenland’s firn areas. Nat. Clim. Change 12, 672–676 (2022).

    Article  ADS  Google Scholar 

  48. Hanna, E. et al. Greenland surface air temperature changes from 1981 to 2019 and implications for ice-sheet melt and mass-balance change. Int. J. Climatol. 41, E1336–E1352 (2021).

    Article  Google Scholar 

  49. Tedesco, M. & Fettweis, X. Unprecedented atmospheric conditions (1948–2019) drive the 2019 exceptional melting season over the Greenland ice sheet. Cryosphere 14, 1209–1223 (2020).

    Article  ADS  Google Scholar 

  50. Hanna, E. et al. Atmospheric and oceanic climate forcing of the exceptional Greenland ice sheet surface melt in summer 2012. Int. J. Climatol. 34, 1022–1037 (2014).

    Article  Google Scholar 

  51. Wille, J. D. et al. West Antarctic surface melt triggered by atmospheric rivers. Nat. Geosci. 12, 911–916 (2019).

    Article  CAS  ADS  Google Scholar 

  52. Box, J. E. et al. Greenland ice sheet rainfall, heat and albedo feedback impacts from the mid-August 2021 atmospheric river. Geophys. Res. Lett. 49, e2021GL097356 (2022).

    Article  ADS  Google Scholar 

  53. Turner, J. et al. The dominant role of extreme precipitation events in Antarctic snowfall variability. Geophys. Res. Lett. 46, 3502–3511 (2019).

    Article  ADS  Google Scholar 

  54. Mattingly, K. S., Mote, T. L. & Fettweis, X. Atmospheric river impacts on Greenland ice sheet surface mass balance. J. Geophys. Res. Atmos. 123, 8538–8560 (2018).

    Article  ADS  Google Scholar 

  55. Wille, J. D. et al. Antarctic atmospheric river climatology and precipitation impacts. J. Geophys. Res. Atmos. 126, e2020JD033788 (2021).

    Article  ADS  Google Scholar 

  56. Maclennan, M. L. et al. Climatology and surface impacts of atmospheric rivers on West Antarctica. Cryosphere 17, 865–881 (2023).

    Article  ADS  Google Scholar 

  57. Hofer, S., Tedstone, A. J., Fettweis, X. & Bamber, J. L. Decreasing cloud cover drives the recent mass loss on the Greenland ice sheet. Sci. Adv. 3, e1700584 (2017).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  58. Xu, Z., Han, Y., Tam, C.-Y., Yang, Z.-L. & Fu, C. Bias-corrected CMIP6 global dataset for dynamical downscaling of the historical and future climate (1979–2100). Sci. Data 8, 293 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Krinner, G. & Flanner, M. G. Striking stationarity of large-scale climate model bias patterns under strong climate change. Proc. Natl. Acad. Sci. USA 115, 9462–9466 (2018).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  60. Hofer, S., Tedstone, A. J., Fettweis, X. & Bamber, J. L. Cloud microphysics and circulation anomalies control differences in future Greenland melt. Nat. Clim. Change 9, 523–528 (2019).

    Article  ADS  Google Scholar 

  61. Delhasse, A., Hanna, E., Kittel, C. & Fettweis, X. Brief communication: CMIP6 does not suggest any atmospheric blocking increase in summer over Greenland by 2100. Int. J. Climatol. 41, 2589–2596 (2021).

    Article  Google Scholar 

  62. Colbeck, S. C. Sintering in a dry snow cover. J. Appl. Phys. 84, 4585–4589 (1998).

    Article  CAS  ADS  Google Scholar 

  63. Alley, R. B. Firn densification by grain-boundary sliding: a first model. J. Phys. Colloq. 48, C1–256 (1987).

    Article  ADS  Google Scholar 

  64. Calonne, N. et al. 3-D image-based numerical computations of snow permeability: links to specific surface area, density, and microstructural anisotropy. Cryosphere 6, 939–951 (2012).

    Article  ADS  Google Scholar 

  65. Spaulding, N. E., Meese, D. A. & Baker, I. Advanced microstructural characterization of four East Antarctic firn/ice cores. J. Glaciol. 57, 796–810 (2011).

    Article  CAS  ADS  Google Scholar 

  66. Vionnet, V. et al. The detailed snowpack scheme Crocus and its implementation in SURFEX v7.2. Geosci. Model. Dev. 5, 773–791 (2012).

    Article  ADS  Google Scholar 

  67. Helfricht, K., Hartl, L., Koch, R., Marty, C. & Olefs, M. Obtaining sub-daily new snow density from automated measurements in high mountain regions. Hydrol. Earth Syst. Sci. 22, 2655–2668 (2018).

    Article  CAS  ADS  Google Scholar 

  68. Wever, N. et al. Observations and simulations of new snow density in the drifting snow-dominated environment of Antarctica. J. Glaciol. 69, 823–840 (2022).

    Article  Google Scholar 

  69. Colbeck, S. C. An overview of seasonal snow metamorphism. Rev. Geophys. 20, 45–61 (1982).

    Article  ADS  Google Scholar 

  70. van Kampenhout, L. et al. Improving the representation of polar snow and firn in the Community Earth System Model. J. Adv. Model. Earth Syst. 9, 2583–2600 (2017).

    Article  Google Scholar 

  71. Herron, M. M. & Langway, C. C. Firn densification: an empirical model. J. Glaciol. 25, 373–385 (1980).

    Article  ADS  Google Scholar 

  72. Maeno, N. & Ebinuma, T. Pressure sintering of ice and its implication to the densification of snow at polar glaciers and ice sheets. J. Phys. Chem. 87, 4103–4110 (1983).

    Article  CAS  Google Scholar 

  73. Benson, C. S. Stratigraphic Studies in the Snow and Firn of the Greenland Ice Sheet.PhD thesis, California Institute of Technology https://doi.org/10.7907/G7V2-0T57 (1960).

  74. Colbeck, S. C. & Parssinen, N. Regelation and the deformation of wet snow. J. Glaciol. 21, 639–650 (1978).

    Article  CAS  ADS  Google Scholar 

  75. Flanner, M. G. & Zender, C. S. Linking snowpack microphysics and albedo evolution. J. Geophys. Res. Atmos. https://doi.org/10.1029/2005JD006834 (2006).

  76. Calonne, N. et al. Thermal conductivity of snow, firn, and porous ice from 3-D image-based computations. Geophys. Res. Lett. 46, 13079–13089 (2019).

    Article  ADS  Google Scholar 

  77. Arthern, R. J., Vaughan, D. G., Rankin, A. M., Mulvaney, R. & Thomas, E. R. In situ measurements of Antarctic snow compaction compared with predictions of models. J. Geophys. Res. Earth Surf. https://doi.org/10.1029/2009JF001306 (2010).

  78. Meyer, C. R., Keegan, K. M., Baker, I. & Hawley, R. L. A model for French-press experiments of dry snow compaction. Cryosphere 14, 1449–1458 (2020).

    Article  ADS  Google Scholar 

  79. Morris, E. M. & Wingham, D. J. Densification of polar snow: measurements, modeling, and implications for altimetry. J. Geophys. Res. Earth Surf. 119, 349–365 (2014).

    Article  ADS  Google Scholar 

  80. Lehning, M., Bartelt, P., Brown, B., Fierz, C. & Satyawali, P. A physical SNOWPACK model for the Swiss avalanche warning: Part II. Snow microstructure. Cold Reg. Sci. Technol. 35, 147–167 (2002).

    Article  Google Scholar 

  81. Blackford, J. R. Sintering and microstructure of ice: a review. J. Phys. Appl. Phys. 40, R355 (2007).

    Article  CAS  ADS  Google Scholar 

  82. Gow, A. J. On the rates of growth of grains and crystals in south polar firn. J. Glaciol. 8, 241–252 (1969).

    Article  CAS  ADS  Google Scholar 

  83. Stephenson, A. J. Some consideration of snow metamorphism in the Antarctic ice sheet in the light of ice crystal studies. Phys. Snow Ice 1, 725–740 (1967).

    Google Scholar 

  84. Adolph, A. & Albert, M. R. An improved technique to measure firn diffusivity. Int. J. Heat. Mass. Transf. 61, 598–604 (2013).

    Article  CAS  Google Scholar 

  85. Gregory, S. A., Albert, M. R. & Baker, I. Impact of physical properties and accumulation rate on pore close-off in layered firn. Cryosphere 8, 91–105 (2014).

    Article  ADS  Google Scholar 

  86. Courville, Z., Hörhold, M., Hopkins, M. & Albert, M. Lattice-Boltzmann modeling of the air permeability of polar firn. J. Geophys. Res. Earth Surf. https://doi.org/10.1029/2009JF001549 (2010).

  87. Albert, M. R. & Shultz, E. F. Snow and firn properties and air–snow transport processes at Summit, Greenland. Atmos. Environ. 36, 2789–2797 (2002).

    Article  CAS  ADS  Google Scholar 

  88. Albert, M. R. & Hawley, R. L. Seasonal changes in snow surface roughness characteristics at Summit, Greenland: implications for snow and firn ventilation. Ann. Glaciol. 35, 510–514 (2002).

    Article  ADS  Google Scholar 

  89. Fettweis, X. et al. GrSMBMIP: intercomparison of the modelled 1980–2012 surface mass balance over the Greenland Ice Sheet. Cryosphere 14, 3935–3958 (2020).

    Article  ADS  Google Scholar 

  90. Mouginot, J. et al. Forty-six years of Greenland ice sheet mass balance from 1972 to 2018. Proc. Natl. Acad. Sci. USA 116, 9239–9244 (2019).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  91. Agosta, C. et al. Estimation of the Antarctic surface mass balance using the regional climate model MAR (1979–2015) and identification of dominant processes. Cryosphere 13, 281–296 (2019).

    Article  ADS  Google Scholar 

  92. Yamaguchi, S., Watanabe, K., Katsushima, T., Sato, A. & Kumakura, T. Dependence of the water retention curve of snow on snow characteristics. Ann. Glaciol. 53, 6–12 (2012).

    Article  ADS  Google Scholar 

  93. Colbeck, S. C. The capillary effects on water percolation in homogeneous snow. J. Glaciol. 13, 85–97 (1974).

    Article  ADS  Google Scholar 

  94. Illangasekare, T. H., Walter, R. J. Jr., Meier, M. F. & Pfeffer, W. T. Modeling of meltwater infiltration in subfreezing snow. Water Resour. Res. 26, 1001–1012 (1990).

    Article  ADS  Google Scholar 

  95. Meyer, C. R. & Hewitt, I. J. A continuum model for meltwater flow through compacting snow. Cryosphere 11, 2799–2813 (2017).

    Article  ADS  Google Scholar 

  96. Avanzi, F., Hirashima, H., Yamaguchi, S., Katsushima, T. & De Michele, C. Observations of capillary barriers and preferential flow in layered snow during cold laboratory experiments. Cryosphere 10, 2013–2026 (2016).

    Article  ADS  Google Scholar 

  97. Cueto-Felgueroso, L. & Juanes, R. A phase field model of unsaturated flow. Water Resour. Res. https://doi.org/10.1029/2009WR007945 (2009).

  98. Jordan, R. Effects of capillary discontinuities on water flow retention in layered snow covers. Def. Sci. J. 45, 79–91 (1995).

    Article  Google Scholar 

  99. Hirashima, H., Avanzi, F. & Wever, N. Wet-snow metamorphism drives the transition from preferential to matrix flow in snow. Geophys. Res. Lett. 46, 14548–14557 (2019).

    Article  ADS  Google Scholar 

  100. Humphrey, N. F., Harper, J. T. & Pfeffer, W. T. Thermal tracking of meltwater retention in Greenland’s accumulation area. J. Geophys. Res. Earth Surf. https://doi.org/10.1029/2011JF002083 (2012).

  101. Heilig, A., Eisen, O., MacFerrin, M., Tedesco, M. & Fettweis, X. Seasonal monitoring of melt and accumulation within the deep percolation zone of the Greenland ice sheet and comparison with simulations of regional climate modeling. Cryosphere 12, 1851–1866 (2018).

    Article  ADS  Google Scholar 

  102. Humphrey, N. F., Harper, J. T. & Meierbachtol, T. W. Physical limits to meltwater penetration in firn. J. Glaciol. 67, 952–960 (2021).

    Article  ADS  Google Scholar 

  103. Pfeffer, W. T. & Humphrey, N. F. Determination of timing and location of water movement and ice-layer formation by temperature measurements in sub-freezing snow. J. Glaciol. 42, 292–304 (1996).

    Article  ADS  Google Scholar 

  104. Vandecrux, B. et al. Firn cold content evolution at nine sites on the Greenland ice sheet between 1998 and 2017. J. Glaciol. 66, 591–602 (2020).

    Article  ADS  Google Scholar 

  105. Braithwaite, R. J., Laternser, M. & Pfeffer, W. T. Variations of near-surface firn density in the lower accumulation area of the Greenland ice sheet, Pâkitsoq, West Greenland. J. Glaciol. 40, 477–485 (1994).

    Article  ADS  Google Scholar 

  106. Harper, J., Humphrey, N., Pfeffer, W. T., Brown, J. & Fettweis, X. Greenland ice-sheet contribution to sea-level rise buffered by meltwater storage in firn. Nature 491, 240–243 (2012).

    Article  CAS  PubMed  ADS  Google Scholar 

  107. Miège, C. et al. Spatial extent and temporal variability of Greenland firn aquifers detected by ground and airborne radars. J. Geophys. Res. Earth Surf. 121, 2381–2398 (2016).

    Article  ADS  Google Scholar 

  108. Forster, R. R. et al. Extensive liquid meltwater storage in firn within the Greenland ice sheet. Nat. Geosci. 7, 95–98 (2014).

    Article  CAS  ADS  Google Scholar 

  109. Bell, R. E., Banwell, A. F., Trusel, L. D. & Kingslake, J. Antarctic surface hydrology and impacts on ice-sheet mass balance. Nat. Clim. Change 8, 1044–1052 (2018).

    Article  ADS  Google Scholar 

  110. Warner, R. C. et al. rapid formation of an ice doline on Amery Ice Shelf, East Antarctica. Geophys. Res. Lett. 48, e2020GL091095 (2021).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  111. Culberg, R., Chu, W. & Schroeder, D. M. Shallow fracture buffers high elevation runoff in northwest Greenland. Geophys. Res. Lett. 49, e2022GL101151 (2022).

    Article  ADS  Google Scholar 

  112. Das, S. B. et al. Fracture propagation to the base of the Greenland ice sheet during supraglacial lake drainage. Science 320, 778–781 (2008).

    Article  CAS  PubMed  ADS  Google Scholar 

  113. Koenig, L. S. et al. Wintertime storage of water in buried supraglacial lakes across the Greenland ice sheet. Cryosphere 9, 1333–1342 (2015).

    Article  ADS  Google Scholar 

  114. Hubbard, B. et al. Massive subsurface ice formed by refreezing of ice-shelf melt ponds. Nat. Commun. 7, 11897 (2016).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  115. Munneke, P. K. M., Ligtenberg, S. R., van den Broeke, M. R., van Angelen, J. H. & Forster, R. R. Explaining the presence of perennial liquid water bodies in the firn of the Greenland ice sheet. Geophys. Res. Lett. 41, 476–483 (2014).

    Article  ADS  Google Scholar 

  116. Koenig, L. S., Miège, C., Forster, R. R. & Brucker, L. Initial in situ measurements of perennial meltwater storage in the Greenland firn aquifer. Geophys. Res. Lett. 41, 81–85 (2014).

    Article  ADS  Google Scholar 

  117. Miller, O. et al. Direct evidence of meltwater flow within a firn aquifer in southeast Greenland. Geophys. Res. Lett. 45, 207–215 (2018).

    Article  ADS  Google Scholar 

  118. Chu, W., Schroeder, D. M., & Siegfried, M. R. Retrieval of englacial firn aquifer thickness from ice-penetrating radar sounding in southeastern Greenland. Geophys. Res. Lett. 45, 11770–11778 (2018).

    Article  ADS  Google Scholar 

  119. Poinar, K., Dow, C. F. & Andrews, L. C. Long-term support of an active subglacial hydrologic system in southeast Greenland by firn aquifers. Geophys. Res. Lett. 46, 4772–4781 (2019).

    Article  ADS  Google Scholar 

  120. Montgomery, L. et al. Hydrologic properties of a highly permeable firn aquifer in the Wilkins ice shelf, Antarctica. Geophys. Res. Lett. 47, e2020GL089552 (2020).

    Article  ADS  Google Scholar 

  121. Fausto, R. S. et al. Programme for Monitoring of the Greenland Ice Sheet (PROMICE) automatic weather station data. Earth Syst. Sci. Data 13, 3819–3845 (2021).

    Article  ADS  Google Scholar 

  122. Smeets, P. C. J. P. et al. The K-transect in west Greenland: automatic weather station data (1993–2016). Arct. Antarct. Alp. Res. 50, S100002 (2018).

    Article  Google Scholar 

  123. Wang, Y. et al. The AntAWS dataset: a compilation of Antarctic automatic weather station observations. Earth Syst. Sci. Data 15, 411–429 (2023).

    Article  ADS  Google Scholar 

  124. Järvinen, O., Leppäranta, M. & Vehviläinen, J. One-year records from automatic snow stations in western Dronning Maud Land, Antarctica. Antarct. Sci. 25, 711–728 (2013).

    Article  ADS  Google Scholar 

  125. Kuipers Munneke, P. et al. Observationally constrained surface mass balance of Larsen C ice shelf, Antarctica. Cryosphere 11, 2411–2426 (2017).

    Article  ADS  Google Scholar 

  126. Rennermalm, Å. K. et al. Shallow firn cores 1989–2019 in southwest Greenland’s percolation zone reveal decreasing density and ice layer thickness after 2012. J. Glaciol. 68, 431–442 (2022).

    Article  ADS  Google Scholar 

  127. Vandecrux, B. et al. Firn data compilation reveals widespread decrease of firn air content in western Greenland. Cryosphere 13, 845–859 (2019).

    Article  ADS  Google Scholar 

  128. Thomas, E. R. et al. Regional Antarctic snow accumulation over the past 1000 years. Clim. Past. 13, 1491–1513 (2017).

    Article  Google Scholar 

  129. Brown, J., Harper, J., Pfeffer, W. T., Humphrey, N. & Bradford, J. High-resolution study of layering within the percolation and soaked facies of the Greenland ice sheet. Ann. Glaciol. 52, 35–42 (2011).

    Article  ADS  Google Scholar 

  130. Eisen, O., Wilhelms, F., Nixdorf, U. & Miller, H. Identifying isochrones in GPR profiles from DEP-based forward modeling. Ann. Glaciol. 37, 344–350 (2003).

    Article  ADS  Google Scholar 

  131. Arcone, S. A., Spikes, V. B. & Hamilton, G. S. Stratigraphic variation within polar firn caused by differential accumulation and ice flow: interpretation of a 400 MHz short-pulse radar profile from West Antarctica. J. Glaciol. 51, 407–422 (2005).

    Article  ADS  Google Scholar 

  132. Meehan, T. G. et al. Reconstruction of historical surface mass balance, 1984–2017 from GreenTrACS multi-offset ground-penetrating radar. J. Glaciol. 67, 219–228 (2021).

    Article  MathSciNet  ADS  Google Scholar 

  133. Kruetzmann, N. C., Rack, W., McDonald, A. J. & George, S. E. Snow accumulation and compaction derived from GPR data near Ross Island, Antarctica. Cryosphere 5, 391–404 (2011).

    Article  ADS  Google Scholar 

  134. Case, E. & Kingslake, J. Phase-sensitive radar as a tool for measuring firn compaction. J. Glaciol. 68, 139–152 (2022).

    Article  ADS  Google Scholar 

  135. Drews, R. et al. Constraining variable density of ice shelves using wide-angle radar measurements. Cryosphere 10, 811–823 (2016).

    Article  ADS  Google Scholar 

  136. Robin, G. de Q. Seismic shooting and related investigations. In Norwegian–British–Swedish Antarctic Expedition, 1949–52: Scientific Results Vol. 5 (Norsk Polarinstitutt, 1958).

  137. Kovacs, A., Gow, A. J. & Morey, R. M. The in-situ dielectric constant of polar firn revisited. Cold Reg. Sci. Technol. 23, 245–256 (1995).

    Article  Google Scholar 

  138. Diez, A. et al. Ice shelf structure derived from dispersion curve analysis of ambient seismic noise, Ross Ice Shelf, Antarctica. Geophys. J. Int. 205, 785–795 (2016).

    Article  ADS  Google Scholar 

  139. Chaput, J., Aster, R., Karplus, M. & Nakata, N. Ambient high-frequency seismic surface waves in the firn column of central west Antarctica. J. Glaciol. 68, 785–798 (2022).

    Article  ADS  Google Scholar 

  140. Zhou, W. et al. Seismic noise interferometry and distributed acoustic sensing (DAS): inverting for the firn layer S-velocity structure on Rutford ice stream, Antarctica. J. Geophys. Res. Earth Surf. 127, e2022JF006917 (2022).

    Article  ADS  Google Scholar 

  141. Diez, A. et al. Influence of ice crystal anisotropy on seismic velocity analysis. Ann. Glaciol. 55, 97–106 (2014).

    Article  ADS  Google Scholar 

  142. Pearce, E. et al. Characterising ice slabs in firn using seismic full waveform inversion, a sensitivity study. J. Glaciol. 69, 1419–1433 (2023).

    Article  ADS  Google Scholar 

  143. Schlegel, R. et al. Comparison of elastic moduli from seismic diving-wave and ice-core microstructure analysis in Antarctic polar firn. Ann. Glaciol. 60, 220–230 (2019).

    Article  ADS  Google Scholar 

  144. King, E. C. & Jarvis, E. P. Use of shear waves to measure Poisson’s ratio in polar firn. J. Environ. Eng. Geophys. 12, 15–21 (2007).

    Article  Google Scholar 

  145. Smith, E. C. et al. Ice fabric in an Antarctic ice stream interpreted from seismic anisotropy. Geophys. Res. Lett. 44, 3710–3718 (2017).

    Article  ADS  Google Scholar 

  146. Llorens, M.-G. et al. Can changes in deformation regimes be inferred from crystallographic preferred orientations in polar ice? Cryosphere 16, 2009–2024 (2022).

    Article  ADS  Google Scholar 

  147. Hollmann, H., Treverrow, A., Peters, L. E., Reading, A. M. & Kulessa, B. Seismic observations of a complex firn structure across the Amery ice shelf, East Antarctica. J. Glaciol. 67, 777–787 (2021).

    Article  ADS  Google Scholar 

  148. Otosaka, I. N. et al. Surface melting drives fluctuations in airborne radar penetration in west central Greenland. Geophys. Res. Lett. 47, e2020GL088293 (2020).

    Article  ADS  Google Scholar 

  149. Pritchard, H. D., Arthern, R. J., Vaughan, D. G. & Edwards, L. A. Extensive dynamic thinning on the margins of the Greenland and Antarctic ice sheets. Nature 461, 971–975 (2009).

    Article  CAS  PubMed  ADS  Google Scholar 

  150. Smith, B. et al. Pervasive ice sheet mass loss reflects competing ocean and atmosphere processes. Science 368, 1239–1242 (2020).

    Article  CAS  PubMed  ADS  Google Scholar 

  151. Helm, V., Humbert, A. & Miller, H. Elevation and elevation change of Greenland and Antarctica derived from CryoSat-2. Cryosphere 8, 1539–1559 (2014).

    Article  ADS  Google Scholar 

  152. McMillan, M. et al. A high-resolution record of Greenland mass balance. Geophys. Res. Lett. 43, 7002–7010 (2016).

    Article  ADS  Google Scholar 

  153. Simonsen, S. B. & Sørensen, L. S. Implications of changing scattering properties on Greenland ice sheet volume change from CryoSat-2 altimetry. Remote. Sens. Environ. 190, 207–216 (2017).

    Article  ADS  Google Scholar 

  154. Reeh, N. A nonsteady-state firn-densification model for the percolation zone of a glacier. J. Geophys. Res. Earth Surf. https://doi.org/10.1029/2007JF00074 (2008).

  155. Helsen, M. M. et al. Elevation changes in Antarctica mainly determined by accumulation variability. Science 320, 1626–1629 (2008).

    Article  CAS  PubMed  ADS  Google Scholar 

  156. Sørensen, L. S. et al. Mass balance of the Greenland ice sheet (2003–2008) from ICESat data — the impact of interpolation, sampling and firn density. Cryosphere 5, 173–186 (2011).

    Article  ADS  Google Scholar 

  157. Zwally, H. J. et al. Greenland ice sheet mass balance: distribution of increased mass loss with climate warming; 2003–07 versus 1992–2002. J. Glaciol. 57, 88–102 (2011).

    Article  ADS  Google Scholar 

  158. Grima, C., Blankenship, D. D., Young, D. A. & Schroeder, D. M. Surface slope control on firn density at Thwaites Glacier, West Antarctica: results from airborne radar sounding. Geophys. Res. Lett. 41, 6787–6794 (2014).

    Article  ADS  Google Scholar 

  159. Simonsen, S. B. et al. Assessing a multilayered dynamic firn-compaction model for Greenland with ASIRAS radar measurements. J. Glaciol. 59, 545–558 (2013).

    Article  ADS  Google Scholar 

  160. Medley, B. et al. Antarctic firn compaction rates from repeat-track airborne radar data: I. Methods. Ann. Glaciol. 56, 155–166 (2015).

    Article  ADS  Google Scholar 

  161. Scanlan, K. M., Rutishauser, A. & Simonsen, S. B. Observing the near-surface properties of the Greenland ice sheet. Geophys. Res. Lett. 50, e2022GL101702 (2023).

    Article  ADS  Google Scholar 

  162. Kuipers Munneke, P. et al. The K-transect on the western Greenland ice sheet: surface energy balance (2003–2016). Arct. Antarct. Alp. Res. 50, e1420952 (2018).

    Article  Google Scholar 

  163. Sihvola, A. & Tiuri, M. Snow fork for field determination of the density and wetness profiles of a snow pack. IEEE Trans. Geosci. Remote. Sens. GE-24, 717–721 (1986).

    Article  ADS  Google Scholar 

  164. Tiuri, M., Sihvola, A., Nyfors, E. & Hallikaiken, M. The complex dielectric constant of snow at microwave frequencies. IEEE J. Ocean. Eng. 9, 377–382 (1984).

    Article  ADS  Google Scholar 

  165. Kendra, J. R., Ulaby, F. T. & Sarabandi, K. Snow probe for in situ determination of wetness and density. IEEE Trans. Geosci. Remote. Sens. 32, 1152–1159 (1994).

    Article  ADS  Google Scholar 

  166. Techel, F. & Pielmeier, C. Point observations of liquid water content in wet snow — investigating methodical, spatial and temporal aspects. Cryosphere 5, 405–418 (2011).

    Article  ADS  Google Scholar 

  167. Fahnestock, M., Bindschadler, R., Kwok, R. & Jezek, K. Greenland ice sheet surface properties and ice dynamics from ERS-1 SAR imagery. Science 262, 1530–1534 (1993).

    Article  CAS  PubMed  ADS  Google Scholar 

  168. Alley, K. E., Scambos, T. A., Miller, J. Z., Long, D. G. & MacFerrin, M. Quantifying vulnerability of Antarctic ice shelves to hydrofracture using microwave scattering properties. Remote Sens. Environ. 210, 297–306 (2018).

    Article  ADS  Google Scholar 

  169. Bell, C. et al. Spatial and temporal variability in the snowpack of a High Arctic ice cap: implications for mass-change measurements. Ann. Glaciol. 48, 159–170 (2008).

    Article  ADS  Google Scholar 

  170. Campbell, J. L., Mitchell, M. J., Mayer, B., Groffman, P. M. & Christenson, L. M. Mobility of nitrogen-15-labeled nitrate and sulfur-34-labeled sulfate during snowmelt. Soil. Sci. Soc. Am. J. 71, 1934–1944 (2007).

    Article  CAS  ADS  Google Scholar 

  171. Clerx, N. et al. In situ measurements of meltwater flow through snow and firn in the accumulation zone of the SW Greenland ice sheet. Cryosphere 16, 4379–4401 (2022).

    Article  ADS  Google Scholar 

  172. Miller, O. L. et al. Hydraulic conductivity of a firn aquifer in southeast Greenland. Front. Earth Sci. 5, 38 (2017).

    Article  ADS  Google Scholar 

  173. Kulessa, B., Chandler, D., Revil, A. & Essery, R. Theory and numerical modeling of electrical self-potential signatures of unsaturated flow in melting snow. Water Resour. Res. 48, https://doi.org/10.1029/2012WR012048 (2012).

  174. Thompson, S. S., Kulessa, B., Essery, R. L. H. & Lüthi, M. P. Bulk meltwater flow and liquid water content of snowpacks mapped using the electrical self-potential (SP) method. Cryosphere 10, 433–444 (2016).

    Article  ADS  Google Scholar 

  175. Sommers, A. N. et al. Inferring firn permeability from pneumatic testing: a case study on the Greenland ice sheet. Front. Earth Sci. 5, 20 (2017).

    Article  ADS  Google Scholar 

  176. St. Clair, J. & Holbrook, W. S. Measuring snow water equivalent from common-offset GPR records through migration velocity analysis. Cryosphere 11, 2997–3009 (2017).

    Article  ADS  Google Scholar 

  177. Bradford, J. H., Harper, J. T. & Brown, J. Complex dielectric permittivity measurements from ground-penetrating radar data to estimate snow liquid water content in the pendular regime. Water Resour. Res. https://doi.org/10.1029/2009WR008959 (2009).

  178. Killingbeck, S. F. et al. Integrated borehole, radar, and seismic velocity analysis reveals dynamic spatial variations within a firn aquifer in southeast Greenland. Geophys. Res. Lett. 47, e2020GL089335 (2020).

    Article  ADS  Google Scholar 

  179. Legchenko, A. et al. Estimating water volume stored in the south-eastern Greenland firn aquifer using magnetic-resonance soundings. J. Appl. Geophys. 150, 11–20 (2018).

    Article  ADS  Google Scholar 

  180. Brangers, I. et al. Sentinel-1 detects firn aquifers in the Greenland ice sheet. Geophys. Res. Lett. 47, e2019GL085192 (2020).

    Article  ADS  Google Scholar 

  181. Kar, R., Aksoy, M., Kaurejo, D., Atrey, P. & Devadason, J. A. Antarctic firn characterization via wideband microwave radiometry. Remote Sens. 14, 2258 (2022).

    Article  ADS  Google Scholar 

  182. Naderpour, R. & Schwank, M. Snow wetness retrieved from L-band radiometry. Remote. Sens. 10, 359 (2018).

    Article  ADS  Google Scholar 

  183. Tape, K. D., Rutter, N., Marshall, H.-P., Essery, R. & Sturm, M. Recording microscale variations in snowpack layering using near-infrared photography. J. Glaciol. 56, 75–80 (2010).

    Article  ADS  Google Scholar 

  184. Dey, R. et al. Application of visual stratigraphy from line-scan images to constrain chronology and melt features of a firn core from coastal Antarctica. J. Glaciol. 69, 179–190 (2023).

    Article  ADS  Google Scholar 

  185. Sigl, M. et al. The WAIS divide deep ice core WD2014 chronology — Part 2: annual-layer counting (0–31 ka BP). Clim. Past. 12, 769–786 (2016).

    Article  Google Scholar 

  186. Nye, J. F. Correction factor for accumulation measured by the thickness of the annual layers in an ice sheet. J. Glaciol. 4, 785–788 (1963).

    Article  ADS  Google Scholar 

  187. Morris, E. M. & Cooper, J. D. Density measurements in ice boreholes using neutron scattering. J. Glaciol. 49, 599–604 (2003).

    Article  ADS  Google Scholar 

  188. Hori, A. et al. A detailed density profile of the Dome Fuji (Antarctica) shallow ice core by X-ray transmission method. Ann. Glaciol. 29, 211–214 (1999).

    Article  ADS  Google Scholar 

  189. Gerland, S. et al. Density log of a 181 m long ice core from Berkner Island, Antarctica. Ann. Glaciol. 29, 215–219 (1999).

    Article  ADS  Google Scholar 

  190. Sjögren, B. et al. Determination of firn density in ice cores using image analysis. J. Glaciol. 53, 413–419 (2007).

    Article  ADS  Google Scholar 

  191. Burr, A., Lhuissier, P., Martin, C. L. & Philip, A. In situ X-ray tomography densification of firn: the role of mechanics and diffusion processes. Acta Mater. 167, 210–220 (2019).

    Article  CAS  ADS  Google Scholar 

  192. Alley, R. B. & Anandakrishnan, S. Variations in melt-layer frequency in the GISP2 ice core: implications for Holocene summer temperatures in central Greenland. Ann. Glaciol. 21, 64–70 (1995).

    Article  ADS  Google Scholar 

  193. Parry, V. et al. Investigations of meltwater refreezing and density variations in the snowpack and firn within the percolation zone of the Greenland ice sheet. Ann. Glaciol. 46, 61–68 (2007).

    Article  ADS  Google Scholar 

  194. MacDonell, S., Fernandoy, F., Villar, P. & Hammann, A. Stratigraphic analysis of firn cores from an Antarctic ice shelf firn aquifer. Water 13, 731 (2021).

    Article  Google Scholar 

  195. Schwander, J. & Stauffer, B. Age difference between polar ice and the air trapped in its bubbles. Nature 311, 45–47 (1984).

    Article  CAS  ADS  Google Scholar 

  196. Sowers, T., Bender, M., Raynaud, D. & Korotkevich, Y. S. δ15N of N2 in air trapped in polar ice: a tracer of gas transport in the firn and a possible constraint on ice age–gas age differences. J. Geophys. Res. Atmos. 97, 15683–15697 (1992).

    Article  CAS  ADS  Google Scholar 

  197. Severinghaus, J. P., Sowers, T., Brook, E. J., Alley, R. B. & Bender, M. L. Timing of abrupt climate change at the end of the Younger Dryas interval from thermally fractionated gases in polar ice. Nature 391, 141–146 (1998).

    Article  CAS  ADS  Google Scholar 

  198. Suwa, M. & Bender, M. L. O2/N2 ratios of occluded air in the GISP2 ice core. J. Geophys. Res. Atmos. https://doi.org/10.1029/2007JD009589 (2008).

  199. Huber, C. et al. Isotope calibrated Greenland temperature record over Marine Isotope Stage 3 and its relation to CH4. Earth Planet. Sci. Lett. 243, 504–519 (2006).

    Article  CAS  ADS  Google Scholar 

  200. Kawamura, K. et al. Northern hemisphere forcing of climatic cycles in Antarctica over the past 360,000 years. Nature 448, 912–916 (2007).

    Article  CAS  PubMed  ADS  Google Scholar 

  201. Bender, M. L. Orbital tuning chronology for the Vostok climate record supported by trapped gas composition. Earth Planet. Sci. Lett. 204, 275–289 (2002).

    Article  CAS  ADS  Google Scholar 

  202. Fujita, S., Okuyama, J., Hori, A. & Hondoh, T. Metamorphism of stratified firn at Dome Fuji, Antarctica: a mechanism for local insolation modulation of gas transport conditions during bubble close off. J. Geophys. Res. Earth Surf. https://doi.org/10.1029/2008JF001143 (2009).

  203. Baggenstos, D. et al. A horizontal ice core from Taylor Glacier, its implications for Antarctic climate history, and an improved Taylor Dome ice core time scale. Paleoceanogr. Paleoclimatol. 33, 778–794 (2018).

    Article  ADS  Google Scholar 

  204. Buizert, C. The ice core gas age–ice age difference as a proxy for surface temperature. Geophys. Res. Lett. 48, e2021GL094241 (2021).

    Article  CAS  ADS  Google Scholar 

  205. Buizert, C. et al. Antarctic surface temperature and elevation during the Last Glacial Maximum. Science 372, 1097–1101 (2021).

    Article  CAS  PubMed  ADS  Google Scholar 

  206. Cuffey, K. M. et al. Large Arctic temperature change at the Wisconsin-Holocene glacial transition. Science 270, 455–458 (1995).

    Article  CAS  ADS  Google Scholar 

  207. Cuffey, K. M. et al. Deglacial temperature history of West Antarctica. Proc. Natl Acad. Sci. 113, 14249–14254 (2016).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  208. Schwander, J. et al. Age scale of the air in the summit ice: implication for glacial–interglacial temperature change. J. Geophys. Res. Atmos. 102, 19483–19493 (1997).

    Article  ADS  Google Scholar 

  209. Landais, A. et al. Firn-air δ15N in modern polar sites and glacial–interglacial ice: a model-data mismatch during glacial periods in Antarctica? Quat. Sci. Rev. 25, 49–62 (2006).

    Article  ADS  Google Scholar 

  210. Lundin, J. M. D. et al. Firn Model Intercomparison Experiment (FirnMICE). J. Glaciol. 63, 401–422 (2017).

    Article  ADS  Google Scholar 

  211. Morland, L. W., Kelly, R. J. & Morris, E. M. A mixture theory for a phase-changing snowpack. Cold Reg. Sci. Technol. 17, 271–285 (1990).

    Article  Google Scholar 

  212. Stevens, C. M. et al. The Community Firn Model (CFM) v1.0. Geosci. Model. Dev. 13, 4355–4377 (2020).

    Article  ADS  Google Scholar 

  213. Bader, H. Sorge’s law of densification of snow on high polar glaciers. J. Glaciol. 2, 319–323 (1954).

    Article  ADS  Google Scholar 

  214. Kingslake, J., Skarbek, R., Case, E. & McCarthy, C. Grain-size evolution controls the accumulation dependence of modelled firn thickness. Cryosphere 16, 3413–3430 (2022).

    Article  ADS  Google Scholar 

  215. Ligtenberg, S. R. M., Helsen, M. M. & van den Broeke, M. R. An improved semi-empirical model for the densification of Antarctic firn. Cryosphere 5, 809–819 (2011).

    Article  ADS  Google Scholar 

  216. Barnola, J.-M., Pimienta, P., Raynaud, D. & Korotkevich, Y. S. CO2–climate relationship as deduced from the Vostok ice core: a re-examination based on new measurements and on a re-evaluation of the air dating. Tellus B 43, 83 (1991).

    Article  ADS  Google Scholar 

  217. Goujon, C., Barnola, J.-M. & Ritz, C. Modeling the densification of polar firn including heat diffusion: application to close-off characteristics and gas isotopic fractionation for Antarctica and Greenland sites. J. Geophys. Res. Atmos. 108, 4792 (2003).

    Article  ADS  Google Scholar 

  218. Wilkinson, D. S. A pressure-sintering model for the densification of polar firn and glacier ice. J. Glaciol. 34, 40–45 (1988).

    Article  ADS  Google Scholar 

  219. Arnaud, L., Barnola, J.-M. & Duval, P. in Physics of Ice Core Records, 285–305 (Hokkaido Univ. Press, 2000).

  220. Theile, T., Löwe, H., Theile, T. C. & Schneebeli, M. Simulating creep of snow based on microstructure and the anisotropic deformation of ice. Acta Mater. 59, 7104–7113 (2011).

    Article  CAS  ADS  Google Scholar 

  221. Fourteau, K., Gillet-Chaulet, F., Martinerie, P. & Faïn, X. A micro-mechanical model for the transformation of dry polar firn into ice using the level-set method. Front. Earth Sci. 8, 101 (2020).

    Article  ADS  Google Scholar 

  222. Salamating, A. N. et al. in Physics of Ice Records II, Vol. 68, 195–222 (Hokkaido Univ. Press, 2009).

  223. Hörhold, M. W., Kipfstuhl, S., Wilhelms, F., Freitag, J. & Frenzel, A. The densification of layered polar firn. J. Geophys. Res. Earth Surf. https://doi.org/10.1029/2009JF001630 (2011).

  224. Schultz, T., Müller, R., Gross, D. & Humbert, A. On the contribution of grain boundary sliding type creep to firn densification — an assessment using an optimization approach. Cryosphere 16, 143–158 (2022).

    Article  ADS  Google Scholar 

  225. Morris, E. M., Montgomery, L. N. & Mulvaney, R. Modelling the transition from grain-boundary sliding to power-law creep in dry snow densification. J. Glaciol. 68, 417–430 (2022).

    Article  ADS  Google Scholar 

  226. Arnaud, L., Lipenkov, V., Barnola, J. M., Gay, M. & Duval, P. Modelling of the densification of polar firn: characterization of the snow–firn transition. Ann. Glaciol. 26, 39–44 (1998).

    Article  ADS  Google Scholar 

  227. Bréant, C., Martinerie, P., Orsi, A., Arnaud, L. & Landais, A. Modelling firn thickness evolution during the last deglaciation: constraints on sensitivity to temperature and impurities. Clim. Past. 13, 833–853 (2017).

    Article  Google Scholar 

  228. Freitag, J., Kipfstuhl, S., Laepple, T. & Wilhelms, F. Impurity-controlled densification: a new model for stratified polar firn. J. Glaciol. 59, 1163–1169 (2013).

    Article  CAS  ADS  Google Scholar 

  229. Morris, E. M. et al. Snow densification and recent accumulation along the iSTAR Traverse, Pine Island Glacier, Antarctica. J. Geophys. Res. Earth Surf. 122, 2284–2301 (2017).

    Article  ADS  Google Scholar 

  230. Horlings, A. N., Christianson, K., Holschuh, N., Stevens, C. M. & Waddington, E. D. Effect of horizontal divergence on estimates of firn-air content. J. Glaciol. 67, 287–296 (2021).

    Article  ADS  Google Scholar 

  231. Oraschewski, F. M. & Grinsted, A. Modeling enhanced firn densification due to strain softening. Cryosphere 16, 2683–2700 (2022).

    Article  ADS  Google Scholar 

  232. Gagliardini, O. & Meyssonnier, J. Flow simulation of a firn-covered cold glacier. Ann. Glaciol. 24, 242–248 (1997).

    Article  ADS  Google Scholar 

  233. Vandecrux, B. et al. The firn meltwater Retention Model Intercomparison Project (RetMIP): evaluation of nine firn models at four weather station sites on the Greenland ice sheet. Cryosphere 14, 3785–3810 (2020).

    Article  ADS  Google Scholar 

  234. Wever, N., Fierz, C., Mitterer, C., Hirashima, H. & Lehning, M. Solving Richards equation for snow improves snowpack meltwater runoff estimations in detailed multi-layer snowpack model. Cryosphere 8, 257–274 (2014).

    Article  ADS  Google Scholar 

  235. Gray, J. M. N. T. Water movement in wet snow. Philos. Trans. R. Soc. Lond. A 354, 465–500 (1997).

    ADS  Google Scholar 

  236. Wever, N., Würzer, S., Fierz, C. & Lehning, M. Simulating ice layer formation under the presence of preferential flow in layered snowpacks. Cryosphere 10, 2731–2744 (2016).

    Article  ADS  Google Scholar 

  237. Schneebeli, M. Development and stability of preferential flow paths in a layered snowpack. Biochem. Seas. Snow Cover. Catchments 228, 89–95 (1995).

    Google Scholar 

  238. Marchenko, S. et al. Parameterizing deep water percolation improves subsurface temperature simulations by a multilayer firn model. Front. Earth Sci. https://doi.org/10.3389/feart.2017.00016 (2017).

  239. Leroux, N. R., Marsh, C. B. & Pomeroy, J. W. Simulation of preferential flow in snow with a 2-D non-equilibrium Richards model and evaluation against laboratory data. Water Resour. Res. 56, e2020WR027466 (2020).

    Article  ADS  Google Scholar 

  240. Steger, C. R. et al. Firn meltwater retention on the Greenland ice sheet: a model comparison. Front. Earth Sci. 5, 3 (2017).

    Article  ADS  Google Scholar 

  241. Miller, O. et al. Hydrologic modeling of a perennial firn aquifer in southeast Greenland. J. Glaciol. 69, 607–622 (2023).

    Article  ADS  Google Scholar 

  242. Buizert, C. Ice core methods — studies of firn air. In Encyclopedia of Quaternary Science, 361–372 (Elsevier, 2013).

  243. Rommelaere, V., Arnaud, L. & Barnola, J.-M. Reconstructing recent atmospheric trace gas concentrations from polar firn and bubbly ice data by inverse methods. J. Geophys. Res. Atmos. 102, 30069–30083 (1997).

    Article  CAS  ADS  Google Scholar 

  244. Trudinger, C. M. et al. Modeling air movement and bubble trapping in firn. J. Geophys. Res. Atmos. 102, 6747–6763 (1997).

    Article  CAS  ADS  Google Scholar 

  245. Fabre, A., Barnola, J.-M., Arnaud, L. & Chappellaz, J. Determination of gas diffusivity in polar firn: comparison between experimental measurements and inverse modeling. Geophys. Res. Lett. 27, 557–560 (2000).

    Article  CAS  ADS  Google Scholar 

  246. Freitag, J., Dobrindt, U. & Kipfstuhl, J. A new method for predicting transport properties of polar firn with respect to gases on the pore-space scale. Ann. Glaciol. 35, 538–544 (2002).

    Article  ADS  Google Scholar 

  247. Trudinger, C. M. et al. How well do different tracers constrain the firn diffusivity profile? Atmos. Chem. Phys. 13, 1485–1510 (2013).

    Article  ADS  Google Scholar 

  248. Johnsen, S. J. et al. in Physics of Ice Core Records, Vol. 159 (ed. Hondoh, T.) 121–140 (Hokkaido Univ. Press, 2000).

  249. Johnsen, S. J. Stable isotope homogenization of polar firn and ice. Proc. Symp. Isot. Impurities Snow Ice 210–219 (IAHS-AISH, 1977).

  250. Jones, T. R. et al. Seasonal temperatures in West Antarctica during the Holocene. Nature 613, 292–297 (2023).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  251. Banwell, A. F., Wever, N., Dunmire, D. & Picard, G. Quantifying Antarctic-wide ice-shelf surface melt volume using microwave and firn model data: 1980 to 2021. Geophys. Res. Lett. 50, e2023GL102744 (2023).

    Article  ADS  Google Scholar 

  252. Kuipers Munneke, P. et al. Intense winter surface melt on an Antarctic Ice Shelf. Geophys. Res. Lett. 45, 7615–7623 (2018).

    Article  ADS  Google Scholar 

  253. Zazulie, N., Rusticucci, M. & Solomon, S. Changes in climate at high southern latitudes: a unique daily record at Orcadas spanning 1903–2008. J. Clim. 23, 189–196 (2010).

    Article  ADS  Google Scholar 

  254. Datta, R. T. et al. The effect of foehn-induced surface melt on firn evolution over the Northeast Antarctic Peninsula. Geophys. Res. Lett. 46, 3822–3831 (2019).

    Article  ADS  Google Scholar 

  255. Kuipers Munneke, P., Ligtenberg, S. R. M., Van Den Broeke, M. R. & Vaughan, D. G. Firn air depletion as a precursor of Antarctic ice-shelf collapse. J. Glaciol. 60, 205–214 (2014).

    Article  ADS  Google Scholar 

  256. Clem, K. R. & Raphael, M. N. Antarctica and the Southern Ocean. State of the Climate in 2022. Bull. Am. Meteor. Soc. 104 (Special Online Suppl.) S322–S365 (2023).

  257. Hörhold, M. et al. Modern temperatures in central–north Greenland warmest in past millennium. Nature 613, 503–507 (2023).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  258. Culberg, R., Schroeder, D. M. & Chu, W. Extreme melt season ice layers reduce firn permeability across Greenland. Nat. Commun. 12, 2336 (2021).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  259. Harper, J., Saito, J. & Humphrey, N. Cold season rain event has impact on Greenland’s firn layer comparable to entire summer melt season. Geophys. Res. Lett. 50, e2023GL103654 (2023).

    Article  ADS  Google Scholar 

  260. Kittel, C. et al. Diverging future surface mass balance between the Antarctic ice shelves and grounded ice sheet. Cryosphere 15, 1215–1236 (2021).

    Article  ADS  Google Scholar 

  261. Trusel, L. D. et al. Divergent trajectories of Antarctic surface melt under two twenty-first-century climate scenarios. Nat. Geosci. 8, 927–932 (2015).

    Article  CAS  ADS  Google Scholar 

  262. Donat-Magnin, M. et al. Future surface mass balance and surface melt in the Amundsen sector of the West Antarctic ice sheet. Cryosphere 15, 571–593 (2021).

    Article  ADS  Google Scholar 

  263. Gilbert, E. & Kittel, C. Surface melt and runoff on Antarctic ice shelves at 1.5°C, 2°C, and 4°C of future warming. Geophys. Res. Lett. 48, e2020GL091733 (2021).

    Article  ADS  Google Scholar 

  264. van Wessem, J. M., van den Broeke, M. R., Wouters, B. & Lhermitte, S. Variable temperature thresholds of melt pond formation on Antarctic ice shelves. Nat. Clim. Change 13, 161–166 (2023).

    Article  ADS  Google Scholar 

  265. Leeson, A. A. et al. Supraglacial lakes on the Greenland ice sheet advance inland under warming climate. Nat. Clim. Change 5, 51–55 (2015).

    Article  ADS  Google Scholar 

  266. Flowers, G. E. Hydrology and the future of the Greenland ice sheet. Nat. Commun. 9, 2729 (2018).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  267. Ashmore, D. W., Mair, D. W. F. & Burgess, D. O. Meltwater percolation, impermeable layer formation and runoff buffering on Devon Ice Cap, Canada. J. Glaciol. 66, 61–73 (2020).

    Article  ADS  Google Scholar 

  268. Samimi, S., Marshall, S. J. & MacFerrin, M. Meltwater penetration through temperate ice layers in the percolation zone at DYE-2, Greenland ice sheet. Geophys. Res. Lett. 47, e2020GL089211 (2020).

    Article  ADS  Google Scholar 

  269. Samimi, S., Marshall, S. J., Vandecrux, B. & MacFerrin, M. Time-domain reflectometry measurements and modeling of firn meltwater infiltration at DYE-2, Greenland. J. Geophys. Res. Earth Surf. 126, e2021JF006295 (2021).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  270. Hulbe, C. L. & Whillans, I. M. A method for determining ice-thickness change at remote locations using GPS. Ann. Glaciol. 20, 263–268 (1994).

    Article  ADS  Google Scholar 

  271. Hamilton, G. S., Whillans, I. M. & Morgan, P. J. First point measurements of ice-sheet thickness change in Antarctica. Ann. Glaciol. 27, 125–129 (1998).

    Article  ADS  Google Scholar 

  272. MacFerrin, M. J., Stevens, C. M., Vandecrux, B., Waddington, E. D. & Abdalati, W. The Greenland firn compaction verification and reconnaissance (FirnCover) dataset, 2013–2019. Earth Syst. Sci. Data 14, 955–971 (2022).

    Article  ADS  Google Scholar 

  273. Nicholls, K. W. et al. A ground-based radar for measuring vertical strain rates and time-varying basal melt rates in ice sheets and shelves. J. Glaciol. 61, 1079–1087 (2015).

    Article  ADS  Google Scholar 

  274. Katsushima, T., Adachi, S., Yamaguchi, S., Ozeki, T. & Kumakura, T. Nondestructive three-dimensional observations of flow finger and lateral flow development in dry snow using magnetic resonance imaging. Cold Reg. Sci. Technol. 170, 102956 (2020).

    Article  Google Scholar 

  275. Charalampidis, C. et al. Thermal tracing of retained meltwater in the lower accumulation area of the southwestern Greenland ice sheet. Ann. Glaciol. 57, 1–10 (2016).

    Article  Google Scholar 

  276. Webb, R. W., Jennings, K., Finsterle, S. & Fassnacht, S. R. Two-dimensional liquid water flow through snow at the plot scale in continental snowpacks: simulations and field data comparisons. Cryosphere 15, 1423–1434 (2021).

    Article  ADS  Google Scholar 

  277. Smith, B. E. et al. Evaluating Greenland surface-mass-balance and firn-densification data using ICESat-2 altimetry. Cryosphere 17, 789–808 (2023).

    Article  ADS  Google Scholar 

  278. Phan, X. V. et al. 1D-Var multilayer assimilation of X-band SAR data into a detailed snowpack model. Cryosphere 8, 1975–1987 (2014).

    Article  ADS  Google Scholar 

  279. Verjans, V. et al. Bayesian calibration of firn densification models. Cryosphere 14, 3017–3032 (2020).

    Article  ADS  Google Scholar 

  280. Prieur, C., Rabatel, A., Thomas, J.-B., Farup, I. & Chanussot, J. Machine learning approaches to automatically detect glacier snow lines on multi-spectral satellite images. Remote. Sens. 14, 3868 (2022).

    Article  ADS  Google Scholar 

  281. Wang, X. et al. A review of image super-resolution approaches based on deep learning and applications in remote sensing. Remote. Sens. 14, 5423 (2022).

    Article  CAS  ADS  Google Scholar 

  282. Hu, Z., Sun, Y., Kuipers Munneke, P., Lhermitte, S. & Zhu, X. Towards a spatially transferable super resolution model for downscaling Antarctic surface melt. In NeurIPS 2022 Workshop on Tackling Climate Change with Machine Learning (Climate Change AI, 2022).

  283. Rizzoli, P., Martone, M., Rott, H. & Moreira, A. Characterization of snow facies on the Greenland ice sheet observed by TanDEM-X interferometric SAR data. Remote. Sens. 9, 315 (2017).

    Article  ADS  Google Scholar 

  284. Dell, R. L. et al. Supervised classification of slush and ponded water on Antarctic ice shelves using Landsat 8 imagery — Corrigendum. J. Glaciol. 68, 415–416 (2022).

    Article  ADS  Google Scholar 

  285. Dunmire, D., Banwell, A. F., Wever, N., Lenaerts, J. T. M. & Datta, R. T. Contrasting regional variability of buried meltwater extent over 2 years across the Greenland ice sheet. Cryosphere 15, 2983–3005 (2021).

    Article  ADS  Google Scholar 

  286. Reichstein, M. et al. Deep learning and process understanding for data-driven Earth system science. Nature 566, 195–204 (2019).

    Article  CAS  PubMed  ADS  Google Scholar 

  287. Medley, B., Lenaerts, J. T. M., Dattler, M., Keenan, E. & Wever, N. Predicting Antarctic net snow accumulation at the kilometer scale and its impact on observed height changes. Geophys. Res. Lett. 49, e2022GL099330 (2022).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  288. Montgomery, L., Koenig, L. & Alexander, P. The SUMup dataset: compiled measurements of surface mass balance components over ice sheets and sea ice with analysis over Greenland. Earth Syst. Sci. Data 10, 1959–1985 (2018).

    Article  ADS  Google Scholar 

  289. Essery, R., Morin, S., Lejeune, Y. & Ménard, B. C. A comparison of 1701 snow models using observations from an alpine site. Adv. Water Resour. 55, 131–148 (2013).

    Article  ADS  Google Scholar 

  290. Levermann, A. & Winkelmann, R. A simple equation for the melt elevation feedback of ice sheets. Cryosphere 10, 1799–1807 (2016).

    Article  ADS  Google Scholar 

  291. Kuiper, E.-J. N. et al. Using a composite flow law to model deformation in the NEEM deep ice core, Greenland — Part 2: The role of grain size and premelting on ice deformation at high homologous temperature. Cryosphere 14, 2449–2467 (2020).

    Article  ADS  Google Scholar 

  292. Schneider, A. M., Zender, C. S. & Price, S. F. More realistic intermediate depth dry firn densification in the energy exascale Earth System Model (E3SM). J. Adv. Model. Earth Syst. 14, e2021MS002542 (2022).

    Article  ADS  Google Scholar 

  293. Lambin, C., Fettweis, X., Kittel, C., Fonder, M. & Ernst, D. Assessment of future wind speed and wind power changes over south Greenland using the Modèle Atmosphérique Régional regional climate model. Int. J. Climatol. 43, 558–574 (2022).

    Article  Google Scholar 

  294. Fretwell, P. et al. Bedmap2: improved ice bed, surface and thickness datasets for Antarctica. Cryosphere 7, 375–393 (2013).

    Article  ADS  Google Scholar 

  295. Johnson, A., Hock, R. & Fahnestock, M. Spatial variability and regional trends of Antarctic ice shelf surface melt duration over 1979–2020 derived from passive microwave data. J. Glaciol. 68, 533–546 (2022).

    Article  ADS  Google Scholar 

  296. Das, I. et al. Influence of persistent wind scour on the surface mass balance of Antarctica. Nat. Geosci. 6, 367–371 (2013).

    Article  CAS  ADS  Google Scholar 

  297. Hui, F. et al. Mapping blue-ice areas in Antarctica using ETM+ and MODIS data. Ann. Glaciol. 55, 129–137 (2014).

    Article  ADS  Google Scholar 

  298. Morlighem, M. et al. BedMachine v3: complete bed topography and ocean bathymetry mapping of Greenland from multibeam echo sounding combined with mass conservation. Geophys. Res. Lett. 44, 11051–11061 (2017).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  299. Ryan, J. C. et al. Greenland ice sheet surface melt amplified by snowline migration and bare ice exposure. Sci. Adv. 5, eaav3738 (2019).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  300. Zheng, L. et al. Greenland ice sheet daily surface melt flux observed from space. Geophys. Res. Lett. 49, e2021GL096690 (2022).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This Review is the result of the International Firn Symposium held online in June 2022, which was intentionally collaborative and inclusive in its setup. No travel or participation expenses were required. Junior and senior scientists were paired for writing the sections. As such, this paper is written as a team effort without a specified author order. We thank all symposium participants for their contributions and discussions. We also thank K. Poinar for her feedback on the representation of hydrological features in Fig. 1.

Author information

Authors and Affiliations

Consortia

Contributions

P.K.M. led the Introduction. C.A., N.H. and R.T.D. led ‘Atmospheric forcing’. I.McD. and C.M.S. led ‘Firn properties’. R.C. and C.M. led ‘Firn hydrology’. R.De., D.Ma., D.Mo., E.R.T., R.Dr., E.P., S.S., S.deR.H., C.B., C.E. and K.K. led ‘Firn observations’. A.H., E.M., F.M.O. and T.S. led ‘Modelling dry firn densification’. S.B. and J.M. led ‘Modelling wet firn and firn hydrology’. C.B. led ‘Modelling chemical tracer transport’. C.A. and R.T.D. led ‘The changing ice-sheet and ice-shelf firn’. E.C., D.D., S.L., N.-J.S., M.T.-M., N.W. and B.W. led the ‘Summary and future perspectives’. N.C. and A.K. contributed to earlier drafts of the manuscript. Figs. 1 and 3 were created by R.T.D., Figs. 2 and 6 by C.A., Fig. 4 by R.C., and Fig. 5 by S.deR.H. J.T.M.L. and N.W. coordinated the International Firn Symposium that resulted in this Review. R.T.D, P.K.M. and N.W. coordinated the paper writing and did the final editing.

Corresponding author

Correspondence to Nander Wever.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Earth & Environment thanks Baptiste Vandecrux, Vincent Verjans and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Ablation zone

An ice-sheet region with negative yearly local surface mass balance.

Accumulation

The increase in mass at the surface of the ice sheet caused by precipitation, or the deposition of wind-transported snow.

Atmospheric blocking

The presence of large-scale, nearly stationary pressure anomalies generally driven by high pressure in the atmosphere, which disrupt the mean storm track and can cause persistent weather (especially temperature extremes) in a large area, lasting several days or even weeks.

Backscatter modelling

Modelling the interaction (reflection, refraction and scattering) of electromagnetic waves with the ice-sheet surface.

Blue-ice areas

Areas with sufficient negative surface mass balance to expose the bare glacial ice.

Bucket models

Simple description of liquid water flow in models, in which capillarity is represented by a threshold of liquid water content that must be reached in a layer before water moves downward to the layer below.

Buried lake

Also known as subsurface lakes. Liquid water body in the firn, formed when a surface lake freezes over and gets buried by snowfall. To be distinguished from aquifers, which denote saturation of the pore space in firn.

Capillary barrier

Strong contrast in capillarity between two snow layers owing to contrasting snow microstructure properties, which inhibits the downward percolation of water.

Coffee-can method

A method to measure firn compaction by anchoring a string or pole at the bottom of a borehole and measuring the surface-height change relative to a reference point on the string or pole. So named because the original anchors were coffee cans.

Darcy’s law

A relationship between flow rate and pressure drop, governed by the permeability of the medium and the viscosity of the fluid that describes flow through a fully saturated porous medium.

Deep firn cores

Firn cores reaching deeper than approximately 15 m, such that elaborate equipment is often required to extract the core.

Dry snow zone

Area of the firn that remains dry throughout the year.

Elastic properties

Material properties that define the response of a material to the application of a force, for example by deformation or compression.

Empirical densification laws

Densification laws that use parameters derived from observed depth–density profiles.

Firn air content

A measure of the amount of air-filled pore space in the firn, computed as the volume integral over the porosity.

Firn aquifers

Areas inside the firn with full saturation of meltwater, which remains liquid throughout winter until the start of the next melt season.

Fractionation

Separation of molecules with different isotopic compositions caused by pore close-off, temperature differences or the presence of a temperature gradient.

Glacial ice

Part of the ice sheet where the pores in the matrix are closed off all the way to the bedrock (typical density >830 kg m–3).

Metamorphism

Changes in the microstructure of firn caused by vapour transport, the presence and flow of liquid water, and variations in pressure within the snow or firn cover.

Percolation zone

Area of the firn with sufficient meltwater production or rainwater input to trigger downward water flow.

Permeability

In the context of firn, it indicates the ability of liquids and gases to move through the ice matrix.

Permittivity

A measure of a material’s ability to interact with, and become polarized by, an applied electric field, thereby governing the transmission, reflection and absorption of electromagnetic waves in the material.

Pore close-off

State of the ice matrix at which the firn air becomes occluded into closed, isolated bubbles and the individual pores are no longer connected and thus cannot exchange gases, chemicals or liquid water.

Preferential flow

Inhomogeneous water flow in firn caused by microstructural features such as vertical pipes, small-scale spatial variability in hydraulic properties, or flow fingering resulting from instabilities in the wetting front.

Runoff

Liquid water leaving the firn column, firn layer or ice sheet, depending on the context. Surface runoff refers specifically to water leaving the firn at the surface.

Runoff area

Area of the firn in which at least some of the meltwater produced will leave the firn layer through surface runoff or drainage through the englacial drainage system in the same melt season it was produced.

Sastrugi

Surface snow bedform, which is widespread in environments dominated by drifting snow, characterized by elongated ridges of wind-packed snow that form owing to snow erosional processes carving into wind-packed snow.

Semi-empirical

Empirical approach that satisfies the principles of continuum mechanics, such as balance equations and material theory.

Shallow firn cores

Firn cores up to approximately 15 m depth. Typically obtained using hand drilling or only lightweight equipment.

Sintering

The formation and growth of bonds between snow particles.

Slug tests

Test to determine the horizontal hydraulic conductivity of a saturated medium by removing, adding or displacing water and monitoring the water level while equilibrium conditions return.

Slush fields

Areas of the firn where meltwater can be observed at the surface, suggesting a high degree of water saturation.

Strain softening

Reduction of a material’s viscosity with increasing strain as it is deformed.

Super-resolution downscaling

A technique typically used in machine learning to construct high-resolution images from low-resolution images.

Wetting front

Separation between uniformly wet and dry firn.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

The Firn Symposium team. Firn on ice sheets. Nat Rev Earth Environ 5, 79–99 (2024). https://doi.org/10.1038/s43017-023-00507-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43017-023-00507-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing