Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The physical mechanisms of induced earthquakes

Abstract

Anthropogenic operations involving underground fluid extraction or injection can cause unexpectedly large and even damaging earthquakes, despite operational and regulatory efforts. In this Review, we explore the physical mechanisms of induced seismicity and their fundamental applications to modelling, forecasting, monitoring and mitigating induced earthquakes. The primary mechanisms of injection-induced earthquakes considered important for creating stress perturbations include pore-pressure diffusion, poroelastic coupling, thermoelastic stresses, earthquake interactions and aseismic slip. Extraction-induced earthquakes are triggered by differential compaction linked with poroelastic effects and reservoir creep. Secondary mechanisms include reducing the rock mass strength subject to stress corrosion, dynamic weakening and cohesion loss. However, constraining the maximum magnitude, Mmax, of a potential earthquake on the basis of physical process understanding is still challenging. Common Mmax theories are based on injection volume as the single source of strain, which might not be efficient in seismically active regions. Alternative time-based Mmax models have the potential to explain why some induced earthquake events tap into tectonic strain and lead to runaway ruptures (in which the rupture front extends beyond the perturbed rock volume). Developments in physics-based forecasting and potential future success in mitigation of induced-seismic risk could help increase the acceptance of emerging energy technologies such as enhanced geothermal systems and underground gas storage during the sustainable transition.

Key points

  • Induced earthquakes are primarily triggered by stress perturbations that destabilize pre-existing critically stressed faults. However, industrial operations can also reactivate faults that were not initially critically stressed.

  • The major triggering mechanism of injection-induced seismicity is pore-pressure diffusion, which reduces the normal stress acting on fractures and fault planes. The main mechanism of extraction-induced seismicity is poroelasticity, which affects the stress field in the surrounding rock formations and can trigger earthquakes.

  • The occurrence of large-magnitude-induced earthquake events supports the hypothesis that the maximum earthquake magnitude is likely controlled by regional tectonics. Particularly, in seismically active regions, the tectonic source of strain often controls the extent of rupture on critically stressed faults.

  • Fluid injection volume is not the only controlling parameter of maximum earthquake magnitude, and other factors such as the time elapsed from beginning of fluid extraction or injection (the triggering time) might have a substantial role. Triggering time is likely related to the time required to perturb the stress or strength of pre-existing faults.

  • Accurate estimates of maximum magnitude can be aided when an inventory of pre-existing critically stressed faults, detailed in situ stress information and a physical understanding of the processes that control the rupture dynamics are available.

  • Experiments in in situ underground laboratories with extensive monitoring systems and well-characterized rock mass provide a unique opportunity to test the methodological advances in managing seismicity and the effectiveness of numerical models at resolving coupled processes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Industrial activities that can cause induced seismicity.
Fig. 2: Increase in induced seismicity related to industrial operations.
Fig. 3: Calculating maximum magnitudes of induced earthquakes.
Fig. 4: The operation and induced seismicity feedback loop.

Similar content being viewed by others

References

  1. Kim, K.-H. et al. Assessing whether the 2017 Mw 5.4 Pohang earthquake in South Korea was an induced event. Science 360, 1007–1009 (2018).

    Article  Google Scholar 

  2. Zöller, G. & Hainzl, S. Seismicity scenarios for the remaining operating period of the gas field in Groningen, Netherlands. Seismol. Res. Lett. 94, 805–812 (2023).

    Article  Google Scholar 

  3. Lengliné, O. et al. The largest induced earthquakes during the GEOVEN deep geothermal project, Strasbourg, 2018–2022: from source parameters to intensity maps. Geophys. J. Int. 234, 2445–2457 (2023).

    Article  Google Scholar 

  4. Foulger, G. R., Wilson, M. P., Gluyas, J. G., Julian, B. R. & Davies, R. J. Global review of human-induced earthquakes. Earth Sci. Rev. 178, 438–514 (2018).

    Article  Google Scholar 

  5. Evans, Z. A., Kraft, T., Deichmann, N. & Moia, F. A survey of the induced seismic responses to fluid injection in geothermal and CO2 reservoirs in Europe. Geothermics 41, 30–54 (2012).

    Article  Google Scholar 

  6. McGarr, A., Simpson, D., Seeber, L. & Lee, W. Case histories of induced and triggered seismicity. Int. Geophys. Ser. 81, 647–664 (2002).

    Article  Google Scholar 

  7. Amann, F. et al. The seismo-hydro-mechanical behaviour during deep geothermal reservoir stimulations: open question tackled in a decameter-scale in-situ stimulation experiment. Solid Earth Discuss. 2017, se-2017–se-2079 (2017).

    Google Scholar 

  8. Gischig, V. S. et al. Hydraulic stimulation and fluid circulation experiments in underground laboratories: stepping up the scale towards engineered geothermal systems. Geomech. Energy Environ. 24, 100175 (2019).

    Article  Google Scholar 

  9. Kneafsey, T. J. et al. in Proceedings of the 45th Workshop on Geothermal Reservoir Engineering 10–12 (Stanford, CA, USA, 2019).

  10. Zang, A. et al. How to reduce fluid-injection-induced seismicity. Rock Mech. Rock Eng. 52, 475–493 (2019).

    Article  Google Scholar 

  11. Kwiatek, G. et al. Controlling fluid-induced seismicity during a 6.1-km-deep geothermal stimulation in Finland. Sci. Adv. 5, eaav7224 (2019).

    Article  Google Scholar 

  12. Schultz, R., Beroza, G. C. & Ellsworth, W. L. A risk-based approach for managing hydraulic fracturing–induced seismicity. Science 372, 504–507 (2021).

    Article  Google Scholar 

  13. Li, Z. et al. Constraining maximum event magnitude during injection-triggered seismicity. Nat. Commun. 12, 1528 (2021).

    Article  Google Scholar 

  14. Shapiro, S. A., Kim, K.-H. & Ree, J.-H. Magnitude and nucleation time of the 2017 Pohang Earthquake point to its predictable artificial triggering. Nat. Commun. 12, 6397 (2021).

    Article  Google Scholar 

  15. Li, L. et al. A review of the current status of induced seismicity monitoring for hydraulic fracturing in unconventional tight oil and gas reservoirs. Fuel 242, 195–210 (2019).

    Article  Google Scholar 

  16. Grigoli, F. et al. Current challenges in monitoring, discrimination, and management of induced seismicity related to underground industrial activities: a European perspective. Rev. Geophys. 55, 310–340 (2017).

    Article  Google Scholar 

  17. Gaucher, E. et al. Induced seismicity in geothermal reservoirs: a review of forecasting approaches. Renew. Sustain. Energy Rev. 52, 1473–1490 (2015).

    Article  Google Scholar 

  18. Atkinson, G. M., Eaton, D. W. & Igonin, N. Developments in understanding seismicity triggered by hydraulic fracturing. Nat. Rev. Earth Environ. 1, 264–277 (2020).

    Article  Google Scholar 

  19. Schultz, R. et al. Hydraulic fracturing-induced seismicity. Rev. Geophys. 58, e2019RG000695 (2020).

    Article  Google Scholar 

  20. Suckale, J. Moderate-to-large seismicity induced by hydrocarbon production. Lead. Edge 29, 310–319 (2010).

    Article  Google Scholar 

  21. Keranen, K. M. & Weingarten, M. Induced seismicity. Ann. Rev. Earth Planet. Sci. 46, 149–174 (2018).

    Article  Google Scholar 

  22. Ellsworth, W. L. Injection-induced earthquakes. Science 341, 1225942 (2013).

    Article  Google Scholar 

  23. Rathnaweera, T. D., Wu, W., Ji, Y. & Gamage, R. P. Understanding injection-induced seismicity in enhanced geothermal systems: from the coupled thermo-hydro-mechanical-chemical process to anthropogenic earthquake prediction. Earth Sci. Rev. 205, 103182 (2020).

    Article  Google Scholar 

  24. Zang, A. et al. Analysis of induced seismicity in geothermal reservoirs — an overview. Geothermics 52, 6–21 (2014).

    Article  Google Scholar 

  25. Li, T., Cai, M. & Cai, M. A review of mining-induced seismicity in China. Int. J. Rock Mech. Min. Sci. 44, 1149–1171 (2007).

    Article  Google Scholar 

  26. White, J. A. & Foxall, W. Assessing induced seismicity risk at CO2 storage projects: recent progress and remaining challenges. Int. J. Greenh. Gas Control 49, 413–424 (2016).

    Article  Google Scholar 

  27. Rutqvist, J. et al. Fault activation and induced seismicity in geological carbon storage — lessons learned from recent modeling studies. J. Rock Mech. Geotech. Eng. 8, 789–804 (2016).

    Article  Google Scholar 

  28. Grigoli, F. et al. The November 2017 Mw 5.5 Pohang earthquake: a possible case of induced seismicity in South Korea. Science 360, 1003–1006 (2018).

    Article  Google Scholar 

  29. Häring, M. O., Schanz, U., Ladner, F. & Dyer, B. C. Characterisation of the Basel 1 enhanced geothermal system. Geothermics 37, 469–495 (2008).

    Article  Google Scholar 

  30. Schmittbuhl, J. et al. Induced and triggered seismicity below the city of Strasbourg, France from November 2019 to January 2021. Comptes Rendus Géosci. 353, 561–584 (2021).

    Article  Google Scholar 

  31. Barton, N. A review of mechanical over-closure and thermal over-closure of rock joints: potential consequences for coupled modelling of nuclear waste disposal and geothermal energy development. Tunn. Undergr. Space Technol. 99, 103379 (2020).

    Article  Google Scholar 

  32. Zoback, M. D., Kohli, A., Das, I. & McClure, M. in SPE Americas Unconventional Resources Conference (OnePetro, 2017).

  33. Eaton, D. W. Passive Seismic Monitoring of Induced Seismicity: Fundamental Principles and Application to Energy Technologies (Cambridge Univ. Press, 2018).

  34. Bao, X. & Eaton, D. W. Fault activation by hydraulic fracturing in western Canada. Science 354, 1406–1409 (2016).

    Article  Google Scholar 

  35. Schultz, R. & Wang, R. Newly emerging cases of hydraulic fracturing induced seismicity in the Duvernay East Shale Basin. Tectonophysics 779, 228393 (2020).

    Article  Google Scholar 

  36. Atkinson, G. M. et al. Hydraulic fracturing and seismicity in the Western Canada Sedimentary Basin. Seismol. Res. Lett. 87, 631–647 (2016).

    Article  Google Scholar 

  37. Brudzinski, M. R. & Kozłowska, M. Seismicity induced by hydraulic fracturing and wastewater disposal in the Appalachian Basin, USA: a review. Acta Geophys. 67, 351–364 (2019).

    Article  Google Scholar 

  38. Schultz, R., Atkinson, G., Eaton, D. W., Gu, Y. J. & Kao, H. Hydraulic fracturing volume is associated with induced earthquake productivity in the Duvernay play. Science 359, 304–308 (2018).

    Article  Google Scholar 

  39. Galloway, E., Hauck, T., Corlett, H., Pană, D. & Schultz, R. Faults and associated karst collapse suggest conduits for fluid flow that influence hydraulic fracturing-induced seismicity. Proc. Natl Acad. Sci. USA 115, E10003–E10012 (2018).

    Article  Google Scholar 

  40. Pawley, S. et al. The geological susceptibility of induced earthquakes in the Duvernay play. Geophys. Res. Lett. 45, 1786–1793 (2018).

    Article  Google Scholar 

  41. Zhao, Y. et al. The 2021 Ms 6.0 Luxian (China) earthquake: blind reverse-fault rupture in deep sedimentary formations likely induced by pressure perturbation from hydraulic fracturing. Geophys. Res. Lett. 50, e2023GL103209 (2023).

    Article  Google Scholar 

  42. Meng, L., McGarr, A., Zhou, L. & Zang, Y. An investigation of seismicity induced by hydraulic fracturing in the Sichuan Basin of China based on data from a temporary seismic network. Bull. Seismol. Soc. Am. 109, 348–357 (2019).

    Article  Google Scholar 

  43. Wang, B. et al. A study on the largest hydraulic fracturing induced earthquake in Canada: numerical modeling and triggering mechanism. Bull. Seismol. Soc. Am. 111, 1392–1404 (2021).

    Article  Google Scholar 

  44. Pollyea, R. M. et al. A new perspective on the hydraulics of oilfield wastewater disposal: how PTX conditions affect fluid pressure transients that cause earthquakes. Energy Environ. Sci. 13, 3014–3031 (2020).

    Article  Google Scholar 

  45. Schultz, R. et al. Disposal from in situ bitumen recovery induced the ML 5.6 Peace River earthquake. Geophys. Res. Lett. 50, e2023GL102940 (2023).

    Article  Google Scholar 

  46. Tung, S., Zhai, G. & Shirzaei, M. Potential link between 2020 Mentone, West Texas M5 earthquake and nearby wastewater injection: implications for aquifer mechanical properties. Geophys. Res. Lett. 48(3), e2020GL090551 (2020).

    Google Scholar 

  47. Keranen, K. M., Savage, H. M., Abers, G. A. & Cochran, E. S. Potentially induced earthquakes in Oklahoma, USA: links between wastewater injection and the 2011 Mw 5.7 earthquake sequence. Geology 41, 699–702 (2013).

    Article  Google Scholar 

  48. Yeck, W. L. et al. Oklahoma experiences largest earthquake during ongoing regional wastewater injection hazard mitigation efforts. Geophys. Res. Lett. 44, 711–717 (2017).

    Article  Google Scholar 

  49. Cesca, S. et al. Seismicity at the castor gas reservoir driven by pore pressure diffusion and asperities loading. Nat. Commun. 12, 4783 (2021).

    Article  Google Scholar 

  50. Vilarrasa, V., De Simone, S., Carrera, J. & Villaseñor, A. Unravelling the causes of the seismicity induced by underground gas storage at Castor, Spain. Geophys. Res. Lett. 48(7), e2020GL092038 (2021).

    Article  Google Scholar 

  51. Zbinden, D., Rinaldi, A. P., Urpi, L. & Wiemer, S. On the physics-based processes behind production-induced seismicity in natural gas fields. J. Geophys. Res. Solid Earth 122, 3792–3812 (2017).

    Article  Google Scholar 

  52. Frohlich, C. & Brunt, M. Two-year survey of earthquakes and injection/production wells in the Eagle Ford Shale, Texas, prior to the MW4.8 20 October 2011 earthquake. Earth Planet. Sci. Lett. 379, 56–63 (2013).

    Article  Google Scholar 

  53. De Waal, J., Muntendam-Bos, A. & Roest, J. Production induced subsidence and seismicity in the Groningen gas field — can it be managed? Proc. Int. Assoc. Hydrol. Sci. 372, 129–139 (2015).

    Google Scholar 

  54. van Thienen-Visser, K. & Breunese, J. Induced seismicity of the Groningen gas field: history and recent developments. Lead. Edge 34, 664–671 (2015).

    Article  Google Scholar 

  55. Dost, B., Ruigrok, E. & Spetzler, J. Development of seismicity and probabilistic hazard assessment for the Groningen gas field. Neth. J. Geosci. 96, s235–s245 (2017).

    Google Scholar 

  56. Candela, T. et al. Depletion-induced seismicity at the Groningen gas field: Coulomb rate-and-state models including differential compaction effect. J. Geophys. Res. Solid Earth 124, 7081–7104 (2019).

    Article  Google Scholar 

  57. Bourne, S., Oates, S. & Van Elk, J. The exponential rise of induced seismicity with increasing stress levels in the Groningen gas field and its implications for controlling seismic risk. Geophys. J. Int. 213, 1693–1700 (2018).

    Article  Google Scholar 

  58. Aochi, H. & Burnol, A. Mechanism of the ML4.0 25 April 2016 earthquake in southwest of France in the vicinity of the Lacq gas field. J. Seismol. 22, 1139–1155 (2018).

    Article  Google Scholar 

  59. Bardainne, T., Dubos-Sallée, N., Sénéchal, G., Gaillot, P. & Perroud, H. Analysis of the induced seismicity of the Lacq gas field (southwestern France) and model of deformation. Geophys. J. Int. 172, 1151–1162 (2008).

    Article  Google Scholar 

  60. Healy, J., Rubey, W., Griggs, D. & Raleigh, C. The Denver earthquakes. Science 161, 1301–1310 (1968).

    Article  Google Scholar 

  61. Langenbruch, C., Weingarten, M. & Zoback, M. D. Physics-based forecasting of man-made earthquake hazards in Oklahoma and Kansas. Nat. Commun. 9, 3946 (2018).

    Article  Google Scholar 

  62. Keranen, K. M., Weingarten, M., Abers, G. A., Bekins, B. A. & Ge, S. Sharp increase in central Oklahoma seismicity since 2008 induced by massive wastewater injection. Science 345, 448–451 (2014).

    Article  Google Scholar 

  63. Langenbruch, C. & Zoback, M. D. How will induced seismicity in Oklahoma respond to decreased saltwater injection rates? Sci. Adv. 2, e1601542 (2016).

    Article  Google Scholar 

  64. Hennings, P. H. et al. Pore pressure threshold and fault slip potential for induced earthquakes in the Dallas–Fort Worth area of North Central Texas. Geophys. Res. Lett. 48, e2021GL093564 (2021).

    Article  Google Scholar 

  65. Block, L. V., Wood, C. K., Yeck, W. L. & King, V. M. Induced seismicity constraints on subsurface geological structure, Paradox Valley, Colorado. Geophys. J. Int. 200, 1172–1195 (2015).

    Article  Google Scholar 

  66. Yeo, I. W., Brown, M. R. M., Ge, S. & Lee, K. K. Causal mechanism of injection-induced earthquakes through the Mw 5.5 Pohang earthquake case study. Nat. Commun. 11, 2614 (2020).

    Article  Google Scholar 

  67. Igonin, N., Verdon, J. P., Kendall, J.-M. & Eaton, D. W. Large-scale fracture systems are permeable pathways for fault activation during hydraulic fracturing. J. Geophys. Res. Solid Earth 126, e2020JB020311 (2021).

    Article  Google Scholar 

  68. Lei, X., Wang, Z. & Su, J. The December 2018 ML 5.7 and January 2019 ML 5.3 earthquakes in South Sichuan basin induced by shale gas hydraulic fracturing. Seismol. Res. Lett. 90, 1099–1110 (2019).

    Article  Google Scholar 

  69. Schultz, R., Wang, R., Gu, Y. J., Haug, K. & Atkinson, G. A seismological overview of the induced earthquakes in the Duvernay play near Fox Creek, Alberta. J. Geophys. Res. Solid Earth 122, 492–505 (2017).

    Article  Google Scholar 

  70. Skoumal, R. J., Brudzinski, M. R. & Currie, B. S. Proximity of Precambrian basement affects the likelihood of induced seismicity in the Appalachian, Illinois, and Williston Basins, central and eastern United States. Geosphere 14, 1365–1379 (2018).

    Article  Google Scholar 

  71. Zhai, G., Shirzaei, M. & Manga, M. Widespread deep seismicity in the Delaware basin, Texas, is mainly driven by shallow wastewater injection. Proc. Natl Acad. Sci. USA 118, e2102338118 (2021).

    Article  Google Scholar 

  72. Yang, H. et al. A shallow shock: the 25 February 2019 ML 4.9 earthquake in the Weiyuan shale gas field in Sichuan, China. Seismol. Res. Lett. 91, 3182–3194 (2020).

    Article  Google Scholar 

  73. Segall, P. & Lu, S. Injection‐induced seismicity: poroelastic and earthquake nucleation effects. J. Geophys. Res. Solid Earth 120, 5082–5103 (2015).

    Article  Google Scholar 

  74. Deng, K., Liu, Y. & Harrington, R. M. Poroelastic stress triggering of the December 2013 Crooked Lake, Alberta, induced seismicity sequence. Geophys. Res. Lett. 43, 8482–8491 (2016).

    Article  Google Scholar 

  75. Kettlety, T. & Verdon, J. P. Fault triggering mechanisms for hydraulic fracturing-induced seismicity from the Preston New Road, UK case study. Front. Earth Sci. 9, 382 (2021).

    Article  Google Scholar 

  76. Meng, Q., Ni, S. & Peng, Z. Complex source behaviors and spatio-temporal evolution of seismicity during the 2015–2016 earthquake sequence in Cushing, Oklahoma. J. Geophys. Res. Solid Earth 126, e2021JB022168 (2021).

    Article  Google Scholar 

  77. Vidale, J. E., Agnew, D. C., Johnston, M. J. & Oppenheimer, D. H. Absence of earthquake correlation with Earth tides: an indication of high preseismic fault stress rate. J. Geophys. Res. Solid Earth 103, 24567–24572 (1998).

    Article  Google Scholar 

  78. Chang, K. W., Yoon, H., Kim, Y. & Lee, M. Y. Operational and geological controls of coupled poroelastic stressing and pore-pressure accumulation along faults: induced earthquakes in Pohang, South Korea. Sci. Rep. 10, 2073 (2020).

    Article  Google Scholar 

  79. Zbinden, D., Rinaldi, A. P., Diehl, T. & Wiemer, S. Hydromechanical modeling of fault reactivation in the St. Gallen Deep Geothermal Project (Switzerland): poroelasticity or hydraulic connection? Geophys. Res. Lett. 47, e2019GL085201 (2020).

    Article  Google Scholar 

  80. Zhai, G., Shirzaei, M., Manga, M. & Chen, X. Pore-pressure diffusion, enhanced by poroelastic stresses, controls induced seismicity in Oklahoma. Proc. Natl Acad. Sci. USA 116, 16228–16233 (2019).

    Article  Google Scholar 

  81. Goebel, T., Weingarten, M., Chen, X., Haffener, J. & Brodsky, E. The 2016 Mw5. 1 Fairview, Oklahoma earthquakes: evidence for long-range poroelastic triggering at >40 km from fluid disposal wells. Earth Planet. Sci. Lett. 472, 50–61 (2017).

    Article  Google Scholar 

  82. Jiang, G., Liu, L., Barbour, A. J., Lu, R. & Yang, H. Physics-based evaluation of the maximum magnitude of potential earthquakes induced by the Hutubi (China) underground gas storage. J. Geophys. Res. Solid Earth 126, e2020JB021379 (2021).

    Article  Google Scholar 

  83. Pennington, W. D., Davis, S. D., Carlson, S. M., DuPree, J. & Ewing, T. E. The evolution of seismic barriers and asperities caused by the depressuring of fault planes in oil and gas fields of south Texas. Bull. Seismol. Soc. Am. 76, 939–948 (1986).

    Google Scholar 

  84. Segall, P. & Fitzgerald, S. D. A note on induced stress changes in hydrocarbon and geothermal reservoirs. Tectonophysics 289, 117–128 (1998).

    Article  Google Scholar 

  85. Candela, T., Wassing, B., Ter Heege, J. & Buijze, L. How earthquakes are induced. Science 360, 598–600 (2018).

    Article  Google Scholar 

  86. Dempsey, D. & Suckale, J. Physics-based forecasting of induced seismicity at Groningen gas field, the Netherlands. Geophys. Res. Lett. 44, 7773–7782 (2017).

    Article  Google Scholar 

  87. Deng, F., Dixon, T. H. & Xie, S. Surface deformation and induced seismicity due to fluid injection and oil and gas extraction in western Texas. J. Geophys. Res. Solid Earth 125, e2019JB018962 (2020).

    Article  Google Scholar 

  88. Segall, P., Grasso, J.-R. & Mossop, A. Poroelastic stressing and induced seismicity near the Lacq gas field, southwestern France. J. Geophys. Res. Solid Earth 99, 15423–15438 (1994).

    Article  Google Scholar 

  89. Dahm, T. et al. The 2004 Mw 4.4 Rotenburg, Northern Germany, earthquake and its possible relationship with gas recovery. Bull. Seismol. Soc. Am. 97, 691–704 (2007).

    Article  Google Scholar 

  90. Vilarrasa Riaño, V., Carrera, J., Olivella, S., Rutqvist, J. & Laloui, L. Induced seismicity in geologic carbon storage. Solid Earth 10, 871–892 (2019).

    Article  Google Scholar 

  91. De Simone, S., Carrera, J. & Vilarrasa, V. Superposition approach to understand triggering mechanisms of post-injection induced seismicity. Geothermics 70, 85–97 (2017).

    Article  Google Scholar 

  92. Izadi, G. & Elsworth, D. The effects of thermal stress and fluid pressure on induced seismicity during stimulation to production within fractured reservoirs. Terra Nova 25, 374–380 (2013).

    Article  Google Scholar 

  93. Kivi, I. R., Pujades, E., Rutqvist, J. & Vilarrasa, V. Cooling-induced reactivation of distant faults during long-term geothermal energy production in hot sedimentary aquifers. Sci. Rep. 12, 2065 (2022).

    Article  Google Scholar 

  94. Kwiatek, G. et al. Effects of long‐term fluid injection on induced seismicity parameters and maximum magnitude in northwestern part of the Geysers geothermal field. J. Geophys. Res. Solid Earth 120, 7085–7101 (2015).

    Article  Google Scholar 

  95. Bruel, D. Impact of induced thermal stresses during circulation tests in an engineered fractured geothermal reservoir: example of the Soultz-sous-Forets European hot fractured rock geothermal project, Rhine Graben, France. Oil Gas Sci. Technol. 57, 459–470 (2002).

    Article  Google Scholar 

  96. Martínez-Garzón, P. et al. Spatiotemporal changes, faulting regimes, and source parameters of induced seismicity: a case study from the Geysers geothermal field. J. Geophys. Res. Solid Earth 119, 8378–8396 (2014).

    Article  Google Scholar 

  97. Jeanne, P., Rutqvist, J. & Dobson, P. F. Influence of injection-induced cooling on deviatoric stress and shear reactivation of preexisting fractures in enhanced geothermal systems. Geothermics 70, 367–375 (2017).

    Article  Google Scholar 

  98. Vilarrasa, V., Rinaldi, A. P. & Rutqvist, J. Long-term thermal effects on injectivity evolution during CO2 storage. Int. J. Greenh. Gas Control 64, 314–322 (2017).

    Article  Google Scholar 

  99. Stein, R. S. The role of stress transfer in earthquake occurrence. Nature 402, 605–609 (1999).

    Article  Google Scholar 

  100. Hardebeck, J. L. & Harris, R. A. Earthquakes in the shadows: why aftershocks occur at surprising locations. Seismic Rec. 2, 207–216 (2022).

    Article  Google Scholar 

  101. Dieterich, J. H. Earthquake nucleation on faults with rate-and state-dependent strength. Tectonophysics 211, 115–134 (1992).

    Article  Google Scholar 

  102. Dieterich, J. H., Richards‐Dinger, K. B. & Kroll, K. A. Modeling injection‐induced seismicity with the physics‐based earthquake simulator RSQSim. Seismol. Res. Lett. 86, 1102–1109 (2015).

    Article  Google Scholar 

  103. Kettlety, T., Verdon, J. P., Werner, M. J., Kendall, J. M. & Budge, J. Investigating the role of elastostatic stress transfer during hydraulic fracturing-induced fault activation. Geophys. J. Int. 217, 1200–1216 (2019).

    Google Scholar 

  104. Catalli, F., Meier, M.-A. & Wiemer, S. The role of Coulomb stress changes for injection-induced seismicity: the Basel enhanced geothermal system. Geophys. Res. Lett. 40, 72–77 (2013).

    Article  Google Scholar 

  105. Schoenball, M., Baujard, C., Kohl, T. & Dorbath, L. The role of triggering by static stress transfer during geothermal reservoir stimulation. J. Geophys. Res. Solid Earth, 117, B09307 (2012).

    Article  Google Scholar 

  106. Catalli, F., Rinaldi, A. P., Gischig, V., Nespoli, M. & Wiemer, S. The importance of earthquake interactions for injection-induced seismicity: retrospective modeling of the Basel enhanced geothermal system. Geophys. Res. Lett. 43, 4992–4999 (2016).

    Article  Google Scholar 

  107. Peña Castro, A. F. et al. Stress chatter via fluid flow and fault slip in a hydraulic fracturing-induced earthquake sequence in the Montney Formation, British Columbia. Geophys. Res. Lett. 47, e2020GL087254 (2020).

    Article  Google Scholar 

  108. Wang, J. et al. Sequential fault reactivation and secondary triggering in the March 2019 Red Deer induced earthquake swarm. Geophys. Res. Lett. 47, e2020GL090219 (2020).

    Article  Google Scholar 

  109. Verdecchia, A., Cochran, E. S. & Harrington, R. M. Fluid-earthquake and earthquake-earthquake interactions in Southern Kansas, USA. J. Geophys. Res. Solid. Earth 126, e2020JB020384 (2021).

    Article  Google Scholar 

  110. Chen, X. et al. The Pawnee earthquake as a result of the interplay among injection, faults and foreshocks. Sci. Rep. 7, 1–18 (2017).

    Google Scholar 

  111. Cao, W., Shi, J.-Q., Durucan, S. & Korre, A. Evaluation of shear slip stress transfer mechanism for induced microseismicity at In Salah CO2 storage site. Int. J. Greenh. Gas Control 107, 103302 (2021).

    Article  Google Scholar 

  112. Scholz, C. H. The Mechanics of Earthquakes and Faulting (Cambridge Univ. Press, 2002).

  113. Johnston, M., Borcherdt, R., Linde, A. & Gladwin, M. Continuous borehole strain and pore pressure in the near field of the 28 September 2004 M 6.0 Parkfield, California, earthquake: implications for nucleation, fault response, earthquake prediction, and tremor. Bull. Seismol. Soc. Am. 96, S56–S72 (2006).

    Article  Google Scholar 

  114. Eyre, T. S. et al. The role of aseismic slip in hydraulic fracturing-induced seismicity. Sci. Adv. 5, eaav7172 (2019).

    Article  Google Scholar 

  115. Cornet, F. H. Seismic and aseismic motions generated by fluid injections. Geomech. Energy Environ. 5, 42–54 (2016).

    Article  Google Scholar 

  116. Guglielmi, Y., Cappa, F., Avouac, J.-P., Henry, P. & Elsworth, D. Seismicity triggered by fluid injection-induced aseismic slip. Science 348, 1224–1226 (2015).

    Article  Google Scholar 

  117. Bhattacharya, P. & Viesca, R. C. Fluid-induced aseismic fault slip outpaces pore-fluid migration. Science 364, 464–468 (2019).

    Article  Google Scholar 

  118. Wei, S. et al. The 2012 Brawley swarm triggered by injection-induced aseismic slip. Earth Planet. Sci. Lett. 422, 115–125 (2015).

    Article  Google Scholar 

  119. Bourouis, S. & Bernard, P. Evidence for coupled seismic and aseismic fault slip during water injection in the geothermal site of Soultz (France), and implications for seismogenic transients. Geophys. J. Int. 169, 723–732 (2007).

    Article  Google Scholar 

  120. Sone, H. & Zoback, M. D. Time-dependent deformation of shale gas reservoir rocks and its long-term effect on the in situ state of stress. Int. J. Rock Mech. Min. Sci. 69, 120–132 (2014).

    Article  Google Scholar 

  121. Hettema, M. H. H., Schutjens, P. M. T. M., Verboom, B. J. M. & Gussinklo, H. J. Production-induced compaction of a sandstone reservoir: the strong influence of stress path. SPE Reserv. Eval. Eng. 3, 342–347 (2000).

    Article  Google Scholar 

  122. Hettema, M., Papamichos, E. & Schutjens, P. Subsidence delay: field observations and analysis. Oil Gas Sci. Technol. 57, 443–458 (2002).

    Article  Google Scholar 

  123. van Wees, J.-D., Osinga, S., Van Thienen-Visser, K. & Fokker, P. A. Reservoir creep and induced seismicity: inferences from geomechanical modeling of gas depletion in the Groningen field. Geophys. J. Int. 212, 1487–1497 (2017).

    Article  Google Scholar 

  124. Meller, C. & Kohl, T. The significance of hydrothermal alteration zones for the mechanical behavior of a geothermal reservoir. Geotherm. Energy 2, 12 (2014).

    Article  Google Scholar 

  125. Rohmer, J., Pluymakers, A. & Renard, F. Mechano-chemical interactions in sedimentary rocks in the context of CO2 storage: weak acid, weak effects? Earth Sci. Rev. 157, 86–110 (2016).

    Article  Google Scholar 

  126. Westaway, R. & Burnside, N. M. Fault ‘corrosion’ by fluid injection: a potential cause of the November 2017 5.5 Korean Earthquake. Geofluids 2019, 1280721 (2019).

    Article  Google Scholar 

  127. Di Toro, G. et al. Fault lubrication during earthquakes. Nature 471, 494–498 (2011).

    Article  Google Scholar 

  128. Zoback, M. D. Reservoir Geomechanics (Cambridge Univ. Press, 2010).

  129. van den Ende, M. P. A. & Niemeijer, A. R. An investigation into the role of time-dependent cohesion in interseismic fault restrengthening. Sci. Rep. 9, 9894 (2019).

    Article  Google Scholar 

  130. Shapiro, S. A. & Dinske, C. Stress drop, seismogenic index and fault cohesion of fluid-induced earthquakes. Rock Mech. Rock Eng. 54, 5483–5492 (2021).

    Article  Google Scholar 

  131. Bachmann, C. E., Wiemer, S., Goertz‐Allmann, B. & Woessner, J. Influence of pore‐pressure on the event‐size distribution of induced earthquakes. Geophys. Res. Lett. 39, 9302 (2012).

    Article  Google Scholar 

  132. Stokes, S. M. et al. Pore pressure diffusion and onset of induced seismicity. J. Geophys. Res. Solid Earth 128, e2022JB026012 (2023).

    Article  Google Scholar 

  133. Ge, S. & Saar, M. O. Review: induced seismicity during geoenergy development — a hydromechanical perspective. J. Geophys. Res. Solid Earth 127, e2021JB023141 (2022).

    Article  Google Scholar 

  134. Shapiro, S. A., Dinske, C., Langenbruch, C. & Wenzel, F. Seismogenic index and magnitude probability of earthquakes induced during reservoir fluid stimulations. Lead. Edge 29, 304–309 (2010).

    Article  Google Scholar 

  135. Kao, H. et al. Induced seismicity in western Canada linked to tectonic strain rate: implications for regional seismic hazard. Geophys. Res. Lett. 45, 11,104–11,115 (2018).

    Article  Google Scholar 

  136. Langenbruch, C., Ellsworth, W. L., Woo, J.-U. & Wald, D. J. Value at induced risk: injection-induced seismic risk from low-probability, high-impact events. Geophys. Res. Lett. 47, e2019GL085878 (2020).

    Article  Google Scholar 

  137. Lee, K.-K. et al. Managing injection-induced seismic risks. Science 364, 730–732 (2019).

    Article  Google Scholar 

  138. van der Elst, N. J., Page, M. T., Weiser, D. A., Goebel, T. H. W. & Hosseini, S. M. Induced earthquake magnitudes are as large as (statistically) expected. J. Geophys. Res. Solid Earth 121, 4575–4590 (2016).

    Article  Google Scholar 

  139. Mousavi, S. M., Ogwari, P. O., Horton, S. P. & Langston, C. A. Spatio-temporal evolution of frequency–magnitude distribution and seismogenic index during initiation of induced seismicity at Guy-Greenbrier, Arkansas. Phys. Earth Planet. Inter. 267, 53–66 (2017).

    Article  Google Scholar 

  140. Eaton, D. W. & Maghsoudi, S. 2b… or not 2b? Interpreting magnitude distributions from microseismic catalogs. First Break, 33, 10 (2015).

    Article  Google Scholar 

  141. Shapiro, S. A. Seismogenic index of underground fluid injections and productions. J. Geophys. Res. Solid Earth 123, 7983–7997 (2018).

    Article  Google Scholar 

  142. Shapiro, S. A. Fluid-induced Seismicity (Cambridge Univ. Press, 2015).

  143. Grigoratos, I., Rathje, E., Bazzurro, P. & Savvaidis, A. Earthquakes induced by wastewater injection, part II: statistical evaluation of causal factors and seismicity rate forecasting. Bull. Seismol. Soc. Am. 110, 2483–2497 (2020).

    Article  Google Scholar 

  144. Cacace, M., Hofmann, H. & Shapiro, S. A. Projecting seismicity induced by complex alterations of underground stresses with applications to geothermal systems. Sci. Rep. 11, 23560 (2021).

    Article  Google Scholar 

  145. Sumy, D. F., Cochran, E. S., Keranen, K. M., Wei, M. & Abers, G. A. Observations of static Coulomb stress triggering of the November 2011 M5.7 Oklahoma earthquake sequence. J. Geophys. Res. Solid Earth 119, 1904–1923 (2014).

    Article  Google Scholar 

  146. Shapiro, S. A., Krüger, O. S. & Dinske, C. Probability of inducing given‐magnitude earthquakes by perturbing finite volumes of rocks. J. Geophys. Res. Solid Earth 118, 3557–3575 (2013).

    Article  Google Scholar 

  147. Afshari Moein, M. J., Tormann, T., Valley, B. & Wiemer, S. Maximum magnitude forecast in hydraulic stimulation based on clustering and size distribution of early microseismicity. Geophys. Res. Lett. 45, 6907–6917 (2018).

    Article  Google Scholar 

  148. McGarr, A. Maximum magnitude earthquakes induced by fluid injection. J. Geophys. Res. Solid Earth 119, 1008–1019 (2014).

    Article  Google Scholar 

  149. Ellsworth, W. L., Giardini, D., Townend, J., Ge, S. & Shimamoto, T. Triggering of the Pohang, Korea, earthquake (Mw 5.5) by enhanced geothermal system stimulation. Seismol. Res. Lett. 90, 1844–1858 (2019).

    Google Scholar 

  150. Galis, M., Ampuero, J. P., Mai, P. M. & Cappa, F. Induced seismicity provides insight into why earthquake ruptures stop. Sci. Adv. 3, eaap7528 (2017).

    Article  Google Scholar 

  151. Ciardo, F. & Rinaldi, A. P. Impact of injection rate ramp-up on nucleation and arrest of dynamic fault slip. Geomech. Geophys. Geo-Energy Geo-Resour. 8, 28 (2021).

    Article  Google Scholar 

  152. Langenbruch, C., Moein, M. J. A. & Shapiro, S. A. In Fall Meeting 2022 (AGU).

  153. Grigoratos, I., Rathje, E., Bazzurro, P. & Savvaidis, A. Earthquakes induced by wastewater injection, part I: model development and hindcasting. Bull. Seismol. Soc. Am. 110, 2466–2482 (2020).

    Article  Google Scholar 

  154. Langenbruch, C., Moein, M. J. & Shapiro, S. A. Pressure Diffusion Controls Maximum Induced Earthquake Magnitudes (Copernicus Meetings, 2023).

  155. Gischig, V. S. Rupture propagation behavior and the largest possible earthquake induced by fluid injection into deep reservoirs. Geophys. Res. Lett. 42, 7420–7428 (2015).

    Article  Google Scholar 

  156. Lee, E. J., Liao, W. Y., Mu, D., Wang, W. & Chen, P. GPU‐accelerated automatic microseismic monitoring algorithm (GAMMA) and its application to the 2019 Ridgecrest earthquake sequence. Seismol. Res. Lett. 91, 2062–2074 (2020).

    Article  Google Scholar 

  157. Wang, R. et al. Injection‐induced earthquakes on complex fault zones of the Raton Basin illuminated by machine‐learning phase picker and dense nodal array. Geophys. Res. Lett. 47, e2020GL088168 (2020).

    Article  Google Scholar 

  158. Broccardo, M., Mignan, A., Wiemer, S., Stojadinovic, B. & Giardini, D. Hierarchical Bayesian modeling of fluid‐induced seismicity. Geophys. Res. Lett. 44, 11,357–11,367 (2017).

    Article  Google Scholar 

  159. Foulger, G. et al. Human-induced earthquakes: E-PIE — a generic tool for evaluating proposals of induced earthquakes. J. Seismol. 27, 21–44 (2023).

    Article  Google Scholar 

  160. Davis, S. D. & Frohlich, C. Did (or will) fluid injection cause earthquakes? Criteria for a rational assessment. Seismol. Res. Lett. 64, 207–224 (1993).

    Article  Google Scholar 

  161. Wang, B., Kao, H., Yu, H., Visser, R. & Verdecchia, A. Quantitative evaluation of the competing effects of wastewater disposal and hydraulic fracturing on causing induced earthquakes: a case study of an M3.1 earthquake sequence in Western Canada. J. Geophys. Res. Solid Earth 128, e2022JB025048 (2023).

    Article  Google Scholar 

  162. Bommer, J. J. Earthquake hazard and risk analysis for natural and induced seismicity: towards objective assessments in the face of uncertainty. Bull. Earthq. Eng. 20, 2825–3069 (2022).

    Article  Google Scholar 

  163. Ghofrani, H., Atkinson, G. M., Schultz, R. & Assatourians, K. Short‐term hindcasts of seismic hazard in the Western Canada sedimentary basin caused by induced and natural earthquakes. Seismol. Res. Lett. 90, 1420–1435 (2019).

    Article  Google Scholar 

  164. Bentz, S., Kwiatek, G., Martínez‐Garzón, P., Bohnhoff, M. & Dresen, G. Seismic moment evolution during hydraulic stimulations. Geophys. Res. Lett. 47, e2019GL086185 (2020).

    Article  Google Scholar 

  165. Langenbruch, C. & Shapiro, S. A. Decay rate of fluid-induced seismicity after termination of reservoir stimulations. Geophysics 75, MA53–MA62 (2010).

    Article  Google Scholar 

  166. Kim, T. & Avouac, J. P. Stress‐based and convolutional forecasting of injection‐induced seismicity: application to the Otaniemi geothermal reservoir stimulation. J. Geophys. Res. Solid Earth 128, e2022JB024960 (2023).

    Article  Google Scholar 

  167. Dieterich, J. A constitutive law for rate of earthquake production and its application to earthquake clustering. J. Geophys. Res. Solid Earth 99, 2601–2618 (1994).

    Article  Google Scholar 

  168. Hager, B. H. et al. A process-based approach to understanding and managing triggered seismicity. Nature 595, 684–689 (2021).

    Article  Google Scholar 

  169. Bourne, S. J. & Oates, S. J. Development of statistical geomechanical models for forecasting seismicity induced by gas production from the Groningen field. Neth. J. Geosci. 96, s175–s182 (2017).

    Google Scholar 

  170. Rinaldi, A. P. & Nespoli, M. TOUGH2-seed: a coupled fluid flow and mechanical-stochastic approach to model injection-induced seismicity. Comput. Geosci. 108, 86–97 (2017).

    Article  Google Scholar 

  171. Beroza, G. C., Segou, M. & Mostafa Mousavi, S. Machine learning and earthquake forecasting — next steps. Nat. Commun. 12, 4761 (2021).

    Article  Google Scholar 

  172. Qin, Y., Chen, T., Ma, X. & Chen, X. Forecasting induced seismicity in Oklahoma using machine learning methods. Sci. Rep. 12, 9319 (2022).

    Article  Google Scholar 

  173. Yu, P. et al. Association between injection and microseismicity in geothermal fields with multiple wells: data‐driven modelling of Rotokawa, New Zealand, and Húsmúli, Iceland. J. Geophys. Res. Solid Earth, 128, e2022JB025952 (2023).

    Article  Google Scholar 

  174. Rouet-Leduc, B. et al. Machine learning predicts laboratory earthquakes. Geophys. Res. Lett. 44, 9276–9282 (2017).

    Article  Google Scholar 

  175. Feng, Y., Mignan, A., Sornette, D. & Gao, K. Investigating injection pressure as a predictor to enhance real‐time forecasting of fluid‐induced seismicity: a Bayesian model comparison. Seismol. Soc. Am. 94, 708–719 (2023).

    Google Scholar 

  176. Schultz, R., Ellsworth, W. L. & Beroza, G. C. An ensemble approach to characterizing trailing‐induced seismicity. Seismol. Res. Lett. 94, 699–707 (2023).

    Article  Google Scholar 

  177. Marzocchi, W., Zechar, J. D. & Jordan, T. H. Bayesian forecast evaluation and ensemble earthquake forecasting. Bull. Seismol. Soc. Am. 102, 2574–2584 (2012).

    Article  Google Scholar 

  178. Bommer, J. J. et al. Control of hazard due to seismicity induced by a hot fractured rock geothermal project. Eng. Geol. 83, 287–306 (2006).

    Article  Google Scholar 

  179. Schultz, R., Beroza, G. C. & Ellsworth, W. L. A strategy for choosing red‐light thresholds to manage hydraulic fracturing induced seismicity in North America. J. Geophys. Res. Solid Earth 126, e2021JB022340 (2021).

    Article  Google Scholar 

  180. Ader, T. et al. Design and implementation of a traffic light system for deep geothermal well stimulation in Finland. J. Seismol. 24, 991–1014 (2020).

    Article  Google Scholar 

  181. Verdon, J. P. & Bommer, J. J. Green, yellow, red, or out of the blue? An assessment of traffic light schemes to mitigate the impact of hydraulic fracturing-induced seismicity. J. Seismol. 25, 301–326 (2021).

    Article  Google Scholar 

  182. Schultz, R., Ellsworth, W. L. & Beroza, G. C. Statistical bounds on how induced seismicity stops. Sci. Rep. 12, 1184 (2022).

    Article  Google Scholar 

  183. Alghannam, M. & Juanes, R. Understanding rate effects in injection-induced earthquakes. Nat. Commun. 11, 3053 (2020).

    Article  Google Scholar 

  184. Qiu, Y., Adams, M. & Grasselli, G. In SPE Annual Technical Conference and Exhibition (OnePetro, 2023).

  185. Weingarten, M., Ge, S., Godt, J. W., Bekins, B. A. & Rubinstein, J. L. High-rate injection is associated with the increase in US mid-continent seismicity. Science 348, 1336–1340 (2015).

    Article  Google Scholar 

  186. Wang, L. et al. Laboratory study on fluid‐induced fault slip behavior: the role of fluid pressurization rate. Geophys. Res. Lett. 47, e2019GL086627 (2020).

    Article  Google Scholar 

  187. Muntendam-Bos, A. G. et al. An overview of induced seismicity in the Netherlands. Neth. J. Geosci. 101, e1 (2022).

    Google Scholar 

  188. Frash, L. P. et al. Fracture caging to limit induced seismicity. Geophys. Res. Lett. 48, e2020GL090648 (2021).

    Article  Google Scholar 

  189. Zang, A., Yoon, J. S., Stephansson, O. & Heidbach, O. Fatigue hydraulic fracturing by cyclic reservoir treatment enhances permeability and reduces induced seismicity. Geophys. J. Int. 195, 1282–1287 (2013).

    Article  Google Scholar 

  190. Stefanou, I. Controlling anthropogenic and natural seismicity: insights from active stabilization of the spring‐slider model. J. Geophys. Res. Solid Earth 124, 8786–8802 (2019).

    Article  Google Scholar 

  191. Gutiérrez-Oribio, D., Tzortzopoulos, G., Stefanou, I. & Plestan, F. Earthquake control: an emerging application for robust control. Theory and experimental tests. IEEE Trans. Control Syst. Technol. 31, 1747–1761 (2023).

    Article  Google Scholar 

  192. Leptokaropoulos, K. et al. IS-EPOS: a platform for anthropogenic seismicity research. Acta Geophys. 67, 299–310 (2019).

    Article  Google Scholar 

  193. Liu, G. et al. Detailed imaging of a seismogenic fault that potentially induced the two 2019 Weiyuan moderate earthquakes in the Sichuan basin, China. Seismol. Soc. Am. 94, 1379–1391 (2023).

    Google Scholar 

  194. Jin, G. & Roy, B. Hydraulic-fracture geometry characterization using low-frequency DAS signal. Lead. Edge 36, 975–980 (2017).

    Article  Google Scholar 

  195. Pepin, K. S., Ellsworth, W. L., Sheng, Y. & Zebker, H. A. Shallow aseismic slip in the Delaware basin determined by Sentinel‐1 InSAR. J. Geophys. Res. Solid Earth 127, e2021JB023157 (2022).

    Article  Google Scholar 

  196. Wang, T. A. & Dunham, E. M. Hindcasting injection-induced aseismic slip and microseismicity at the cooper basin enhanced geothermal systems project. Sci. Rep. 12, 19481 (2022).

    Article  Google Scholar 

  197. Yu, H., Kao, H., Wang, B. & Visser, R. Long-term fluid injection can expedite fault reactivation and development: Riedel shear structures illuminated by induced earthquakes in Alberta, Canada. J. Geophys. Res. Solid Earth 127, e2022JB025126 (2022).

    Article  Google Scholar 

  198. Li, T. et al. Earthquakes induced by wastewater disposal near Musreau Lake, Alberta, 2018–2020. Seismol. Res. Lett. 93, 727–738 (2021).

    Article  Google Scholar 

  199. Yu, H., Kao, H., Visser, R. & Wang, B. From seismic quiescence to surged activity after decades of wastewater disposal: a case study in Central-West Alberta, Canada. Geophys. Res. Lett. 48, e2021GL095074 (2021).

    Article  Google Scholar 

  200. Hennings, P. H. & Young, M. H. Recent Seismicity in the Southern Midcontinent, USA: Scientific, Regulatory, and Industry Responses (Geological Society of America, 2023).

  201. Walsh, F. R. III & Zoback, M. D. Probabilistic assessment of potential fault slip related to injection-induced earthquakes: application to north-central Oklahoma, USA. Geology 44, 991–994 (2016).

    Article  Google Scholar 

  202. Savvaidis, A., Lomax, A. & Breton, C. Induced seismicity in the Delaware basin, West Texas, is caused by hydraulic fracturing and wastewater disposal. Bull. Seismol. Soc. Am. 110, 2225–2241 (2020).

    Article  Google Scholar 

  203. Cesca, S. et al. Reply to: multiple induced seismicity mechanisms at Castor underground gas storage illustrate the need for thorough monitoring. Nat. Commun. 13, 3445 (2022).

    Article  Google Scholar 

  204. Vilarrasa, V., De Simone, S., Carrera, J. & Villaseñor, A. Multiple induced seismicity mechanisms at Castor underground gas storage illustrate the need for thorough monitoring. Nat. Commun. 13, 3447 (2022).

    Article  Google Scholar 

  205. Lellouch, A., Schultz, R., Lindsey, N. J., Biondi, B. L. & Ellsworth, W. L. Low-magnitude seismicity with a downhole distributed acoustic sensing array — examples from the FORGE geothermal experiment. J. Geophys. Res. Solid Earth 126, e2020JB020462 (2021).

    Article  Google Scholar 

  206. Lecoulant, J., Ma, Y., Dettmer, J. & Eaton, D. Strain-based forward modeling and inversion of seismic moment tensors using distributed acoustic sensing (DAS) observations. Front. Earth Sci. 11, 1176921 (2023).

    Article  Google Scholar 

  207. Ji, Y., Hofmann, H., Duan, K. & Zang, A. Laboratory experiments on fault behavior towards better understanding of injection-induced seismicity in geoenergy systems. Earth Sci. Rev. 226, 103916 (2022).

    Article  Google Scholar 

  208. Hofmann, H., Zimmermann, G., Zang, A. & Min, K.-B. Cyclic soft stimulation (CSS): a new fluid injection protocol and traffic light system to mitigate seismic risks of hydraulic stimulation treatments. Geotherm. Energy 6, 27 (2018).

    Article  Google Scholar 

  209. Meng, M. et al. Hydro‐mechanical measurements of sheared crystalline rock fractures with applications for EGS collab experiments 1 and 2. J. Geophys. Res. Solid Earth 127, e2021JB023000 (2022).

    Article  Google Scholar 

  210. Degen, D., Cacace, M. & Wellmann, F. 3D multi-physics uncertainty quantification using physics-based machine learning. Sci. Rep. 12, 17491 (2022).

    Article  Google Scholar 

  211. Afshari Moein, M. J. et al. Fracture network characterization using stress-based tomography. J. Geophys. Res. Solid Earth 123, 9324–9340 (2018).

    Article  Google Scholar 

  212. Ahlers, S. et al. 3D crustal stress state of Germany according to a data-calibrated geomechanical model. Solid Earth 12, 1777–1799 (2021).

    Article  Google Scholar 

  213. Baisch, S. et al. Continued geothermal reservoir stimulation experiments in the cooper basin (Australia). Bull. Seismol. Soc. Am. 105, 198–209 (2015).

    Article  Google Scholar 

  214. Li, W., Ni, S., Zang, C. & Chu, R. Rupture directivity of the 2019 Mw 5.8 Changning, Sichuan, China, earthquake and implication for induced seismicity. Bull. Seismol. Soc. Am. 110, 2138–2153 (2020).

    Article  Google Scholar 

  215. Babaie Mahani, A. et al. Ground‐motion characteristics of the 30 November 2018 injection‐induced earthquake sequence in northeast British Columbia, Canada. Seismol. Res. Lett. 90, 1457–1467 (2019).

    Google Scholar 

  216. Wilson, M. P., Foulger, G. R., Gluyas, J. G., Davies, R. J. & Julian, B. R. HiQuake: the human‐induced earthquake database. Seismol. Res. Lett. 88, 1560–1565 (2017).

    Article  Google Scholar 

  217. Jaeger, J. C., Cook, N. G. & Zimmerman, R. Fundamentals of Rock Mechanics. (John Wiley & Sons, 2009).

  218. McLaskey, G. C. Earthquake initiation from laboratory observations and implications for foreshocks. J. Geophys. Res. Solid Earth 124, 12882–12904 (2019).

    Article  Google Scholar 

  219. Dempsey, D. & Suckale, J. Collective properties of injection‐induced earthquake sequences: 1. Model. description directivity bias. J. Geophys. Res. Solid Earth 121, 3609–3637 (2016).

    Article  Google Scholar 

  220. Doglioni, C. A classification of induced seismicity. Geosci. Front. 9, 1903–1909 (2018).

    Article  Google Scholar 

  221. Luu, K., Schoenball, M., Oldenburg, C. M. & Rutqvist, J. Coupled hydromechanical modeling of induced seismicity from CO2 injection in the Illinois Basin. J. Geophys. Res. Solid Earth 127, e2021JB023496 (2022).

    Article  Google Scholar 

  222. Norbeck, J. & Rubinstein, J. L. Hydromechanical earthquake nucleation model forecasts onset, peak, and falling rates of induced seismicity in Oklahoma and Kansas. Geophys. Res. Lett. 45, 2963–2975 (2018).

    Article  Google Scholar 

  223. Walsh, F. R. & Zoback, M. D. Oklahoma’s recent earthquakes and saltwater disposal. Sci. Adv. 1, e1500195 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

The research leading to this Review has received funding from the German Research Foundation DFG (project AF 115/1-1) and the Stanford Center for Induced and Triggered Seismicity. The authors thank the sponsors of the PHASE consortium supporting the research presented in this paper at Free University of Berlin. F.G. is supported by the UniPi PRA Project ‘Fluid migration in the upper crust: from natural hazards to geo-resources’ (PRA_2022_66) and by the Italian Ministry of University and Research PRIN Project ‘PREVENT’ (2022MJ82MC). The authors thank Seismix SRL for the permission to redraw and modify Fig. 1.

Author information

Authors and Affiliations

Authors

Contributions

M.J.A.M. conceived the idea, designed and coordinated the work. M.J.A.M., C.L., R.S. and F.G. prepared the visualizations. All authors contributed to the writing of the paper. All authors reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Mohammad J. A. Moein.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Earth & Environment thanks P. Hennings, H. Kao and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moein, M.J.A., Langenbruch, C., Schultz, R. et al. The physical mechanisms of induced earthquakes. Nat Rev Earth Environ 4, 847–863 (2023). https://doi.org/10.1038/s43017-023-00497-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43017-023-00497-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing