Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Towards scientific forecasting of magmatic eruptions

Abstract

Forecasting eruptions is a fundamental goal of volcanology. However, difficulties in identifying eruptive precursors, fragmented approaches and lack of resources make eruption forecasting difficult to achieve. In this Review, we explore the first-order scientific approaches that are essential to progress towards forecasting the time and location of magmatic eruptions. Forecasting in time uses different monitoring techniques, depending on the conduit-opening mode. Ascending magma can create a new conduit (closed-conduit eruptions), use a previously open conduit (open-conduit eruptions) or flow below a solidified magma plug (semi-open-conduit eruptions). Closed-conduit eruptions provide stronger monitoring signals often detected months in advance, but they commonly occur at volcanoes with poorly known pre-eruptive behaviour. Open-conduit eruptions, associated with low-viscosity magmas, provide more subtle signals often detected only minutes in advance, although their higher eruption frequency promotes more testable approaches. Semi-open-conduit eruptions show intermediate behaviours, potentially displaying clear pre-eruptive signals days in advance and often recurring repeatedly. However, any given volcano can experience multiple conduit-opening modes, sometimes simultaneously, requiring combinations of forecasting approaches. Forecasting the location of vent opening relies on determining the stresses controlling magma propagation, deformation and seismic monitoring. The use of physics-based models to assimilate monitoring data and observations will substantially improve forecasting, but requires a deeper understanding of pre-eruptive processes and more extensive monitoring data.

Key points

  • Magmatic eruptions are usually preceded by some level of volcanic unrest, meaning a deviation of monitoring parameters from the baseline, a condition that can provide eruptive precursors.

  • Different types of precursors can be identified among the monitoring signals, mainly depending on the conduit-opening type feeding the eruption (‘conduit-opening mode’). The three main modes are open conduit, semi-open conduit and closed conduit.

  • The conduit-opening mode affects the intensity of the monitoring signals, provided that an adequate monitoring system is available, and hence the warning time to eruption and ultimately the effectiveness of an alert.

  • Understanding of unrest processes and knowledge of specific volcanoes (structure and dynamics of the plumbing system, magma composition and volatiles, pre-eruptive history) also provide appropriate input to operational aspects, improving eruption forecasting.

  • Forecasting the location of opening of eruptive vents is moving from description-based to physics-based models that consider the regional and local stress field, in addition to monitoring data.

  • Better eruption forecasting will rely on merging physics-based models with real-time data assimilation, to provide probabilities and uncertainties.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Volcano unrest and conduit-opening mode.
Fig. 2: Eruption forecasting at closed-conduit volcanoes.
Fig. 3: Forecasting the location of vent opening of closed-conduit eruptions in 2D.
Fig. 4: Semi-open-conduit eruptions.
Fig. 5: Open-conduit eruptions.
Fig. 6: Overview of current forecasting approaches and related pros and cons.

Similar content being viewed by others

References

  1. Freire, S., Florczyk, A. J., Pesaresi, M. & Sliuzas, R. An improved global analysis of population distribution in proximity to active volcanoes, 1975–2015. ISPRS Int. J. Geo-Inf. 8, 341 (2019).

    Article  Google Scholar 

  2. Courtillot, V. E. & Renne, P. R. On the ages of flood basalt events. Compt. Rend. Geosci. 335, 113–140 (2003).

    Article  Google Scholar 

  3. Papale, P. & Marzocchi, W. Volcanic threats to global society. Science 363, 1275–1276 (2019).

    Article  Google Scholar 

  4. Marzocchi, W. & Woo, G. Probabilistic eruption forecasting and the call for an evacuation. Geophys. Res. Lett. 34, L22310 (2007).

    Article  Google Scholar 

  5. Newhall, C. G. & Dzurisin, D. D. Historical Unrest at Large Calderas of the World. U.S. Geological Survey Bulletin, 1855 1109 (U.S. Geological Survey, 1988).

  6. Phillipson, G., Sobradelo, R. & Gottsmann, J. Global volcanic unrest in the 21st century: an analysis of the first decade. J. Volcanol. Geotherm. Res. 264, 183–196 (2013).

    Article  Google Scholar 

  7. Acocella, V., Di Lorenzo, R., Newhall, C. & Scandone, R. An overview of recent (1988 to 2014) caldera unrest: knowledge and perspectives. Rev. Geophys. https://doi.org/10.1002/2015RG000492 (2015).

  8. Newhall, C. G. et al. WOVOdat — an online, growing library of worldwide volcanic unrest. J. Volcanol. Geotherm. Res. 345, 184–199 (2017).

    Article  Google Scholar 

  9. Sparks, R. S. J. & Aspinall, W. P. Volcanic activity: frontiers and challenges in forecasting, prediction and risk assessment. State Planet. Front. Challenges Geophys. Geophys. Monogr. 19, 359–373 (2004).

    Article  Google Scholar 

  10. Marzocchi, W. & Bebbington, M. S. Probabilistic eruption forecasting at short and long time scales. Bull. Volcanol. 74, 1777–1805 (2012).

    Article  Google Scholar 

  11. Poland, M. P. & Anderson, K. R. Partly cloudy with a chance of lava flows: forecasting volcanic eruptions in the twenty‐first century. J. Geophys. Res. 125, e2018JB016974 (2020).

    Article  Google Scholar 

  12. Newhall, C. G. & Hoblitt, R. Constructing event trees for volcanic crises. Bull. Volcanol. 64, 3–20 (2002).

    Article  Google Scholar 

  13. Marzocchi, W., Sandri, L. & Selva, J. BET_EF: a probabilistic tool for long- and short-term eruption forecasting. Bull. Volcanol. 70, 623–632 (2008).

    Article  Google Scholar 

  14. Hincks, T. K., Komorowski, J. C., Sparks, R. S. J. & Aspinall, W. P. Retrospective analysis of uncertain eruption precursors at La Soufrière volcano, Guadeloupe, 1975–77: volcanic hazard assessment using a Bayesian Belief Network approach. J. Appl. Volcanol. 3, 1–26 (2014).

    Article  Google Scholar 

  15. Winson, A. E. G., Costa, F., Newhall, C. G. & Woo, G. An analysis of the issuance of volcanic alert levels during volcanic crises. J. Appl. Volcanol. 3, 14 (2014).

    Article  Google Scholar 

  16. Biggs, J. et al. Global link between deformation and volcanic eruption quantified by satellite imagery. Nat. Commun. 5, 3471 (2014).

    Article  Google Scholar 

  17. Biggs, J. & Pritchard, M. E. Global volcano monitoring: what does it mean when volcanoes deform? Elements 13, 17–22 (2017).

    Article  Google Scholar 

  18. Valade, S. et al. Towards global volcano monitoring using multisensor sentinel missions and artificial intelligence: the MOUNTS monitoring system. Remote Sens. 11, 1528–1531 (2019).

    Article  Google Scholar 

  19. Sparks, R. S. J., Biggs, J. & Neuberg, J. W. Monitoring volcanoes. Science 335, 1310 (2012).

    Article  Google Scholar 

  20. Pritchard et al. Optimizing satellite resources for the global assessment and mitigation of volcanic hazards — suggestions from the USGS Powell Center Volcano Remote Sensing Working Group. US Geol. Surv. Sci. Invest. Rep. 5116, 69 (2022).

    Google Scholar 

  21. Acocella, V. Volcano-Tectonic Processes 567 (Springer, 2021).

  22. Deligne, N. I., Jolly, G. E. & Webb, T. H. Evaluating life-safety risk for fieldwork on active volcanoes: the volcano life risk estimator (VoLREst), a volcano observatory’s decision-support tool. J. Appl. Volcanol. 7, 7 (2018).

    Article  Google Scholar 

  23. Whitehead, M. G., Bebbington, M. S., Procter, J. N., Irwin, M. E. & Viskovic, G. P. D. An initial assessment of short-term eruption forecasting options in New Zealand. N. Z. J. Geol. Geophys. https://doi.org/10.1080/00288306.2022.2080236 (2022).

  24. Galetto, F., Pritchard, M. E., Hornby, A. J., Gazel, E. & Mahowald, N. M. Spatial and temporal quantification of subaerial volcanism from 1980 to 2019: solid products, masses, and average eruptive rates. Rev. Geophys. https://doi.org/10.1029/2022RG000783 (2023).

  25. NASEM (National Academies of Sciences, Engineering and Medicine). Volcanic Eruptions and Their Repose, Unrest, Precursors and Timing (The National Academies Press, 2017).

  26. Peltier, A. et al. Changes in the long-term geophysical eruptive precursors at Piton de la Fournaise: implications for the response management. Front. Earth Sci. 6, 104 (2018).

    Article  Google Scholar 

  27. Ripepe, M. et al. Infrasonic early warning system for explosive eruptions. J. Geophys. Res. 123, 9570–9585 (2018).

    Article  Google Scholar 

  28. Stefansson, R. Advances in Earthquake Prediction, Research and Risk Mitigation 271 (Springer-PRAXIS, 2011).

  29. Nooner, S. L. & Chadwick, W. W. Inflation-predictable behavior and co-eruption deformation at Axial Seamount. Science 354, 1399–1403 (2016).

    Article  Google Scholar 

  30. Chadwick, W. W. et al. Geodetic monitoring at Axial Seamount since its 2015 eruption reveals a waning magma supply and tightly linked rates of deformation and seismicity. Geochem. Geophys. Geosyst. 23, e2021GC010153 (2022).

    Article  Google Scholar 

  31. Buck, W. R., Einarsson, P. & Brandsdóttir, B. Tectonic stress and magma chamber size as controls on dike propagation: constraints from the 1975–1984 Krafla rifting episode. J. Geophys. Res. 111, B12404 (2006).

    Article  Google Scholar 

  32. Blake, S. & Cortes, J. A. Forecasting deflation, intrusion and eruption at inflating volcanoes. Earth Planet. Sci. Lett. 481, 246–254 (2018).

    Article  Google Scholar 

  33. Heimisson, E. R., Einarsson, P., Sigmundsson, F. & Brandsdóttir, B. Kilometer-scale Kaiser effect identified in Krafla volcano, Iceland. Geophys. Res. Lett. 42, 7958–7965 (2015).

    Article  Google Scholar 

  34. Neuberg, J. et al. A review of tectonic, elastic and visco-elastic models exploring the deformation patterns throughout the eruption of Soufrière Hills volcano on Montserrat, West Indies. J. Volcanol. Geotherm. Res. 425, 107518 (2022).

    Article  Google Scholar 

  35. Tierz, P., Loughlin, S. C. & Calder, E. S. VOLCANS: an objective, structured and reproducible method for identifying sets of analogue volcanoes. Bull. Volcanol. 81, 1–22 (2019).

    Article  Google Scholar 

  36. Bebbington, M. S. & Jenkins, S. F. Intra-eruption forecasting using analogue volcano and eruption sets. J. Geophys. Res. 127, e2022JB024343 (2022).

    Article  Google Scholar 

  37. Pesicek, J. D., Wellik, J. J., Prejean, S. G. & Ogburn, S. E. Prevalence of seismic rate anomalies preceding volcanic eruptions in Alaska. Front. Earth Sci. 6, 100 (2018).

    Article  Google Scholar 

  38. Stix, J. Understanding fast and slow unrest at volcanoes and implications for eruption forecasting. Front. Earth Sci. 6, 56 (2018).

    Article  Google Scholar 

  39. Reath, K. et al. Using conceptual models to relate multiparameter satellite data to subsurface volcanic processes in Latin America. Geochem. Geophys. Geosyst. 21, e2019GC008494 (2020).

    Article  Google Scholar 

  40. Wang, D., Wu, S., Li, T., Tong, P. & Gao, Y. Elongated magma plumbing system beneath the Coso volcanic field, California, constrained by seismic reflection tomography. J. Geophys. Res. 127, e2021JB023582 (2022).

    Article  Google Scholar 

  41. Campion, R. & Coppola, D. Classification of lava lakes based on their heat and SO2 emission: implications for their formation and feeding processes. Front. Earth Sci. 11, 1040199 (2023).

    Article  Google Scholar 

  42. Swanson, D. A. et al. Forecasts and predictions of eruptive activity at Mount St. Helens, USA: 1975–1984. J. Geodyn. 3, 397–423 (1985).

    Article  Google Scholar 

  43. Acocella, V. & Neri, M. What makes flank eruptions? The 2001 Etna eruption and its possible triggering mechanisms. Bull. Volcanol. 65, 517–529 (2003).

    Article  Google Scholar 

  44. Neal, C. A. et al. The 2018 rift eruption and summit collapse of Kīlauea Volcano. Science 363, 367–374 (2019).

    Article  Google Scholar 

  45. Orr, T. R. et al. Kılauea’s 5–9 March 2011 Kamoamoa fissure eruption and its relation to 30+ years of activity from Pu ‘u ‘O ‘o. in Hawaiian Volcanoes: From Source To Surface. Geophysical Monograph Series Vol. 208 (eds Carey, R., Cayol, V., Poland, M. P. & Weis, D.) 393–420 (AGU-Wiley, 2015).

  46. Pouclet, A. & Bram, K. Nyiragongo and Nyamuragira: a review of volcanic activity in the Kivu rift, western branch of the East African Rift System. Bull. Volcanol. 83, 1–35 (2021).

    Article  Google Scholar 

  47. Pallister, J. S. et al. Faulting within the Mount St Helens conduit and implications for volcanic earthquakes. GSA Bull. 125, 359–376 (2013).

    Article  Google Scholar 

  48. Wadge, G. et al. An overview of the eruption of Soufriere Hills Volcano, Montserrat from 2000 to 2010. Geol. Soc. Lond. Mem. 39, 1–40 (2014).

    Article  Google Scholar 

  49. Rosi, M. et al. Defining the pre-eruptive states of active volcanoes for improving eruption forecasting. Front. Earth Sci. 10, 795700 (2022).

    Article  Google Scholar 

  50. Smittarello, D. et al. Precursor-free eruption triggered by edifice rupture at Nyiragongo volcano. Nature 609, 83–88 (2022).

    Article  Google Scholar 

  51. Dzurisin, D. D. Volcano Deformation Geodetic Monitoring Techniques Vol. 475 (Springer Praxis Books in Geophysical Sciences, 2007).

  52. Chouet, B. A. & Matoza, R. S. A multi-decadal view of seismic methods for detecting precursors of magma movement and eruption. J. Volcanol. Geotherm. Res. 252, 108–175 (2013).

    Article  Google Scholar 

  53. Beauducel, F., Peltier, A., Villié, A. & Suryanto, W. Mechanical imaging of a volcano plumbing system from GNSS unsupervised modeling. Geophys. Res. Lett. 47, e2020GL089419 (2020).

    Article  Google Scholar 

  54. Brenguier, F. et al. Towards forecasting volcanic eruptions using seismic noise. Nat. Geosci. 1, 126–130 (2008).

    Article  Google Scholar 

  55. Schmid, A. Eruption forerunners from multiparameter monitoring and application for eruptions time predictability (Piton de la Fournaise). J. Geophys. Res. 117, B11203 (2012).

    Article  Google Scholar 

  56. Obermann, A., Planès, T., Larose, E. & Campillo, M. Imaging preeruptive and coeruptive structural and mechanical changes of a volcano with ambient seismic noise. J. Geophys. Res. 118, 6285–6294 (2013).

    Article  Google Scholar 

  57. Boudoire, G. et al. New perspectives on volcano monitoring in a tropical environment: continuous measurements of soil CO2 flux at Piton de la Fournaise (La Réunion Island, France). Geophys. Res. Lett. 44, 8244–8253 (2017).

    Article  Google Scholar 

  58. Cameron, C. E. et al. Alaska volcano observatory alert and forecasting timeliness: 1989–2017. Front. Earth Sci. 6, 86 (2018).

    Article  Google Scholar 

  59. White, R. & McCausland, W. Volcano-tectonic earthquakes: a new tool for estimating intrusive volumes and forecasting eruptions. J. Volcanol. Geotherm. Res. 309, 139–155 (2016).

    Article  Google Scholar 

  60. Passarelli, L. et al. Magmatic or not magmatic? The 2015–2016 seismic swarm at the long-dormant Jailolo volcano, West Halmahera, Indonesia. Front. Earth Sci. 6, 79 (2018).

    Article  Google Scholar 

  61. Meyer, K., Biggs, J. & Aspinall, W. A Bayesian reassessment of the relationship between seismic moment and magmatic intrusion volume during volcanic unrest. J. Volcanol. Geotherm. Res. 419, 107375 (2021).

    Article  Google Scholar 

  62. Galetto, F., Acocella, V., Hooper, A. & Bagnardi, M. Eruption at basaltic calderas forecast by magma flow rate. Nat. Geosci. https://doi.org/10.1038/s41561-022-00960-z (2022).

  63. Zhan, Y. & Gregg, P. M. (2017). Data assimilation strategies for volcano geodesy. J. Volcanol. Geotherm. Res. 344, 13–25 (2017).

    Article  Google Scholar 

  64. Zhan, Y., Gregg, P. M., Chaussard, E. & Aoki, Y. Sequential assimilation of volcanic monitoring data to quantify eruption potential: application to Kerinci Volcano, Sumatra. Front. Earth Sci. 5, 108 (2017).

    Article  Google Scholar 

  65. Albright, J. A., Gregg, P. M., Lu, Z. & Freymueller, J. T. Hindcasting magma reservoir stability preceding the 2008 eruption of Okmok, Alaska. Geophys. Res. Lett. 46, 8801–8808 (2019).

    Article  Google Scholar 

  66. Gregg, P. M. et al. Forecasting mechanical failure and the 26 June 2018 eruption of Sierra Negra Volcano, Galápagos, Ecuador. Sci. Adv. 8, eabm4261 (2022).

    Article  Google Scholar 

  67. Voight, B. A method for prediction of volcanic eruptions. Nature 332, 125–130 (1988).

    Article  Google Scholar 

  68. Voight, B. & Cornelius, R. R. Prospects for eruption prediction in near real-time. Nature 350, 695–698 (1991).

    Article  Google Scholar 

  69. Kilburn, C. R. J., de Natale, G. & Carlino, S. Progressive approach to eruption at Campi Flegrei caldera in southern Italy. Nat. Commun. 8, 15312 (2017).

    Article  Google Scholar 

  70. Kilburn, C. R. J. Forecasting volcanic eruptions: beyond the failure forecast method. Front. Earth Sci. 6, 133 (2018).

    Article  Google Scholar 

  71. Kilburn, C. R., Carlino, S., Danesi, S. & Pino, N. A. Potential for rupture before eruption at Campi Flegrei caldera, South Italy. Commun. Earth Environ. 4, 190 (2023).

    Article  Google Scholar 

  72. Sigmundsson et al. Deformation and seismicity decline before the 2021 Fagradalsfjall eruption. Nature 609, 523–528 (2022).

    Article  Google Scholar 

  73. Peltier, A., Beauducel, F., Staudacher, T., Catherine, P. & Kowalski, P. Contribution of tiltmeters and extensometers to monitor Piton de La Fournaise activity. in Active Volcanoes of the Southwest Indian Ocean: Piton de la Fournaise and Karthala. Active Volcanoes of the World (eds Bachèlery, P., Lénat, J. F., Di Muro, A. & Michon, L.) 287–303 (Springer, 2016).

  74. Peltier, A. et al. Volcano crisis management at Piton de la Fournaise (La Réunion) during the COVID-19 lockdown. Seismol. Res. Lett. 92, 38–52 (2020).

    Article  Google Scholar 

  75. Roult, G. C., Beauducel, F., Ferrazzini, V., Boissier, P. & Villeneuve, N. The ‘Jerk’ method for predicting intrusions and eruptions of Piton De La Fournaise (La Réunion Island) from the analysis of the Broadband Seismological RER Station. American Geophysical Union, Fall Meeting 2014, Abstract id V43A-4844 (2014).

  76. Gudmundsson, M. T. et al. Gradual caldera collapse at Bárdarbunga volcano, Iceland, regulated by lateral magma outflow. Science 353, aaf8988 (2016).

    Article  Google Scholar 

  77. Duputel, Z., Lengliné, O. & Ferrazzini, V. Constraining spatiotemporal characteristics of magma migration at Piton de la Fournaise volcano from pre‐eruptive seismicity. Geophys. Res. Lett. 46, 119–127 (2019).

    Article  Google Scholar 

  78. Tan, C. T., Taisne, B., Neuberg, J. & Basuki, A. Real-time assessment of potential seismic migration within a monitoring network using Red-flag SARA. J. Volcanol. Geotherm. Res. 384, 31–47 (2019).

    Article  Google Scholar 

  79. Del Fresno, C. et al. Magmatic plumbing and dynamic evolution of the 2021 La Palma eruption. Nat. Commun. 14, 358 (2023).

    Article  Google Scholar 

  80. Battaglia, J. & Aki, K. Location of seismic events and eruptive fissures on the Piton de la Fournaise volcano using seismic amplitudes. J. Geophys. Res. 108, B8 2364 (2003).

    Article  Google Scholar 

  81. Taisne, B., Brenguier, F., Shapiro, N. M. & Ferrazzini, V. Imaging the dynamics of magma propagation using radiated seismic intensity. Geophys. Res. Lett. 38, L04304 (2011).

    Article  Google Scholar 

  82. Caudron, C. et al. Seismic amplitude ratio analysis of the 2014–2015 Bárdarbunga-Holuhraun dike propagation and eruption. J. Geophys. Res. 123, 264–276 (2018).

    Article  Google Scholar 

  83. McNutt, S. R. Seismic monitoring and eruption forecasting of volcanoes: a review of the state-of-the art and case histories. in Monitoring and Mitigation of Volcano Hazards (eds Scarpa, R. & Tilling, R.) 99–146 (Springer, 1996).

  84. Sigmundsson, F. et al. Segmented lateral dyke growth in a rifting event at Bárðarbunga volcanic system, Iceland. Nature 517, 191–195 (2015).

    Article  Google Scholar 

  85. Maccaferri, F., Rivalta, E., Passarelli, L. & Aoki, Y. On the mechanisms governing dike arrest: insight from the 2000 Miyakejima dike injection. Earth Planet. Sci. Lett. 434, 64–74 (2016).

    Article  Google Scholar 

  86. Bonaccorso, A., Aoki, Y. & Rivalta, E. Dike propagation energy balance from deformation modeling and seismic release. Geophys. Res. Lett. 44, 5486–5494 (2017).

    Article  Google Scholar 

  87. Bevilacqua, A. et al. Quantifying volcanic hazard at Campi Flegrei caldera (Italy) with uncertainty assessment: 1. Vent opening maps. J. Geophys. Res. 120, 2309–2329 (2015).

    Article  Google Scholar 

  88. Chevrel, M. O. et al. Lava flow hazard map of Piton de la Fournaise volcano. Nat. Hazards Earth Syst. Sci. 21, 2355–2377 (2021).

    Article  Google Scholar 

  89. Bagnardi, M., Amelung, F. & Poland, M. P. A new model for the growth of basaltic shields based on deformation of Fernandina volcano, Galápagos Islands. Earth Planet. Sci. Lett. 377, 358–366 (2013).

    Article  Google Scholar 

  90. Rivalta, E. et al. Stress inversions to forecast magma pathways and eruptive vent location. Sci. Adv. 5, eaau9784 (2019).

    Article  Google Scholar 

  91. Davis, T., Bagnardi, M., Lundgren, P. & Rivalta, E. Extreme curvature of shallow magma pathways controlled by competing stresses: insights from the 2018 Sierra Negra eruption. Geophys. Res. Lett. 48, e2021GL093038 (2021).

    Article  Google Scholar 

  92. Mantiloni, L., Rivalta, E. & Davis, T. Mechanical modeling of pre-eruptive magma propagation scenarios at calderas. J. Geophys. Res. 128, e2022JB025956 (2023).

    Article  Google Scholar 

  93. Dahm, T. Numerical simulations of the propagation path and the arrest of fluid-filled fractures in the Earth. Geophys. J. Int. 141, 623–638 (2000).

    Article  Google Scholar 

  94. Kervyn, M., Ernst, G. G. J., van Wyk deVries, B., Mathieu, L. & Jacobs, P. Volcano load control on dyke propagation and vent distribution: insights from analogue modeling. J. Geophys. Res. 114, B03401 (2009).

    Article  Google Scholar 

  95. Maccaferri, F., Bonafede, M. & Rivalta, E. A quantitative study of the mechanisms governing dike propagation, dike arrest and sill formation. J. Volcanol. Geotherm. Res. 208, 39–50 (2011).

    Article  Google Scholar 

  96. Neri, M., Rivalta, E., Maccaferri, F., Acocella, V. & Cirrincione, R. Etnean and Hyblean volcanism shifted away from the Malta Escarpment by crustal stresses. Earth Planet. Sci. Lett. 486, 15–22 (2018).

    Article  Google Scholar 

  97. Acocella, V. & Tibaldi, A. Dike propagation driven by volcano collapse: a general model tested at Stromboli, Italy. Geophys. Res. Lett. 32, L08308 (2005).

    Article  Google Scholar 

  98. Maccaferri, F., Rivalta, E., Keir, D. & Acocella, V. Off-rift volcanism in rift zones determined by crustal unloading. Nat. Geosci. 7, 297–300 (2014).

    Article  Google Scholar 

  99. Corbi, F. et al. How caldera collapse shapes the shallow emplacement and transfer of magma in active volcanoes. Earth Planet. Sci. Lett. 431, 287–293 (2015).

    Article  Google Scholar 

  100. Maccaferri, F., Richter, N. & Walter, T. R. The effect of giant lateral collapses on magma pathways and the location of volcanism. Nat. Commun. 8, 1097 (2017).

    Article  Google Scholar 

  101. Caricchi, L., Townsend, M., Rivalta, E. & Namiki, A. The build-up and triggers of volcanic eruptions. Nat. Rev. Earth Environ. 2, 458–476 (2021).

    Article  Google Scholar 

  102. Yokoyama, I. Growth rates of lava domes with respect to viscosity of magmas. Ann. Geophys. 48, 957–971 (2005).

    Google Scholar 

  103. Newhall, C. G. & Melson, W. G. Explosive activity associated with the growth of volcanic domes. J. Volcanol. Geotherm. Res. 17, 111–131 (1983).

    Article  Google Scholar 

  104. Calder, E. S., Lavallée, Y., Kendrick, J. E. & Bernstein, M. Lava dome eruptions. in Encyclopedia of Volcanoes (eds Sigurdsson, H., Houghton, B., Rymer, H., Stix, J. & McNutt, S.) (Academic Press, 2015).

  105. Joseph, E. P. et al. Responding to eruptive transitions during the 2020–2021 eruption of La Soufrière volcano, St. Vincent. Nat. Commun. 13, 4129 (2022).

    Article  Google Scholar 

  106. Anderson, K. & Segall, P. Bayesian inversion of data from effusive volcanic eruptions using physics-based models: application to Mount St Helens 2004–2008. J. Geophys. Res. 118, 2017–2037 (2013).

    Article  Google Scholar 

  107. Wong, Y. Q. & Segall, P. Joint inversions of ground deformation, extrusion flux, and gas emissions using physics-based models for the Mount St Helens 2004–2008 eruption. Geochem. Geophys. Geosyst. 21, e2020GC009343 (2020).

    Article  Google Scholar 

  108. Mania, R., Cesca, S., Walter, T. R., Koulakov, I. & Senyukov, S. L. Inflating shallow plumbing system of Bezymianny Volcano, Kamchatka, studied by InSAR and seismicity data prior to the 20 December 2017 eruption. Front. Earth Sci. 9, 1259 (2021).

    Article  Google Scholar 

  109. Miller, A. R. Seismicity associated with dome growth and collapse at the Soufriere Hills volcano, Montserrat. Geophys. Res. Lett. 25, 3401–3404 (1998).

    Article  Google Scholar 

  110. Neuberg, J. Characteristics and causes of shallow seismicity in andesite volcanoes. Phil. Trans. R. Soc. 358, 1533–1546 (2000).

    Article  Google Scholar 

  111. Kendrick, J. E. et al. Volcanic drumbeat seismicity caused by stick–slip motion and magmatic frictional melting. Nat. Geosci. 7, 438–442 (2014).

    Article  Google Scholar 

  112. Sheldrake, T. E., Sparks, R. S. J., Cashman, K. V., Wadge, G. & Aspinall, W. P. Similarities and differences in the historical records of lava dome-building volcanoes: implications for understanding magmatic processes and eruption forecasting. Earth Sci. Rev. 160, 240–263 (2016).

    Article  Google Scholar 

  113. Ratdomopurbo, A. & Poupinet, G. An overview of the seismicity of Merapi volcano (Java, Indonesia), 1983–1994. J. Volcanol. Geotherm. Res. 100, 193–214 (2000).

    Article  Google Scholar 

  114. Voight, B. et al. Deformation and seismic precursors to dome-collapse and fountain-collapse nuees ardentes at Merapi Volcano, Java, Indonesia, 1994–1998. J. Volcanol. Geotherm. Res. 100, 261–287 (2000).

    Article  Google Scholar 

  115. Ratdomopurbo, A. et al. Overview of the 2006 eruption of Mt Merapi. J. Volcanol. Geotherm. Res. 261, 87–97 (2013).

    Article  Google Scholar 

  116. McCausland, W. A. et al. Using a process-based model of pre-eruptive seismic patterns to forecast evolving eruptive styles at Sinabung Volcano, Indonesia. J. Volcanol. Geotherm. Res. 382, 253–266 (2019).

    Article  Google Scholar 

  117. Pallister, J. S. et al. Monitoring, forecasting collapse events, and mapping pyroclastic deposits at Sinabung volcano with satellite imagery. J. Volcanol. Geotherm. Res. 382, 149–163 (2019a).

    Article  Google Scholar 

  118. Wright, H. M. et al. Construction of probabilistic event trees for eruption forecasting at Sinabung volcano, Indonesia 2013–14. J. Volcanol. Geotherm. Res. 382, 233–252 (2019).

    Article  Google Scholar 

  119. Page, R. A., Lahr, J. C., Chouet, B. A., Power, J. A. & Stephens, C. D. Statistical forecasting of repetitious dome failures during the waning eruption of Redoubt Volcano, Alaska, February–April 1990. J. Volcanol. Geotherm. Res. 62, 183–196 (1994).

    Article  Google Scholar 

  120. McGee, K. A., Doukas, M. P., McGimsey, R. G., Neal, C. A. & Wessels, R. L. Seismic precursors to volcanic explosions during the 2006 eruption of Augustine Volcano. in The 2006 Eruption of Augustine Volcano, Alaska, U.S. Geological Survey Professional Paper 1769 (eds Power, J. A., Coombs, M. L. & Freymueller, J. T.) 609–627 (U.S. Geological Survey Professional Paper, 2010).

  121. Nakada, S., Shimizu, H. & Ohta, K. Overview of the 1990–1995 eruption at Unzen Volcano. J. Volcanol. Geotherm. Res. 89, 1–22 (1999).

    Article  Google Scholar 

  122. Surono et al. The 2010 explosive eruption of Java’s Merapi volcano — a ‘100-year’ event. J. Volcanol. Geotherm. Res. 241–242, 121–135 (2012).

    Article  Google Scholar 

  123. Salvage, R. O. & Neuberg, J. W. Using a cross correlation technique to refine the accuracy of the failure forecast method: application to Soufrière Hills volcano, Montserrat. J. Volcanol. Geotherm. Res. 324, 118–133 (2016).

    Article  Google Scholar 

  124. Smith, R., Kilburn, C. R. J. & Sammonds, P. R. Rock fracture as a precursor to lava dome eruptions at Mount St Helens from June 1980 to October 1986. Bull. Volcanol. 69, 681–693 (2007).

    Article  Google Scholar 

  125. Lipman, P. W., Moore, J. G. & Swanson, D. A. Bulging of the north flank before the May 18 eruption: geodetic data. US Geol. Surv. Prof. Pap. 1250, 143–156 (1981).

    Google Scholar 

  126. Voight, B. Structural stability of andesite volcanoes and lava domes. Philos. Trans. R. Soc. Lond. 358, 1663–1703 (2000).

    Article  Google Scholar 

  127. Young, S. R. et al. Hazards implications of small-scale edifice instability and sector collapse: a case history from Soufriere Hills Volcano, Montserrat. in The Eruption of the Soufriere Hills Volcano, Montserrat 1995 to 1999 (eds Druitt, T. H. & Kokelaar, B. P.) Geological Society London, Memoir No. 21, 349–362 (Geological Society London, 2002).

  128. Johnson, J. B., Watson, L. M., Palma, J. L., Dunham, E. M. & Anderson, J. F. Forecasting the eruption of an open-vent volcano using resonant infrasound tones. Geophys. Res. Lett. 45, 2213–2220 (2018).

    Article  Google Scholar 

  129. Swanson, D. A. et al. Predicting eruptions at Mount St Helens, June 1980 through December 1982. Science 221, 1369–1376 (1983).

    Article  Google Scholar 

  130. Chadwick, W. W., Archuleta, R. J. & Swanson, D. A. The mechanics of ground deformation precursory to dome building extrusions at Mount St Helens: 1981–1982. J. Geophys. Res. 93, 4351–4366 (1988).

    Article  Google Scholar 

  131. Chadwick, W. W., Swanson, D. A., Iwatsubo, I. Y., Heliker, C. C. & Leighley, T. A. Deformation monitoring at Mount St Helens in 1981 and 1982. Science 221, 1378–1380 (1983).

    Article  Google Scholar 

  132. Pallister, J. S. et al. Merapi 2010 eruption — chronology and extrusion rates monitored with satellite radar and used in eruption forecasting. J. Volcanol. Geothermal Res. 261, 144–152 (2013).

    Article  Google Scholar 

  133. Dualeh, E. W. et al. Rapid pre-explosion increase in dome extrusion rate at La Soufrière, St Vincent quantified from synthetic aperture radar backscatter. Earth Planet. Sci. Lett. 603, 117980 (2023).

    Article  Google Scholar 

  134. Gerlach, T. M., McGee, K. A., Elias, T., Sutton, A. J. & Doukas, M. P. Carbon dioxide emission rate of Kīlauea Volcano: implications for primary magma and the summit reservoir. J. Geophys. Res. 107, 2189 (2002).

    Article  Google Scholar 

  135. Girona, T., Costa, F. & Schubert, G. Degassing during quiescence as a trigger of magma ascent and volcanic eruptions. Sci. Rep. 5, 1–7 (2015).

    Article  Google Scholar 

  136. Caricchi, L., Sheldrake, T. E. & Blundy, J. Modulation of magmatic processes by CO2 flushing. Earth Planet. Sci. Lett. 491, 160–171 (2018).

    Article  Google Scholar 

  137. Nicholson, E. J., Mather, T. A., Pyle, D. M., Odbert, H. M. & Christopher, T. Cyclical patterns in volcanic degassing revealed by SO2 flux timeseries analysis: an application to Soufrière Hills Volcano, Montserrat. Earth Planet. Sci. Lett. 375, 209–221 (2013).

    Article  Google Scholar 

  138. Casadevall, T. J. The 1989–1990 eruption of Redoubt Volcano, Alaska: impacts on aircraft operations. J. Volcanol. Geotherm. Res. 62, 301–316 (1994).

    Article  Google Scholar 

  139. Wright, R., Flynn, L., Garbeil, H., Harris, A. & Pilger, E. Automated volcanic eruption detection using MODIS. Remote Sens. Environ. 82, 135–155 (2022).

    Article  Google Scholar 

  140. Kunrat, S., Kern, C., Alfianti, H. & Lerner, A. H. Forecasting explosions at Sinabung Volcano, Indonesia, based on SO2 emission rates. Front. Earth Sci. 10, 976928 (2022).

    Article  Google Scholar 

  141. Edmonds, M., Oppenheimer, C., Pyle, D. M., Herd, R. A. & Thompson, G. SO2 emissions from Soufrière Hills Volcano and their relationship to conduit permeability, hydrothermal interaction and degassing regime. J. Volcanol. Geotherm. Res. 124, 23–43 (2003).

    Article  Google Scholar 

  142. Young, S. R. et al. Overview of the eruption of Soufriere Hills volcano, Montserrat, 18 July 1995 to December 1997. Geophys. Res. Lett. 25, 3389–3392 (1998).

    Article  Google Scholar 

  143. Carn, S. A. & Prata, F. J. Satellite‐based constraints on explosive SO2 release from Soufrière Hills Volcano, Montserrat. Geophys. Res. Lett. 37, 19 (2010).

    Article  Google Scholar 

  144. Werner, C. et al. Degassing of CO2, SO2, and H2S associated with the 2009 eruption of Redoubt Volcano, Alaska. J. Volcanol. Geotherm. Res. 259, 270–284 (2013).

    Article  Google Scholar 

  145. Rose, W. I. et al. Special Paper 498 vii–xiii (The Geological Society of America, 2013).

  146. Andronico, D. et al. Uncovering the eruptive patterns of the 2019 double paroxysm eruption crisis of Stromboli volcano. Nat. Commun. 12, 4213 (2021).

    Article  Google Scholar 

  147. Allard, P. CO2-rich gas trigger of explosive paroxysms at Stromboli basaltic volcano, Italy. J. Volcanol. Geotherm. Res. 189, 363–374 (2010).

    Article  Google Scholar 

  148. Allison, C. M., Roggensack, K. & Clarke, A. B. Highly explosive basaltic eruptions driven by CO2 exsolution. Nat. Commun. 12, 217 (2021).

    Article  Google Scholar 

  149. Aiuppa, A. Volcano gas monitoring. in Volcanism and Global Environmental Change (eds Schmidt, A., Fristad, K. E. & Elkins-Tanton, L. T.) 81–96 (Cambridge Univ. Press, 2015).

  150. Edmonds, M. New geochemical insights into volcanic degassing. Philos. Trans. R. Soc. A 366, 4559–4579 (2008).

    Article  Google Scholar 

  151. Oppenheimer, C., Fischer, T. P. & Scaillet, B. Volcanic degassing: process and impact. in Treatise on Geochemistry, The Crust (eds Holland, H. D. & Turekian, K. K.) 111–179 (Elsevier, 2014).

  152. Aiuppa, A. et al. A CO2-gas precursor to the March 2015 Villarrica volcano eruption. Geochem. Geophys. Geosyst. https://doi.org/10.1002/2017GC006892 (2017).

  153. Aiuppa, A. et al. Volcanic CO2 tracks the incubation period of basaltic paroxysms. Sci. Adv. 7, eabh0191 (2021).

    Article  Google Scholar 

  154. Werner, C. et al. Carbon dioxide emissions from subaerial volcanic regions: two decades in review. in Deep Carbon Past to Present (eds Orcutt, B. N., Daniel, I. & Dasgupta, R.) 188–236 (Cambridge Univ. Press, 2019).

  155. Aiuppa, A. et al. Forecasting Etna eruptions by real-time observation of volcanic gas composition. Geology 35, 1115–1118 (2007).

    Article  Google Scholar 

  156. Symonds, R. B., Gerlach, T. M. & Reed, M. H. Magmatic gas scrubbing: implications for volcano monitoring. J. Volcanol. Geotherm. Res. 108, 303–341 (2001).

    Article  Google Scholar 

  157. Ripepe, M., Delle Donne, D., Lacanna, G., Marchetti, E. & Ulivieri, G. The onset of the 2007 Stromboli effusive eruption recorded by an integrated geophysical network. J. Volcanol. Geotherm. Res. 182, 131–136 (2009).

    Article  Google Scholar 

  158. Ripepe, M. Ground deformation reveals the scale-invariant conduit dynamics driving basaltic explosive eruptions. Nat. Commun. 12, 1683 (2021).

    Article  Google Scholar 

  159. Spampinato, S., Langer, H., Messina, A. & Falsaperla, S. Short-term detection of volcanic unrest at Mt Etna by means of a multi-station warning system. Sci. Rep. 9, 6506 (2019).

    Article  Google Scholar 

  160. Horst, L., Falsaperla, S., Spampinato, S. & Messina, A. Energy threshold changes in volcanic activity at Mt Etna (Italy) inferred from volcanic tremor. Sci. Rep. 12, 17895 (2022).

    Article  Google Scholar 

  161. Nishimura, T. Ground deformation caused by magma ascent in an open conduit. J. Volcanol. Geotherm. Res. 187, 178–192 (2009).

    Article  Google Scholar 

  162. Iguchi, M., Yakiwara, H., Tameguri, T., Hendrasto, H. & Hirabayashi, J. Mechanism of explosive eruption revealed by geophysical observations at the Sakurajima, Suwanosejima and Semeru volcanoes. J. Volcanol. Geotherm. Res. 178, 1–9 (2008).

    Article  Google Scholar 

  163. Bonaccorso, A., Calvari, S., Linde, A., Sacks, S. & Boschi, E. Dynamics of the shallow plumbing system investigated from borehole strainmeters and cameras during the 15 March, 2007 Vulcanian paroxysm at Stromboli volcano. Earth Planet. Sci. Lett. 357358, 249–256 (2012).

    Article  Google Scholar 

  164. Jaggar, T. A. & Finch, R. H. Tilt records for thirteen years at the Hawaiian volcano. Bull. Seismol. Soc. Am. 19, 38–51 (1927).

    Article  Google Scholar 

  165. Sassa, K. Micro-seismometric study on eruptions of the Volcano Aso: (part II of the Geophysical Studies on the Volcano Aso). Mem. Coll. Sci. Kyoto Imp. Univ. 19, 11–56 (1936).

    Google Scholar 

  166. Kamo, K. & Ishihara, K. A. Preliminary experiment on automated judgement of the stages of eruptive activity using tiltmeter records at Sakurajima, Japan. in Volcanic Hazards: Assessment and Monitoring (ed. Latter, J. H.) 585–598 (Springer, 1989).

  167. Garcés, M. A., Hagerty, M. T. & Schwartz, S. Y. Magma acoustics and time-varying melt properties at Arenal Volcano, Costa Rica. Geophys. Res. Lett. 25, 2293–2296 (1998).

    Article  Google Scholar 

  168. Garcés, M. et al. Capturing the acoustic fingerprint of stratospheric ash injection. EOS Trans. 89, 377–378 (2008).

    Article  Google Scholar 

  169. Sciotto, M. et al. Infrasonic gliding reflects a rising magma column at Mount Etna (Italy). Sci. Rep. 12, 16954 (2022).

    Article  Google Scholar 

  170. Ulivieri, G., Ripepe, M. & Marchetti, E. Infrasound reveals transition to oscillatory discharge regime during lava fountaining: implication for early warning. Geophys. Res. Lett. 40, 3008–3013 (2013).

    Article  Google Scholar 

  171. Le Pichon, A., Ceranna, L. & Vergoz, J. Incorporating numerical modeling into estimates of the detection capability of the IMS infrasound network. J. Geophys. Res. 117, D05121 (2012).

    Article  Google Scholar 

  172. Matoza, R. S. et al. Automated detection and cataloging of global explosive volcanism using the International Monitoring System infrasound network. J. Geophys. Res. 122, 2946–2971 (2017).

    Article  Google Scholar 

  173. Marchetti, E. Infrasound monitoring of volcanic eruptions and contribution of ARISE to the volcanic ash advisory centers. in Infrasound Monitoring for Atmospheric Studies (eds Le Pichon, A., Blanc, E. & Hauchecorne, A.) 1141–1162 (Springer, 2019).

  174. Acocella, V., Porreca, M., Neri, M., Mattei, M. & Funiciello, R. Fissure eruptions at Mount Vesuvius (Italy): insights on the shallow propagation of dikes at volcanoes. Geology 34, 673–676 (2006).

    Article  Google Scholar 

  175. Pinel, V., Carrara, A., Maccaferri, F., Rivalta, E. & Corbi, F. A two-step model for dynamical dike propagation in two dimensions: application to the July 2001 Etna eruption. J. Geophys. Res. 122, 1107–1125 (2017).

    Article  Google Scholar 

  176. Furst, S., Maccaferri, F. & Pinel, V. Modeling the shape and velocity of magmatic intrusions, a new numerical approach. J. Geophys. Res. 128, e2022JB025697 (2023).

    Article  Google Scholar 

  177. Dumont, Q., Cayol, V., Froger, J. L. & Peltier, A. 22 years of satellite imagery reveal a major destabilization structure at Piton de la Fournaise. Nat. Commun. 13, 2649 (2022).

    Article  Google Scholar 

  178. Newhall, C. G., Pallister, J. S. & Miller, C. D. A checklist for crisis operations within volcano observatories. in Forecasting and Planning for Volcanic Hazards, Risks, and Disasters (ed. Papale, P.) 493–544 (Elsevier, 2021).

  179. Christophersen, A., Behr, Y. & Miller, C. Automated eruption forecasting at frequently active volcanoes using Bayesian networks learned from monitoring data and expert elicitation: application to Mt Ruapehu, Aotearoa, New Zealand. Front. Earth Sci. 10, 905965 (2022).

    Article  Google Scholar 

  180. Wadge, G. A strategy for the observation of volcanism on Earth from space. Philos. Trans. R. Soc. Lond. 361, 145–156 (2003).

    Article  Google Scholar 

  181. Moran, S. C. et al. Instrumentation recommendations for volcano monitoring at US volcanoes under the National Volcano Early Warning System. US Geol. Surv. Sci. Invest. Rep. 5114, 47 (2008).

    Google Scholar 

  182. Bergen, K. J., Johnson, P. A., Maarten, V. & Beroza, G. C. Machine learning for data-driven discovery in solid Earth geoscience. Science 363, eaau0323 (2019).

    Article  Google Scholar 

  183. Carniel, R. & Guzmán, S. Machine learning in volcanology: a review. in Updates in Volcanology — Transdisciplinary Nature of Volcano Science (ed. Károly, N.) (IntechOpen, 2020).

  184. Falcin, A. et al. A machine-learning approach for automatic classification of volcanic seismicity at La Soufrière Volcano, Guadeloupe. J. Volcanol. Geotherm. Res. 411, 107151 (2021).

    Article  Google Scholar 

  185. Manley, G., Mather, T., Pyle, D. & Clifton, D. A deep active learning approach to the automatic classification of volcano-seismic events. Front. Earth Sci. 10, 807926 (2022).

    Article  Google Scholar 

  186. Retailleau, L. et al. A wrapper to use a machine-learning-based algorithm for earthquake monitoring. Seismol. Soc. Am. 93, 1673–1682 (2022).

    Google Scholar 

  187. Gaddes, M. E., Hooper, A. & Bagnardi, M. Using machine learning to automatically detect volcanic unrest in a time series of interferograms. J. Geophys. Res. 124, 12304–12322 (2019).

    Article  Google Scholar 

  188. Dempsey, D. E., Cronin, S. J., Mei, S. & Kempa-Liher, A. W. Automatic precursor recognition and real-time forecasting of sudden explosive volcanic eruptions at Whakaari, New Zealand. Nat. Commun. 11, 3562 (2020).

    Article  Google Scholar 

  189. Lowenstern, J. B. & Ramsey, D. W. The Volcano Disaster Assistance Program — Helping to Save Lives Worldwide for More than 30 Years. U.S. Geological Survey Fact Sheet 2017–3071 https://doi.org/10.3133/fs20173071 (2017).

  190. Lowenstern, J. B., Ewert, J. W. & Lockhart, A. B. Strengthening local volcano observatories through global collaborations. Bull. Volcanol. https://doi.org/10.1007/s00445-021-01512-w (2022).

  191. Pallister, J. S. et al. Volcano observatory best practices (VOBP) workshops — a summary of findings and best-practice recommendations. J. Appl. Volcanol. 8, 2 (2019).

    Article  Google Scholar 

  192. Anderson, K. & Segall, P. Physics-based models of ground deformation and extrusion rate at effusively erupting volcanoes. J. Geophys. Res. 116, 07204 (2011).

    Article  Google Scholar 

  193. Bonaccorso, A. & Calvari, S. Major effusive eruptions and recent lava fountains: balance between expected and erupted magma volumes at Etna volcano. Geophys. Res. Lett. 40, 6069–6073 (2013).

    Article  Google Scholar 

  194. Popa, R. G., Bachmann, O. & Huber, C. Explosive or effusive style of volcanic eruption determined by magma storage conditions. Nat. Geosci. 14, 781–786 (2021).

    Article  Google Scholar 

  195. Carbone, D. et al. The NEWTON-g Gravity Imager: toward new paradigms for terrain gravimetry. Front. Earth Sci. 8, 573396 (2020).

    Article  Google Scholar 

  196. Nikkhoo, M. & Rivalta, E. Analytical solutions for gravity changes caused by triaxial volumetric sources. Geophys. Res. Lett. 49, e2021GL095442 (2022).

    Article  Google Scholar 

  197. Nikkhoo, M. & Rivalta, E. Surface deformations and gravity changes caused by pressurized finite ellipsoidal cavities. Geophys. J. Int. 232, 643–655 (2023).

    Article  Google Scholar 

  198. Carbone, D., Zuccarello, L., Messina, A., Scollo, S. & Rymer, H. Balancing bulk gas accumulation and gas output before and during lava fountaining episodes at Mt. Etna. Sci. Rep. 5, 18049 (2015).

    Article  Google Scholar 

  199. Freret-Lorgeril, V. et al. Data usage for hazard analysis, report of the H2020 European Commission FET-Open Project NEWTON-g — New Tools for Terrain Gravimetry (GA N.801221). https://zenodo.org/record/7271957#.Y2FsNnbP1J8 (2022).

  200. Chadwick, W. W. et al. A volcano bursting at the seams: inflation, faulting, and eruption at Sierra Negra volcano, Galápagos. Geology 34, 1025–1028 (2006).

    Article  Google Scholar 

  201. de Moor, J. M. et al. Insights on hydrothermal–magmatic interactions and eruptive processes at Poás volcano (Costa Rica) from high‐frequency gas monitoring and drone measurements. Geophys. Res. Lett. 46, 1293–1302 (2019).

    Article  Google Scholar 

Download references

Acknowledgements

F.G. is partially supported by NASA Grant 80NSSC20K1674 from the Interdisciplinary Science Program of the Earth Science Division. The authors thank W. Chadwick, who kindly provided the updated diagram of Fig. 1; F. Sigmundsson and V. Drouin, who provided the Fagradalsfjall interferogram in Fig. 2; and A. Aiuppa, who provided helpful suggestions and the data presented in Fig. 5.

Author information

Authors and Affiliations

Authors

Contributions

V.A. conceived and coordinated the work and wrote the manuscript. M.R. developed the open-conduit section. E.R. provided substantial discussion of content. A.P. developed the monitoring section. F.G. provided research data. E.J. developed part of the semi-open-conduit section. All authors contributed to the discussion of content, writing and review/editing of manuscript before submission.

Corresponding author

Correspondence to Valerio Acocella.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Earth & Environment thanks N. Fournier, J. Lowenstern and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

EPOS: https://www.epos-eu.org/

ERCC: https://erccportal.jrc.ec.europa.eu/

EROS: https://www.usgs.gov/centers/eros

EUROVOLC: https://eurovolc.eu/

SUPERSITES: https://geo-gsnl.org/

USGS VDAP: https://volcanoes.usgs.gov/vdap/

WOVOdat: https://www.wovodat.org/

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Acocella, V., Ripepe, M., Rivalta, E. et al. Towards scientific forecasting of magmatic eruptions. Nat Rev Earth Environ 5, 5–22 (2024). https://doi.org/10.1038/s43017-023-00492-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43017-023-00492-z

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene