Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Non-perennial segments in river networks

A Publisher Correction to this article was published on 15 December 2023

This article has been updated

Abstract

Non-perennial river segments — those that recurrently cease to flow or frequently dry — occur in all river networks and are globally more abundant than perennial (always flowing) segments. However, research and management have historically focused on perennial river segments. In this Review, we outline how non-perennial segments are integral parts of river networks. Repeated cycles of flowing, non-flowing and dry phases in non-perennial segments influence biodiversity and ecosystem dynamics at different spatial scales, from individual segments to entire river networks. Varying configurations of perennial and non-perennial segments govern physical, chemical and ecological responses to changes in the flow regimes of each river network, especially in response to human activities. The extent of non-perennial segments in river networks has increased owing to warming, changing hydrological patterns and human activities, and this increase is predicted to continue. Moreover, the dry phases of flow regimes are expected to be longer, drier and more frequent, albeit with high regional variability. These changes will likely impact biodiversity, potentially tipping some ecosystems to compromised stable states. Effective river-network management must recognize ecosystem services (such as flood risk management and groundwater recharge) provided by non-perennial segments and ensure their legislative and regulatory protection, which is often lacking.

Key points

  • Non-perennial segments comprise over half of the global river network. Ongoing climate change and human activities will further increase the occurrence of river drying.

  • Recurrent cycles of flowing, non-flowing and dry phases influence exchanges of water, energy, nutrients and organisms between non-perennial segments and connected perennial waters.

  • Physical, chemical and biological processes in non-perennial segments affect water quality and quantity, and ecological integrity in downstream receiving waters and entire river networks.

  • Historically, river science and management have focused on perennial river segments, neglecting the ubiquity and importance of non-perennial segments. This imbalance has often led to environmental problems such as poor water quality, loss of biodiversity and alteration of natural flow regimes at the river-network scale.

  • Sustaining the water quality and ecological integrity of entire river networks and associated downstream waters requires integrated management strategies that explicitly consider non-perennial segments and their connections with perennial ones.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Non-perennial river segments: definition, abundance and flow regimes.
Fig. 2: The connections between non-perennial and perennial river segments.
Fig. 3: Effects of non-perenniality on river-scale leaf litter decomposition and transport.
Fig. 4: Non-perenniality impacts on biodiversity patterns at the river-network scale.
Fig. 5: The future hydrological and biological fate of non-perennial rivers.
Fig. 6: Examples of ecosystem processes and services occurring in non-perennial segments and management opportunities.
Fig. 7: Examples of threats on non-perennial river segments.

Similar content being viewed by others

Change history

References

  1. Tonkin, J. D. et al. Prepare river ecosystems for an uncertain future. Nature 570, 301–303 (2019).

    Article  Google Scholar 

  2. Tickner, D. et al. Bending the curve of global freshwater biodiversity loss: an emergency recovery plan. BioScience 70, 330–342 (2020).

    Article  Google Scholar 

  3. Reid, A. J. et al. Emerging threats and persistent conservation challenges for freshwater biodiversity. Biol. Rev. 94, 849–873 (2019).

    Article  Google Scholar 

  4. Messager, M. L. et al. Global prevalence of non-perennial rivers and streams. Nature 594, 391–397 (2021).

    Article  Google Scholar 

  5. Cid, N. et al. From meta-system theory to the sustainable management of rivers in the Anthropocene. Front. Ecol. Environ. 20, 49–57 (2022).

    Article  Google Scholar 

  6. Uys, M. C. & O’Keeffe, J. H. Simple words and fuzzy zones: early directions for temporary river research in South Africa. Environ. Manage. 21, 517–531 (1997).

    Article  Google Scholar 

  7. Williams, D. D. The Biology of Temporary Waters (Oxford Univ. Press, 2006).

  8. Gallart, F. et al. A novel approach to analysing the regimes of temporary streams in relation to their controls on the composition and structure of aquatic biota. Hydrol. Earth Syst. Sci. 16, 3165–3182 (2012).

    Article  Google Scholar 

  9. Busch, M. H. et al. What’s in a name? Patterns, trends, and suggestions for defining non-perennial rivers and streams. Water 12, 1980 (2020).

    Article  Google Scholar 

  10. Datry, T. et al. in Intermittent Rivers and Ephemeral Streams: Ecology and Management 377–403 (Academic Press, 2017).

  11. Boulton, A. J., Rolls, R. J., Jaeger, K. L. & Datry, T. in Intermittent Rivers and Ephemeral Streams: Ecology and Management 79–108 (Academic Press, 2017).

  12. Zipper, S. C. et al. Pervasive changes in stream intermittency across the United States. Environ. Res. Lett. 16, 084033 (2021).

    Article  Google Scholar 

  13. Zhang, Y. et al. Future global streamflow declines are probably more severe than previously estimated. Nat. Water 1, 261–271 (2023).

    Article  Google Scholar 

  14. Cuevas, J. G. et al. Spatial distribution and pollution evaluation in dry riverbeds affected by mine tailings. Environ. Geochem. Health https://doi.org/10.1007/s10653-022-01469-5 (2023).

    Article  Google Scholar 

  15. Poff, N. L. et al. The natural flow regime. BioScience 47, 769–784 (1997).

    Article  Google Scholar 

  16. Datry, T., Larned, S. T. & Tockner, K. Intermittent rivers: a challenge for freshwater ecology. BioScience 64, 229–235 (2014).

    Article  Google Scholar 

  17. Bogan, M. T. et al. Resistance, resilience, and community recovery in intermittent rivers and ephemeral streams. in Intermittent Rivers and Ephemeral Streams: Ecology and Management 349–376 (Academic Press, 2017).

  18. Gauthier, M. et al. Fragmentation promotes the role of dispersal in determining 10 intermittent headwater stream metacommunities. Freshw. Biol. 65, 2169–2185 (2020).

    Article  Google Scholar 

  19. Diamond, J. S. et al. Light and hydrologic connectivity drive dissolved oxygen synchrony in stream networks. Limnol. Oceanogr. 68, 322–335 (2023).

    Article  Google Scholar 

  20. Boulton, A. J. Parallels and contrasts in the effects of drought on stream macroinvertebrate assemblages. Freshw. Biol. 48, 1173–1185 (2003).

    Article  Google Scholar 

  21. Stubbington, R. The hyporheic zone as an invertebrate refuge: a review of variability in space, time, taxa and behaviour. Mar. Freshw. Res. 63, 293–311 (2012).

    Article  Google Scholar 

  22. DelVecchia, A. G. et al. Reconceptualizing the hyporheic zone for nonperennial rivers and streams. Freshw. Sci. 41, 167–182 (2022).

    Article  Google Scholar 

  23. Malard, F., Tockner, K., Dole‐Olivier, M.-J. & Ward, J. V. A landscape perspective of surface–subsurface hydrological exchanges in river corridors. Freshw. Biol. 47, 621–640 (2002).

    Article  Google Scholar 

  24. Boulton, A. J., Datry, T., Kasahara, T., Mutz, M. & Stanford, J. A. Ecology and management of the hyporheic zone: stream–groundwater interactions of running waters and their floodplains. J. North. Am. Benthol. Soc. 29, 26–40 (2010).

    Article  Google Scholar 

  25. Gómez-Gener, L. et al. Towards an improved understanding of biogeochemical processes across surface–groundwater interactions in intermittent rivers and ephemeral streams. Earth-Sci. Rev. 220, 103724 (2021).

    Article  Google Scholar 

  26. Arscott, D., Tockner, K., van der Nat, D. & Ward, J. Aquatic habitat dynamics along a braided alpine river ecosystem (Tagliamento River, Northeast Italy). Ecosystems 5, 0802–0814 (2002).

    Article  Google Scholar 

  27. Corti, R. & Datry, T. Invertebrates and sestonic matter in an advancing wetted front travelling down a dry river bed (Albarine, France). Freshw. Sci. 31, 1187–1201 (2012).

    Article  Google Scholar 

  28. Costigan, K. H. et al. in Intermittent Rivers and Ephemeral Streams: Ecology and Management 51–78 (Academic Press, 2017).

  29. Shanafield, M., Bourke, S., Zimmer, M. & Costigan, K. An overview of the hydrology of non‐perennial rivers and streams. Wiley Interdiscip. Rev. Water 8, e1504 (2021).

    Article  Google Scholar 

  30. Zipper, S., Popescu, I., Compare, K., Zhang, C. & Seybold, E. C. Alternative stable states and hydrological regime shifts in a large intermittent river. Environ. Res. Lett. 17, 074005 (2022).

    Article  Google Scholar 

  31. Costigan, K. H., Jaeger, K. L., Goss, C. W., Fritz, K. M. & Goebel, P. C. Understanding controls on flow permanence in intermittent rivers to aid ecological research: integrating meteorology, geology and land cover. Ecohydrology 9, 1141–1153 (2016).

    Article  Google Scholar 

  32. Hammond, J. C. et al. Spatial patterns and drivers of non-perennial flow regimes in the contiguous United States. Geophys. Res. Lett. 48, e2020GL090794 (2021).

    Article  Google Scholar 

  33. Datry, T. et al. A global analysis of terrestrial plant litter dynamics in non-perennial waterways. Nat. Geosci. 11, 497–503 (2018).

    Article  Google Scholar 

  34. Wohl, E. Rivers in the critical zone. Dev. Earth Surf. Process. 19, 267–293 (2015).

    Article  Google Scholar 

  35. Gounand, I., Harvey, E., Little, C. J. & Altermatt, F. Meta-ecosystems 2.0: rooting the theory into the field. Trends Ecol. Evol. 33, 36–46 (2018).

    Article  Google Scholar 

  36. Benstead, J. P. & Leigh, D. S. An expanded role for river networks. Nat. Geosci. 5, 678–679 (2012).

    Article  Google Scholar 

  37. Pineda-Morante, D. et al. Local hydrological conditions and spatial connectivity shape invertebrate communities after rewetting in temporary rivers. Hydrobiologia 849, 1511–1530 (2022).

    Article  Google Scholar 

  38. Datry, T. Benthic and hyporheic invertebrate assemblages along a flow intermittence gradient: effects of duration of dry events. Freshw. Biol. 57, 563–574 (2012).

    Article  Google Scholar 

  39. Costelloe, J. F., Grayson, R. B., Argent, R. M. & McMahon, T. A. Modelling the flow regime of an arid zone floodplain river, Diamantina River, Australia. Environ. Model. Softw. 18, 693–703 (2003).

    Article  Google Scholar 

  40. Larned, S. T., Datry, T., Arscott, D. B. & Tockner, K. Emerging concepts in temporary-river ecology. Freshw. Biol. 55, 717–738 (2010).

    Article  Google Scholar 

  41. Arscott, D. B., Larned, S., Scarsbrook, M. R. & Lambert, P. Aquatic invertebrate community structure along an intermittence gradient: Selwyn River, New Zealand. J. North. Am. Benthol. Soc. 29, 530–545 (2010).

    Article  Google Scholar 

  42. Grodek, T. et al. The last millennium largest floods in the hyperarid Kuiseb River basin, Namib Desert. J. Quat. Sci. 28, 258–270 (2013).

    Article  Google Scholar 

  43. Döll, P. & Schmied, H. M. How is the impact of climate change on river flow regimes related to the impact on mean annual runoff? A global-scale analysis. Environ. Res. Lett. 7, 014037 (2012).

    Article  Google Scholar 

  44. Capderrey, C., Datry, T., Foulquier, A., Claret, C. & Malard, F. Invertebrate distribution across nested geomorphic features in braided-river landscapes. Freshw. Sci. 32, 1188–1204 (2013).

    Article  Google Scholar 

  45. Leibowitz, S. G. et al. Connectivity of streams and wetlands to downstream waters: an integrated systems framework. J. Am. Water Resour. Assoc. 54, 298–322 (2018).

    Article  Google Scholar 

  46. Shumilova, O. et al. Simulating rewetting events in intermittent rivers and ephemeral streams: a global analysis of leached nutrients and organic matter. Glob. Change Biol. 25, 1591–1611 (2019).

    Article  Google Scholar 

  47. Vivoni, E. R., Bowman, R. S., Wyckoff, R. L., Jakubowski, R. T. & Richards, K. E. Analysis of a monsoon flood event in an ephemeral tributary and its downstream hydrologic effects. Water Resour. Res. 42, W03404 (2006).

    Article  Google Scholar 

  48. Dahm, C. N., Candelaria-Ley, R. I., Reale, C. S., Reale, J. K. & van Horn, D. J. Extreme water quality degradation following a catastrophic forest fire. Freshw. Biol. 60, 2584–2599 (2015).

    Article  Google Scholar 

  49. Levick, L. R. et al. The Ecological and Hydrological Significance of Ephemeral and Intermittent Streams in the Arid and Semi-Arid American Southwest. Report No. EPA/600/R-08/134, ARS/233046 (US Environmental Protection Agency, Office of Research and Development, 2008).

  50. Sheldon, F. et al. Ecological roles and threats to aquatic refugia in arid landscapes: dryland river waterholes. Mar. Freshw. Res. 61, 885–895 (2010).

    Article  Google Scholar 

  51. Stubbington, R., England, J., Wood, P. J. & Sefton, C. E. M. Temporary streams in temperate zones: recognizing, monitoring and restoring transitional aquatic–terrestrial ecosystems. WIREs Water 4, e1223 (2017).

    Article  Google Scholar 

  52. Vander Vorste, R., Obedzinski, M., Nossaman Pierce, S., Carlson, S. M. & Grantham, T. E. Refuges and ecological traps: extreme drought threatens persistence of an endangered fish in intermittent streams. Glob. Change Biol. 26, 3834–3845 (2020).

    Article  Google Scholar 

  53. Arias-Real, R., Gutiérrez-Cánovas, C., Menéndez, M., Granados, V. & Muñoz, I. Diversity mediates the responses of invertebrate density to duration and frequency of rivers’ annual drying regime. Oikos 130, 2148–2160 (2021).

    Article  Google Scholar 

  54. Steward, A. L., Datry, T. & Langhans, S. D. The terrestrial and semi-aquatic invertebrates of intermittent rivers and ephemeral streams. Biol. Rev. 97, 1408–1425 (2022).

    Article  Google Scholar 

  55. Soria, M., Leigh, C., Datry, T., Bini, L. M. & Bonada, N. Biodiversity in perennial and intermittent rivers: a meta-analysis. Oikos 126, 1078–1089 (2017).

    Article  Google Scholar 

  56. Corti, R. & Datry, T. Terrestrial and aquatic invertebrates in the riverbed of an intermittent river: parallels and contrasts in community organisation. Freshw. Biol. 61, 1308–1320 (2016).

    Article  Google Scholar 

  57. Stubbington, R. et al. in Intermittent Rivers and Ephemeral Streams: Ecology and Management 217–243 (Academic Press, 2017).

  58. Marshall, J. C. et al. Go with the flow: the movement behaviour of fish from isolated waterhole refugia during connecting flow events in an intermittent dryland river. Freshw. Biol. 61, 1242–1258 (2016).

    Article  Google Scholar 

  59. Pařil, P. et al. An unexpected source of invertebrate community recovery in intermittent streams from a humid continental climate. Freshw. Biol. 64, 1971–1983 (2019).

    Article  Google Scholar 

  60. Stubbington, R. & Datry, T. The macroinvertebrate seedbank promotes community persistence in temporary rivers across climate zones. Freshw. Biol. 58, 1202–1220 (2013).

    Article  Google Scholar 

  61. Barthès, A. et al. Impact of drought on diatom communities and the consequences for the use of diatom index values in the River Maureillas (Pyrénées-Orientales, France). River Res. Appl. 31, 993–1002 (2015).

    Article  Google Scholar 

  62. Fournier, R. J., de Mendoza, G., Sarremejane, R. & Ruhi, A. Isolation controls reestablishment mechanisms and post-drying community structure in an intermittent stream. Ecology 104, e3911 (2023).

    Article  Google Scholar 

  63. Sarremejane, R. et al. Stochastic processes and ecological connectivity drive stream invertebrate community responses to short-term drought. J. Anim. Ecol. 90, 886–898 (2021).

    Article  Google Scholar 

  64. Gauthier, M., Goff, G. L., Launay, B., Douady, C. J. & Datry, T. Dispersal limitation by structures is more important than intermittent drying effects for metacommunity dynamics in a highly fragmented river network. Freshw. Sci. 40, 302–315 (2021).

    Article  Google Scholar 

  65. Di Sabatino, A., Coscieme, L. & Cristiano, G. No post-drought recovery of the macroinvertebrate community after five months upon rewetting of an irregularly intermittent Apennine River (Aterno River). Ecohydrol. Hydrobiol. https://doi.org/10.1016/j.ecohyd.2022.11.005 (2022).

    Article  Google Scholar 

  66. von Schiller, D. et al. Sediment respiration pulses in intermittent rivers and ephemeral streams. Glob. Biogeochem. Cycles 33, 1251–1263 (2019).

    Article  Google Scholar 

  67. Placella, S., Brodie, E. & Firestone, M. Rainfall-induced carbon dioxide pulses result from sequential resuscitation of phylogenetically clustered microbial groups. Proc. Natl Acad. Sci. USA 109, 10931–10936 (2012).

    Article  Google Scholar 

  68. Arce, M. I., Sánchez-Montoya, M. M. & Gómez, R. Nitrogen processing following experimental sediment rewetting in isolated pools in an agricultural stream of a semiarid region. Ecol. Eng. 77, 233–241 (2015).

    Article  Google Scholar 

  69. del Campo, R., Foulquier, A., Singer, G. & Datry, T. in The Ecology of Plant Litter Decomposition in Stream Ecosystems (eds Swan, C. M., Boyero, L. & Canhoto, C.) 73–100 (Springer, 2021).

  70. Lauerwald, R. et al. Inland water greenhouse gas budgets for RECCAP2: 1. State-of-the-art of global scale assessments. Glob. Biogeochem. Cycles 37, e2022GB007657 (2023).

    Article  Google Scholar 

  71. B-Béres, V. et al. Autumn drought drives functional diversity of benthic diatom assemblages of continental intermittent streams. Adv. Water Resour. 126, 129–136 (2019).

    Article  Google Scholar 

  72. Crabot, J. et al. A global perspective on the functional responses of stream communities to flow intermittence. Ecography 44, 1511–1523 (2021).

    Article  Google Scholar 

  73. Aspin, T. W. H. et al. Extreme drought pushes stream invertebrate communities over functional thresholds. Glob. Change Biol. 25, 230–244 (2019).

    Article  Google Scholar 

  74. Ledger, M. E., Brown, L. E., Edwards, F. K., Milner, A. M. & Woodward, G. Drought alters the structure and functioning of complex food webs. Nat. Clim. Change 3, 223–227 (2013).

    Article  Google Scholar 

  75. Foulquier, A., Artigas, J., Pesce, S. & Datry, T. Drying responses of microbial litter decomposition and associated fungal and bacterial communities are not affected by emersion frequency. Freshw. Sci. 34, 1233–1244 (2015).

    Article  Google Scholar 

  76. del Campo, R., Corti, R. & Singer, G. Flow intermittence alters carbon processing in rivers through chemical diversification of leaf litter. Limnol. Oceanogr. Lett. 6, 232–242 (2021).

    Article  Google Scholar 

  77. Price, A. N., Jones, C. N., Hammond, J. C., Zimmer, M. A. & Zipper, S. C. The drying regimes of non-perennial rivers and streams. Geophys. Res. Lett. 48, e2021GL093298 (2021).

    Article  Google Scholar 

  78. Sauquet, E., Beaufort, A., Sarremejane, R. & Thirel, G. Predicting flow intermittence in France under climate change. Hydrol. Sci. J. 66, 2046–2059 (2021).

    Article  Google Scholar 

  79. Fritz, K. M., Pond, G. J., Johnson, B. R. & Barton, C. D. Coarse particulate organic matter dynamics in ephemeral tributaries of a Central Appalachian stream network. Ecosphere 10, e02654 (2019).

    Article  Google Scholar 

  80. Hladyz, S., Watkins, S. C., Whitworth, K. L. & Baldwin, D. S. Flows and hypoxic blackwater events in managed ephemeral river channels. J. Hydrol. 401, 117–125 (2011).

    Article  Google Scholar 

  81. Walczak, N., Walczak, Z. & Nieć, J. Influence of debris on water intake gratings in small hydroelectric plants: an experimental study on hydraulic parameters. Energies 14, 3248 (2021).

    Article  Google Scholar 

  82. Larsen, S. et al. The geography of metapopulation synchrony in dendritic river networks. Ecol. Lett. 24, 791–801 (2021).

    Article  Google Scholar 

  83. Schindler, D. E., Armstrong, J. B. & Reed, T. E. The portfolio concept in ecology and evolution. Front. Ecol. Environ. 13, 257–263 (2015).

    Article  Google Scholar 

  84. Moore, J. W. et al. Emergent stability in a large, free-flowing watershed. Ecology 96, 340–347 (2015).

    Article  Google Scholar 

  85. Ruetz, C. R., Trexler, J. C., Jordan, F., Loftus, W. F. & Perry, S. A. Population dynamics of wetland fishes: spatio-temporal patterns synchronized by hydrological disturbance? J. Anim. Ecol. 74, 322–332 (2005).

    Article  Google Scholar 

  86. Sarremejane, R. et al. Drought effects on invertebrate metapopulation dynamics and quasi-extinction risk in an intermittent river network. Glob. Change Biol. 27, 4024–4039 (2021).

    Article  Google Scholar 

  87. Crabot, J., Heino, J., Launay, B. & Datry, T. Drying determines the temporal dynamics of stream invertebrate structural and functional beta diversity. Ecography 43, 620–635 (2020).

    Article  Google Scholar 

  88. Sarremejane, R., Mykrä, H., Bonada, N., Aroviita, J. & Muotka, T. Habitat connectivity and dispersal ability drive the assembly mechanisms of macroinvertebrate communities in river networks. Freshw. Biol. 62, 1073–1082 (2017).

    Article  Google Scholar 

  89. Datry, T., Bonada, N. & Heino, J. Towards understanding the organisation of metacommunities in highly dynamic ecological systems. Oikos 125, 149–159 (2016).

    Article  Google Scholar 

  90. Sarremejane, R. et al. Local and regional drivers influence how aquatic community diversity, resistance and resilience vary in response to drying. Oikos 129, 1877–1890 (2020).

    Article  Google Scholar 

  91. Cañedo-Argüelles, M. et al. Dispersal strength determines meta-community structure in a dendritic riverine network. J. Biogeogr. 42, 778–790 (2015).

    Article  Google Scholar 

  92. Sarremejane, R. et al. Do metacommunities vary through time? Intermittent rivers as model systems. J. Biogeogr. 44, 2752–2763 (2017).

    Article  Google Scholar 

  93. Stubbington, R. et al. A comparison of biotic groups as dry-phase indicators of ecological quality in intermittent rivers and ephemeral streams. Ecol. Indic. 97, 165–174 (2019).

    Article  Google Scholar 

  94. Tonkin, J. D., Stoll, S., Jähnig, S. C. & Haase, P. Contrasting metacommunity structure and beta diversity in an aquatic-floodplain system. Oikos 125, 686–697 (2016).

    Article  Google Scholar 

  95. Ficklin, D. L., Abatzoglou, J. T., Robeson, S. M., Null, S. E. & Knouft, J. H. Natural and managed watersheds show similar responses to recent climate change. Proc. Natl Acad. Sci. USA 115, 8553–8557 (2018).

    Article  Google Scholar 

  96. Tramblay, Y. et al. Trends in flow intermittence for European rivers. Hydrol. Sci. J. 66, 37–49 (2021).

    Article  Google Scholar 

  97. Ward, A. S., Wondzell, S. M., Schmadel, N. M. & Herzog, S. P. Climate change causes river network contraction and disconnection in the H.J. Andrews experimental forest, Oregon, USA. Front. Water https://doi.org/10.3389/frwa.2020.00007 (2020).

    Article  Google Scholar 

  98. Spinoni, J., Naumann, G., Carrao, H., Barbosa, P. & Vogt, J. World drought frequency, duration, and severity for 1951–2010. Int. J. Climatol. 34, 2792–2804 (2014).

    Article  Google Scholar 

  99. Spinoni, J., Vogt, J. V., Naumann, G., Barbosa, P. & Dosio, A. Will drought events become more frequent and severe in Europe? Int. J. Climatol. 38, 1718–1736 (2018).

    Article  Google Scholar 

  100. Vicente-Serrano, S. M., Quiring, S. M., Peña-Gallardo, M., Yuan, S. & Domínguez-Castro, F. A review of environmental droughts: increased risk under global warming? Earth-Sci. Rev. 201, 102953 (2020).

    Article  Google Scholar 

  101. Datry, T. et al. Causes, responses, and implications of anthropogenic versus natural flow intermittence in river networks. BioScience 73, 9–22 (2023).

    Article  Google Scholar 

  102. Toreti, A. et al. Drought in Europe August 2022. Report no. JRC130493 (Publications Office of the European Union, 2022).

  103. Kustu, M. D., Fan, Y. & Robock, A. Large-scale water cycle perturbation due to irrigation pumping in the US high plains: a synthesis of observed streamflow changes. J. Hydrol. 390, 222–244 (2010).

    Article  Google Scholar 

  104. Perkin, J. S. et al. Groundwater declines are linked to changes in great plains stream fish assemblages. Proc. Natl. Acad. Sci. USA 114, 7373–7378 (2017).

    Article  Google Scholar 

  105. Yuan, X. et al. A global transition to flash droughts under climate change. Science 380, 187–191 (2023).

    Article  Google Scholar 

  106. Mazdiyasni, O. & AghaKouchak, A. Substantial increase in concurrent droughts and heatwaves in the United States. Proc. Natl Acad. Sci. USA 112, 11484–11489 (2015).

    Article  Google Scholar 

  107. Sutanto, S. J., Vitolo, C., Di Napoli, C., D’Andrea, M. & Van Lanen, H. A. J. Heatwaves, droughts, and fires: exploring compound and cascading dry hazards at the pan-European scale. Environ. Int. 134, 105276 (2020).

    Article  Google Scholar 

  108. Tassone, S. J. et al. Increasing heatwave frequency in streams and rivers of the United States. Limnol. Oceanogr. Lett. 8, 295–304 (2023).

    Article  Google Scholar 

  109. Woodhouse, C. A. & Overpeck, J. T. 2000 Years of drought variability in the central United States. Bull. Am. Meteorol. Soc. 79, 2693––2714 (1998).

    Article  Google Scholar 

  110. Williams, A. P. et al. Large contribution from anthropogenic warming to an emerging North American megadrought. Science 368, 314–318 (2020).

    Article  Google Scholar 

  111. Barnett, T. P., Adam, J. C. & Lettenmaier, D. P. Potential impacts of a warming climate on water availability in snow-dominated regions. Nature 438, 303–309 (2005).

    Article  Google Scholar 

  112. Milly, P. C. D. & Dunne, K. A. Colorado River flow dwindles as warming-driven loss of reflective snow energizes evaporation. Science 367, 1252–1255 (2020).

    Article  Google Scholar 

  113. Drummond, L. R., McIntosh, A. R. & Larned, S. T. Invertebrate community dynamics and insect emergence in response to pool drying in a temporary river. Freshw. Biol. 60, 1596–1612 (2015).

    Article  Google Scholar 

  114. Stubbington, R. et al. The response of perennial and temporary headwater stream invertebrate communities to hydrological extremes. Hydrobiologia 630, 299–312 (2009).

    Article  Google Scholar 

  115. Jaeger, K. L., Olden, J. D. & Pelland, N. A. Climate change poised to threaten hydrologic connectivity and endemic fishes in dryland streams. Proc. Natl Acad. Sci. USA 111, 13894–13899 (2014).

    Article  Google Scholar 

  116. Bogan, M. T., Leidy, R. A., Neuhaus, L., Hernandez, C. J. & Carlson, S. M. Biodiversity value of remnant pools in an intermittent stream during the great California drought. Aquat. Conserv. Mar. Freshw. Ecosyst. 29, 976–989 (2019).

    Article  Google Scholar 

  117. Hynes, H. B. N. The effect of drought on the fauna of a small mountain stream in Wales. Verhandlungen Int. Ver. Für Theor. Angew. Limnol. 13, 826–833 (1958).

    Google Scholar 

  118. Bogan, M. T. & Boersma, K. S. Aerial dispersal of aquatic invertebrates along and away from arid-land streams. Freshw. Sci. 31, 1131–1144 (2012).

    Article  Google Scholar 

  119. Romaní, A. & Sabater, S. Metabolism recovery of a stromatolitic biofilm after drought in a Mediterranean stream. Arch. Hydrobiol. 140, 261–271 (1997).

    Article  Google Scholar 

  120. Acuña, V., Casellas, M., Corcoll, N., Timoner, X. & Sabater, S. Increasing extent of periods of no flow in intermittent waterways promotes heterotrophy. Freshw. Biol. 60, 1810–1823 (2015).

    Article  Google Scholar 

  121. Ruffing, C. M. et al. Prairie stream metabolism recovery varies based on antecedent hydrology across a stream network after a bank-full flood. Limnol. Oceanogr. 67, 1986–1999 (2022).

    Article  Google Scholar 

  122. Nyström, M. Redundancy and response diversity of functional groups: implications for the resilience of coral reefs. Ambio 35, 30–35 (2006).

    Article  Google Scholar 

  123. Matthaei, C. D., Piggott, J. J. & Townsend, C. R. Multiple stressors in agricultural streams: interactions among sediment addition, nutrient enrichment and water abstraction. J. Appl. Ecol. 47, 639–649 (2010).

    Article  Google Scholar 

  124. Wood, P. J. & Petts, G. E. The influence of drought on chalk stream macroinvertebrates. Hydrol. Process. 13, 387–399 (1999).

    Article  Google Scholar 

  125. Ledger, M. E. & Hildrew, A. G. Recolonization by the benthos of an acid stream following a drought. Arch. für Hydrobiol. 152, 1–17 (2001).

    Article  Google Scholar 

  126. Cotton, J. A., Wharton, G., Bass, J. A. B., Heppell, C. M. & Wotton, R. S. The effects of seasonal changes to in-stream vegetation cover on patterns of flow and accumulation of sediment. Geomorphology 77, 320–334 (2006).

    Article  Google Scholar 

  127. Gurnell, A. M., van Oosterhout, M. P., de Vlieger, B. & Goodson, J. M. Reach-scale interactions between aquatic plants and physical habitat: river frome, dorset. River Res. Appl. 22, 667–680 (2006).

    Article  Google Scholar 

  128. Heino, J. et al. Metacommunity organisation, spatial extent and dispersal in aquatic systems: patterns, processes and prospects. Freshw. Biol. 60, 845–869 (2015).

    Article  Google Scholar 

  129. Rogosch, J. S. & Olden, J. D. Dynamic contributions of intermittent and perennial streams to fish beta diversity in dryland rivers. J. Biogeogr. 46, 2311–2322 (2019).

    Article  Google Scholar 

  130. Soria, M. et al. Natural disturbances can produce misleading bioassessment results: identifying metrics to detect anthropogenic impacts in intermittent rivers. J. Appl. Ecol. 57, 283–295 (2020).

    Article  Google Scholar 

  131. Crabot, J., Dolédec, S., Forcellini, M. & Datry, T. Efficiency of invertebrate-based bioassessment for evaluating the ecological status of streams along a gradient of flow intermittence. Ecol. Indic. 133, 108440 (2021).

    Article  Google Scholar 

  132. Moidu, H. et al. Ecological consequences of shifting habitat mosaics within and across years in an intermittent stream. Freshw. Biol. 00, 1–15 (2023).

    Google Scholar 

  133. Wigington, P. Jr et al. Coho salmon dependence on intermittent streams. Front. Ecol. Environ. 4, 513–518 (2006).

    Article  Google Scholar 

  134. Archdeacon, T. P. & Reale, J. K. No quarter: lack of refuge during flow intermittency results in catastrophic mortality of an imperiled minnow. Freshw. Biol. 65, 2108–2123 (2020).

    Article  Google Scholar 

  135. Hermoso, V., Ward, D. P. & Kennard, M. J. Prioritizing refugia for freshwater biodiversity conservation in highly seasonal ecosystems. Divers. Distrib. 19, 1031–1042 (2013).

    Article  Google Scholar 

  136. Yu, S., Rose, P. M., Bond, N. R., Bunn, S. E. & Kennard, M. J. Identifying priority aquatic refuges to sustain freshwater biodiversity in intermittent streams in eastern Australia. Aquat. Conserv. Mar. Freshw. Ecosyst. 32, 1584–1595 (2022).

    Article  Google Scholar 

  137. Hooke, J. M. Extreme sediment fluxes in a dryland flash flood. Sci. Rep. 9, 1686 (2019).

    Article  Google Scholar 

  138. Wekesa, S. S. et al. Water flow behavior and storage potential of the semi-arid ephemeral river system in the Mara Basin of Kenya. Front. Environ. Sci. 8, 95 (2020).

    Article  Google Scholar 

  139. Warrick, J., Washburn, L., Brzezinski, M. & Siegel, D. Nutrient contributions to the Santa Barbara Channel, California, from the ephemeral Santa Clara River. Estuar. Coast. Shelf Sci. 62, 559–574 (2005).

    Article  Google Scholar 

  140. Koundouri, P., Boulton, A., Datry, T. & Souliotis, I. in Intermittent Rivers and Ephemeral Streams: Ecology and Management 455–476 (Academic Press, 2017).

  141. United States Environmental Protection Agency. Federal safe drinking water information system 4th quarter 2006 data. National Hydrography Dataset Plus at Medium Resolution. https://www.epa.gov/cwa-404/surface-drinking-water-provided-intermittent-ephemeral-and-headwater-streams-state-maps (US EPA, 2023).

  142. Allen, D. J. & Crane, E. J. The Chalk Aquifer of the Wessex Basin. Report no. RR/11/002 (British Geological Survey, 2019).

  143. Datry, T. et al. Flow intermittence and ecosystem services in rivers of the Anthropocene. J. Appl. Ecol. 55, 353–364 (2018).

    Article  Google Scholar 

  144. Timoner, X., Acuña, V., Von Schiller, D. & Sabater, S. Functional responses of stream biofilms to flow cessation, desiccation and rewetting. Freshw. Biol. 57, 1565–1578 (2012).

    Article  Google Scholar 

  145. Steward, A., Von Schiller, D., Tockner, K., Marshall, J. & Bunn, S. When the river runs dry: human and ecological values of dry riverbeds. Front. Ecol. Environ. 10, 202–209 (2012).

    Article  Google Scholar 

  146. Stubbington, R. et al. Ecosystem services of temporary streams differ between wet and dry phases in regions with contrasting climates and economies. People Nat. 2, 660–677 (2020).

    Article  Google Scholar 

  147. Leigh, C., Boersma, K. S., Galatowitsch, M. L., Milner, V. S. & Stubbington, R. Are all rivers equal? The role of education in attitudes towards temporary and perennial rivers. People Nat. 1, 181–190 (2019).

    Article  Google Scholar 

  148. Cottet, M., Robert, A., Tronchère-Cottet, H. & Datry, T. ‘It’s dry, it has fewer charms!’: do perceptions and values of intermittent rivers interact with their management? Environ. Sci. Policy 139, 139–148 (2023).

    Article  Google Scholar 

  149. Acuña, V. et al. Why should we care about temporary waterways? Science 343, 1080–1081 (2014).

    Article  Google Scholar 

  150. Doody, T. M., Hancock, P. J. & Pritchard, J. L. Information Guidelines Explanatory Note — Assessing Groundwater-Dependent Ecosystems. Report prepared for the Independent Expert Scientific Committee on Coal Seam Gas and Large Coal Mining Development through the Department of the Environment and Energy, Commonwealth of Australia https://www.iesc.gov.au/sites/default/files/2022-07/information-guidelines-explanatory-note-assessing-groundwater-dependent-ecosystems.pdf (2019).

  151. Sullivan, S. M. P., Rains, M. C., Rodewald, A. D., Buzbee, W. W. & Rosemond, A. D. Distorting science, putting water at risk. Science 369, 766–768 (2020).

    Article  Google Scholar 

  152. Reyjol, Y. et al. Assessing the ecological status in the context of the European water framework directive: where do we go now? Sci. Total Environ. 497–498, 332–344 (2014).

    Article  Google Scholar 

  153. Kallis, G. & Butler, D. The EU water framework directive: measures and implications. Water Policy 3, 125–142 (2001).

    Article  Google Scholar 

  154. Snelder, T. H. et al. Regionalization of patterns of flow intermittence from gauging station records. Hydrol. Earth Syst. Sci. 17, 2685–2699 (2013).

    Article  Google Scholar 

  155. Crabot, J., Polášek, M., Launay, B., Pařil, P. & Datry, T. Drying in newly intermittent rivers leads to higher variability of invertebrate communities. Freshw. Biol. 66, 730–744 (2021).

    Article  Google Scholar 

  156. Acuña, V., Hunter, M. & Ruhí, A. Managing temporary streams and rivers as unique rather than second-class ecosystems. Biol. Conserv. 211, 12–19 (2017).

    Article  Google Scholar 

  157. Smith, R. E. W. et al. Assessing and Managing Water Quality in Temporary Waters Technical Report. Australian and New Zealand Guidelines for Fresh and Marine Water Quality. https://www.waterquality.gov.au/sites/default/files/documents/assessing-and-managing-water-quality-in-temporary-waters.pdf (Australian and New Zealand Governments and Australian State and Territory Governments, 2020).

  158. Truchy, A. et al. Citizen scientists can help advance the science and management of intermittent rivers and ephemeral streams. BioScience 73, 513–521 (2023).

    Article  Google Scholar 

  159. Krabbenhoft, C. A. et al. Assessing placement bias of the global river gauge network. Nat. Sustain. 5, 586–592 (2022).

    Article  Google Scholar 

  160. Christensen, J. R. et al. Headwater streams and inland wetlands: status and advancements of geospatial datasets and maps across the United States. Earth-Sci. Rev. 235, 1–24 (2022).

    Article  Google Scholar 

  161. Jaeger, K. L. et al. Probability of Streamflow Permanence Model (PROSPER): a spatially continuous model of annual streamflow permanence throughout the Pacific Northwest. J. Hydrol. X 2, 100005 (2019).

    Google Scholar 

  162. Durighetto, N., Vingiani, F., Bertassello, L. E., Camporese, M. & Botter, G. Intraseasonal drainage network dynamics in a headwater catchment of the Italian Alps. Water Resour. Res. 56, e2019WR025563 (2020).

    Article  Google Scholar 

  163. Merritt, A. M., Lane, B. & Hawkins, C. P. Classification and prediction of natural streamflow regimes in arid regions of the USA. Water 13, 380 (2021).

    Article  Google Scholar 

  164. Mahoney, D. T. et al. Dynamics of streamflow permanence in a headwater network: insights from catchment-scale model simulations. J. Hydrol. 620, 129422 (2023).

    Article  Google Scholar 

  165. Ward, A., Schmadel, N. & Wondzell, S. Simulation of dynamic expansion, contraction, and connectivity in a mountain stream network. Adv. Water Resour. 114, 64–82 (2018).

    Article  Google Scholar 

  166. Hou, J., van Dijk, A., Renzullo, L., Vertessy, R. & Mueller, N. Hydromorphological attributes for all Australian river reaches derived from Landsat dynamic inundation remote sensing. Earth Syst. Sci. Data 11, 1003–1015 (2019).

    Article  Google Scholar 

  167. Wang, Z. & Vivoni, E. R. Detecting streamflow in dryland rivers using CubeSats. Geophys. Res. Lett. 49, e2022GL098729 (2022).

    Article  Google Scholar 

  168. Stanislawski, L. V. et al. Extensibility of U-Net neural network model for hydrographic feature extraction and implications for hydrologic modeling. Remote. Sens. 13, 2368 (2021).

    Article  Google Scholar 

  169. Gao, S. et al. Mapping dynamic non-perennial stream networks using high-resolution distributed hydrologic simulation: a case study in the upper blue river basin. J. Hydrol. 600, 126522 (2021).

    Article  Google Scholar 

  170. Stubbington, R. et al. Disentangling responses to natural stressor and human impact gradients in river ecosystems across Europe. J. Appl. Ecol. 59, 537–548 (2022).

    Article  Google Scholar 

  171. Datry, T., Arscott, D. B. & Sabater, S. Recent perspectives on temporary river ecology. Aquat. Sci. 73, 453–457 (2011).

    Article  Google Scholar 

  172. Stubbington, R. et al. Biomonitoring of intermittent rivers and ephemeral streams in Europe: current practice and priorities to enhance ecological status assessments. Sci. Total Environ. 618, 1096–1113 (2018).

    Article  Google Scholar 

  173. Arias-Real, R., Gutiérrez-Cánovas, C., Menéndez, M. & Muñoz, I. Drying niches of aquatic macroinvertebrates identify potential biomonitoring indicators in intermittent and ephemeral streams. Ecol. Indic. 142, 109263 (2022).

    Article  Google Scholar 

  174. Cid, N. et al. A metacommunity approach to improve biological assessments in highly dynamic freshwater ecosystems. BioScience 70, 427–438 (2020).

    Article  Google Scholar 

  175. Blackman, R. C. et al. Unlocking our understanding of intermittent rivers and ephemeral streams with genomic tools. Front. Ecol. Environ. 19, 574–583 (2021).

    Article  Google Scholar 

  176. Steward, A. L., Negus, P., Marshall, J. C., Clifford, S. E. & Dent, C. Assessing the ecological health of rivers when they are dry. Ecol. Indic. 85, 537–547 (2018).

    Article  Google Scholar 

  177. Bunting, G. et al. Aquatic and terrestrial invertebrate community responses to drying in chalk streams. Water Environ. J. 35, 229–241 (2021).

    Article  Google Scholar 

  178. Boulton, A. J. Conservation of ephemeral streams and their ecosystem services: what are we missing? Aquat. Conserv. Mar. Freshw. Ecosyst. 24, 733–738 (2014).

    Article  Google Scholar 

  179. Lake, P., Bond, N. & Reich, P. in Intermittent Rivers and Ephemeral Streams: Ecology and Management 509–533 (Academic Press, 2017).

  180. Reich, P. et al. Aquatic invertebrate responses to riparian restoration and flow extremes in three degraded intermittent streams: an eight-year field experiment. Freshw. Biol. 68, 325–339 (2023).

    Article  Google Scholar 

  181. Beebe, B., Bentley, K., Buehrens, T., Perry, R. & Armstrong, J. Evaluating fish rescue as a drought adaptation strategy using a life cycle modeling approach for imperiled Coho salmon. North. Am. J. Fish. Manag. https://doi.org/10.1002/nafm.10532 (2021).

    Article  Google Scholar 

  182. Black, A. N. et al. A review of the Leon springs pupfish (Cyprinodon bovinus) long-term conservation strategy and response to habitat restoration. Aquat. Conserv. Mar. Freshw. Ecosyst. 26, 410–416 (2016).

    Article  Google Scholar 

  183. Lobegeiger, J. Refugial Waterholes Project. Research Highlights. (State of Queensland, Department of Environment and Resource Management, 2010).

  184. Department of Environment and Science. The Queensland Waterhole Classification Scheme. (Queensland Wetlands Program, Queensland Government, 2020).

  185. Ball, I., Possingham, H. P. & Watts, M. in Spatial Conservation Prioritisation: Quantitative Methods and Computational Tools 185–195 (Oxford Univ. Press, 2009).

  186. Bruno, D. et al. Ecological relevance of non‐perennial rivers for the conservation of terrestrial and aquatic communities. Conserv. Biol. 36, e13982 (2022).

    Article  Google Scholar 

  187. Datry, T., Larned, S. T. & Scarsbrook, M. R. Responses of hyporheic invertebrate assemblages to large-scale variation in flow permanence and surface–subsurface exchange. Freshw. Biol. 52, 1452–1462 (2007).

    Article  Google Scholar 

  188. Stromberg, J., Bagstad, K., Leenhouts, J., Lite, S. & Makings, E. Effects of stream flow intermittency on riparian vegetation of a semiarid region river (San Pedro River, Arizona). River Res. Appl. 21, 925–938 (2005).

    Article  Google Scholar 

  189. Davey, A. J. H. & Kelly, D. J. Fish community responses to drying disturbances in an intermittent stream: a landscape perspective. Freshw. Biol. 52, 1719–1733 (2007).

    Article  Google Scholar 

  190. Bourke, S. A., Shanafield, M., Hedley, P., Chapman, S. & Dogramaci, S. A hydrological framework for persistent pools along non-perennial rivers. Hydrol. Earth Syst. Sci. 27, 809–836 (2023).

    Article  Google Scholar 

Download references

Acknowledgements

T.D. and N.C. received support from the European Union’s Horizon 2020 Research and Innovation programme through the DRYvER project (Securing Biodiversity, Functional Integrity and Ecosystem Services in Drying River Networks, award number 869226). The views expressed in this paper are those of the authors and do not necessarily reflect the views or policies of the USEPA.

Author information

Authors and Affiliations

Authors

Contributions

T.D., A.J.B., K.F.: conceptualization, writing — original draft preparation. J.C., K.T., N.C., R.S.: writing — original draft preparation. All: writing — reviewing and editing.

Corresponding author

Correspondence to Thibault Datry.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Earth & Environment thanks Gemma Burgazzi, Shang Gao and Oleksandra Shumilova for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

EcoFlows Channel: https://www.youtube.com/@ecoflows6550

Glossary

β-Diversity

Spatial and temporal variability in community composition.

Dry phases

In a non-perennial river segment, a period of time with no spatially continuous flowing or non-flowing surface water, although disconnected surface-water pools and subsurface water can be present.

Drying phase

In a non-perennial river segment, the transitional period between a flowing or non-flowing phase and a dry phase, during which most or all surface water is lost.

Ephemeral

A non-perennial flow regime in which water only flows in response to rainfall events, and flowing phases are thus unpredictable and typically short (hours to weeks).

Flow cessation

The point in time at which surface water ceases to flow from upstream to downstream in a non-perennial segment.

Flowing phases

In a non-perennial river segment, the periods of time in which water flows from upstream to downstream.

Flow regime

The temporal variability in the quantity and timing of discharge.

Gaining segments

Stream segments in which flow increases owing to the upwelling of groundwater into the surface channel.

Intermittent

A non-perennial flow regime, often seasonal, that is typically characterized by long flowing phases (usually multiple months) and short dry phases.

Losing segments

Stream segments in which flow decreases owing to the infiltration of surface water into the streambed towards the groundwater.

Megadroughts

Droughts that exceed the duration of most droughts in the instrumental record.

Non-flowing phases

In a non-perennial river segment, the periods of time in which spatially continuous non-flowing (still or lentic) surface water is present.

Non-perennial segments

Stream segments in which surface water recurrently stops flowing. These segments lose all or most of their surface water.

Perennial segments

Stream segments in which surface water never stops flowing.

Rewetting phase

In a non-perennial river segment, the transitional period between a dry phase and a flowing or non-flowing phase.

Synchrony

The degree of concurrent change across spatially distinct segments or populations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Datry, T., Boulton, A.J., Fritz, K. et al. Non-perennial segments in river networks. Nat Rev Earth Environ 4, 815–830 (2023). https://doi.org/10.1038/s43017-023-00495-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43017-023-00495-w

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology