Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mechanisms of tropical Pacific decadal variability

Abstract

Naturally occurring tropical Pacific variations at timescales of 7–70 years — tropical Pacific decadal variability (TPDV) — describe basin-scale sea surface temperature (SST), sea-level pressure and heat content anomalies. Several mechanisms are proposed to explain TPDV, which can originate through oceanic processes, atmospheric processes or as an El Niño/Southern Oscillation (ENSO) residual. In this Review, we synthesize knowledge of these mechanisms, their characteristics and contribution to TPDV. Oceanic processes include off-equatorial Rossby waves, which mediate oceanic adjustment and contribute to variations in equatorial thermocline depth and SST; variations in the strength of the shallow upper-ocean overturning circulation, which exhibit a large anti-correlation with equatorial Pacific SST at interannual and decadal timescales; and the propagation of salinity-compensated temperature (spiciness) anomalies from the subtropics to the equatorial thermocline. Atmospheric processes include midlatitude internal variability leading to tropical and subtropical wind anomalies, which result in equatorial SST anomalies and feedbacks that enhance persistence; and atmospheric teleconnections from Atlantic and Indian Ocean SST variability, which induce winds conducive to decadal anomalies of the opposite sign in the Pacific. Although uncertain, the tropical adjustment through Rossby wave activity is likely a dominant mechanism. A deeper understanding of the origin and spectral characteristics of TPDV-related winds is a key priority.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Observed Pacific decadal changes.
Fig. 2: Relationship between tropical Pacific decadal variability and El Niño/Southern Oscillation.
Fig. 3: Subtropical cells influence on tropical Pacific decadal variability.
Fig. 4: Assessment of the \({\boldsymbol{v}}{\prime} \bar{{\boldsymbol{T}}}\) hypothesis.
Fig. 5: Atmospheric processes involved in tropical Pacific decadal variability.

Similar content being viewed by others

References

  1. Lyu, K., Zhang, X., Church, J. A., Hu, J. & Yu, J.-Y. Distinguishing the quasi-decadal and multidecadal sea level and climate variations in the Pacific: implications for the ENSO-like low-frequency variability. J. Clim. 30, 5097–5117 (2017).

    Article  Google Scholar 

  2. Mantua, N. J., Hare, S. R., Zhang, Y., Wallace, J. M. & Francis, R. C. A Pacific interdecadal climate oscillation with impacts on salmon production. Bull. Am. Meteorol. Soc. 78, 1069–1080 (1997).

    Article  Google Scholar 

  3. Henley, B. J. et al. A tripole index for the interdecadal Pacific oscillation. Clim. Dyn. 45, 3077–3090 (2015).

    Article  Google Scholar 

  4. Okumura, Y. M., Sun, T. & Wu, X. Asymmetric modulation of El Niño and La Niña and the linkage to tropical Pacific decadal variability. J. Clim. 30, 4705–4733 (2017).

    Article  Google Scholar 

  5. Capotondi, A., Deser, C., Phillips, A. S., Okumura, Y. & Larson, S. M. ENSO and Pacific decadal variability in the community earth system model version 2. J. Adv. Model. Earth Syst. 12, e2019MS002022 (2020).

    Article  Google Scholar 

  6. Li, X. et al. Tropical teleconnection impacts on Antarctic climate changes. Nat. Rev. Earth Environ. 2, 680–698 (2021).

    Article  Google Scholar 

  7. Heidemann, H. et al. Variability and long-term change in Australian monsoon rainfall: a review. WIREs Clim. Change 14, e823 (2023).

    Article  Google Scholar 

  8. Maher, N., Kay, J. E. & Capotondi, A. Modulation of ENSO teleconnections over North America by the Pacific decadal oscillation. Environ. Res. Lett. 17, 114005 (2022).

    Article  Google Scholar 

  9. Kosaka, Y. & Xie, S.-P. Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature 501, 403–407 (2013).

    Article  Google Scholar 

  10. Meehl, G. A., Hu, A., Santer, B. D. & Xie, S.-P. Contribution of the interdecadal Pacific oscillation to twentieth-century global surface temperature trends. Nat. Clim. Change 6, 1005–1008 (2016).

    Article  Google Scholar 

  11. England, M. H. et al. Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nat. Clim. Change 4, 222–227 (2014).

    Article  Google Scholar 

  12. Kociuba, G. & Power, S. B. Inability of CMIP5 models to simulate recent strengthening of the walker circulation: implications for projections. J. Clim. 28, 20–35 (2015).

    Article  Google Scholar 

  13. McGregor, S., Stuecker, M. F., Kajtar, J. B., England, M. H. & Collins, M. Model tropical Atlantic biases underpin diminished Pacific decadal variability. Nat. Clim. Change 8, 493–498 (2018).

    Article  Google Scholar 

  14. Weller, E. et al. Human-caused Indo-Pacific warm pool expansion. Sci. Adv. 2, e1501719 (2016).

    Article  Google Scholar 

  15. Hu, S. et al. Deep-reaching acceleration of global mean ocean circulation over the past two decades. Sci. Adv. 6, eaax7727 (2020).

    Article  Google Scholar 

  16. Ummenhofer, C. C., Murty, S. A., Sprintall, J., Lee, T. & Abram, N. J. Heat and freshwater changes in the Indian Ocean region. Nat. Rev. Earth Environ. 2, 525–541 (2021).

    Article  Google Scholar 

  17. Luo, J.-J., Wang, G. & Dommenget, D. May common model biases reduce CMIP5’s ability to simulate the recent Pacific La Niña-like cooling? Clim. Dyn. 50, 1335–1351 (2018).

    Article  Google Scholar 

  18. Power, S. et al. Decadal climate variability in the tropical Pacific: characteristics, causes, predictability, and prospects. Science 374, eaay9165 (2021).

    Article  Google Scholar 

  19. Gu, D. & Philander, S. Interdecadal climate fluctuations that depend on exchanges between the tropics and extratropics. Science 275, 805–807 (1997).

    Article  Google Scholar 

  20. McCreary, J. P. & Lu, P. Interaction between the subtropical and equatorial ocean circulations: the subtropical cell. J. Phys. Oceanogr. 24, 466–497 (1994).

    Article  Google Scholar 

  21. Vimont, D. J., Battisti, D. S. & Hirst, A. C. Footprinting: a seasonal connection between the tropics and mid-latitudes. Geophys. Res. Lett. 28, 3923–3926 (2001).

    Article  Google Scholar 

  22. Meehl, G. A. & Hu, A. Megadroughts in the Indian monsoon region and Southwest North America and a mechanism for associated multidecadal Pacific sea surface temperature anomalies. J. Clim. 19, 1605–1623 (2006).

    Article  Google Scholar 

  23. McGregor, S. et al. Recent walker circulation strengthening and Pacific cooling amplified by Atlantic warming. Nat. Clim. Change 4, 888–892 (2014).

    Article  Google Scholar 

  24. Luo, J.-J., Sasaki, W. & Masumoto, Y. Indian Ocean warming modulates Pacific climate change. Proc. Natl Acad. Sci. USA 109, 18701–18706 (2012).

    Article  Google Scholar 

  25. McPhaden, M. J. & Zhang, D. Slowdown of the meridional overturning circulation in the upper Pacific Ocean. Nature 415, 603–608 (2002).

    Article  Google Scholar 

  26. Capotondi, A. & Qiu, B. Decadal variability of the Pacific shallow overturning circulation and the role of local wind forcing. J. Clim. 36, 1001–1015 (2023).

    Article  Google Scholar 

  27. Zhang, Y., Wallace, J. M. & Battisti, D. S. ENSO-like interdecadal variability: 1900–93. J. Clim. 10, 1004–1020 (1997).

    Article  Google Scholar 

  28. Qiu, B. & Chen, S. Multidecadal sea level and gyre circulation variability in the northwestern tropical Pacific Ocean. J. Phys. Oceanogr. 42, 193–206 (2012).

    Article  Google Scholar 

  29. Hu, S. et al. Multi-decadal trends in the tropical Pacific western boundary currents retrieved from historical hydrological observations. Sci. China Earth Sci. 64, 600–610 (2021).

    Article  Google Scholar 

  30. Maher, N., England, M. H., Gupta, A. S. & Spence, P. Role of Pacific trade winds in driving ocean temperatures during the recent slowdown and projections under a wind trend reversal. Clim. Dyn. 51, 321–336 (2018).

    Article  Google Scholar 

  31. Nieves, V., Willis, J. K. & Patzert, W. C. Recent hiatus caused by decadal shift in Indo-Pacific heating. Science 349, 532–535 (2015).

    Article  Google Scholar 

  32. Lee, S.-K. et al. Pacific origin of the abrupt increase in Indian Ocean heat content during the warming hiatus. Nat. Geosci. 8, 445–449 (2015).

    Article  Google Scholar 

  33. Lee, T. & McPhaden, M. J. Decadal phase change in large-scale sea level and winds in the Indo-Pacific region at the end of the 20th century. Geophys. Res. Lett. 35, L01605 (2008).

    Article  Google Scholar 

  34. Li, Y., Han, W., Hu, A., Meehl, G. A. & Wang, F. Multidecadal changes of the upper Indian Ocean heat content during 1965–2016. J. Clim. 31, 7863–7884 (2018).

    Article  Google Scholar 

  35. Merrifield, M. A. & Maltrud, M. E. Regional sea level trends due to a Pacific trade wind intensification. Geophys. Res. Lett. 38, L21605 (2011).

    Article  Google Scholar 

  36. McGregor, S., Gupta, A. S. & England, M. H. Constraining wind stress products with sea surface height observations and implications for Pacific Ocean sea level trend attribution. J. Clim. 25, 8164–8176 (2012).

    Article  Google Scholar 

  37. Han, W. et al. Intensification of decadal and multi-decadal sea level variability in the western tropical Pacific during recent decades. Clim. Dyn. 43, 1357–1379 (2014).

    Article  Google Scholar 

  38. Vimont, D. J. The contribution of the interannual ENSO cycle to the spatial pattern of decadal ENSO-like variability. J. Clim. 18, 2080–2092 (2005).

    Article  Google Scholar 

  39. Capotondi, A., Wittenberg, A. T., Kug, J.-S., Takahashi, K. & McPhaden, M. J. El Niño Southern Oscillation in a Changing Climate (eds McPhaden, M. J., Santoso, A. & Cai, W.) 65–86 (AGU, 2020).

  40. McPhaden, M. J., Lee, T. & McClurg, D. El Niño and its relationship to changing background conditions in the tropical Pacific Ocean. Geophys. Res. Lett. 38, L15709 (2011).

    Article  Google Scholar 

  41. McPhaden, M. J. Genesis and evolution of the 1997-98 El Nino. Science 283, 950–954 (1999).

    Article  Google Scholar 

  42. Capotondi, A., Sardeshmukh, P. D. & Ricciardulli, L. The nature of the stochastic wind forcing of ENSO. J. Clim. 31, 8081–8099 (2018).

    Article  Google Scholar 

  43. Meehl, G. A., Teng, H., Capotondi, A. & Hu, A. The role of interannual ENSO events in decadal timescale transitions of the Interdecadal Pacific Oscillation. Clim. Dyn. 57, 1933–1951 (2021).

    Article  Google Scholar 

  44. Gordon, E. M., Barnes, E. A. & Hurrell, J. W. Oceanic harbingers of Pacific decadal oscillation predictability in CESM2 detected by neural networks. Geophys. Res. Lett. 48, e2021GL095392 (2021).

    Article  Google Scholar 

  45. Liu, C., Zhang, W., Jin, F.-F., Stuecker, M. F. & Geng, L. Equatorial origin of the observed tropical Pacific quasi-decadal variability from ENSO nonlinearity. Geophys. Res. Lett. 49, e2022GL097903 (2022).

    Article  Google Scholar 

  46. Capotondi, A. & Sardeshmukh, P. D. Is El Niño really changing? Geophys. Res. Lett. 44, 8548–8556 (2017).

    Article  Google Scholar 

  47. Fedorov, A. V. & Philander, S. G. Is El Niño changing? Science 288, 1997–2002 (2000).

    Article  Google Scholar 

  48. Zhao, M., Hendon, H. H., Alves, O., Liu, G. & Wang, G. Weakened Eastern Pacific El Niño predictability in the early twenty-first century. J. Clim. 29, 6805–6822 (2016).

    Article  Google Scholar 

  49. Wang, G. & Hendon, H. H. Why 2015 was a strong El Niño and 2014 was not. Geophys. Res. Lett. 44, 8567–8575 (2017).

    Article  Google Scholar 

  50. Kim, G.-I. & Kug, J.-S. Tropical Pacific decadal variability induced by nonlinear rectification of El Niño–Southern Oscillation. J. Clim. 33, 7289–7302 (2020).

    Article  Google Scholar 

  51. Zhang, Y. et al. Role of ocean dynamics in equatorial Pacific decadal variability. Clim. Dyn. 59, 2517–2529 (2022).

    Article  Google Scholar 

  52. Zhao, Y., Di Lorenzo, E., Newman, M., Capotondi, A. & Stevenson, S. A Pacific tropical decadal variability challenge for climate models. Geophys. Res. Lett. 50, e2023GL104037 (2023).

    Article  Google Scholar 

  53. Munk, W. in Evolution of Physical Oceanography (eds Warren, B. A. & Wunsch, C.) 264–291 (MIT Press, 1981).

  54. Schneider, N. A decadal spiciness mode in the tropics. Geophys. Res. Lett. 27, 257–260 (2000).

    Article  Google Scholar 

  55. Yeager, S. G. & Large, W. G. Late-winter generation of spiciness on subducted isopycnals. J. Phys. Oceanogr. 34, 1528–1547 (2004).

    Article  Google Scholar 

  56. Yeager, S. G. & Large, W. G. Observational evidence of winter spice injection. J. Phys. Oceanogr. 37, 2895–2919 (2007).

    Article  Google Scholar 

  57. Sasaki, Y. N., Schneider, N., Maximenko, N. & Lebedev, K. Observational evidence for propagation of decadal spiciness anomalies in the North Pacific. Geophys. Res. Lett. 37, L07708 (2010).

    Article  Google Scholar 

  58. Kolodziejczyk, N. & Gaillard, F. Observation of spiciness interannual variability in the Pacific pycnocline. J. Geophys. Res. Oceans 117, C12018 (2012).

    Article  Google Scholar 

  59. Zeller, M. The Impact of Subtropical to Tropical Oceanic Interactions on Tropical Pacific Decadal Variability. Thesis, Monash Univ. (2020).

  60. Alberty, M. S. et al. Spatial patterns of mixing in the Solomon Sea. J. Geophys. Res. Ocean. 122, 4021–4039 (2017).

    Article  Google Scholar 

  61. Zeller, M., McGregor, S., van Sebille, E., Capotondi, A. & Spence, P. Subtropical–tropical pathways of spiciness anomalies and their impact on equatorial Pacific temperature. Clim. Dyn. 56, 1131–1144 (2021).

    Article  Google Scholar 

  62. Kilpatrick, T., Schneider, N. & Di Lorenzo, E. Generation of low-frequency spiciness variability in the thermocline. J. Phys. Oceanogr. 41, 365–377 (2011).

    Article  Google Scholar 

  63. Schneider, N. The response of tropical climate to the equatorial emergence of spiciness anomalies. J. Clim. 17, 1083–1095 (2004).

    Article  Google Scholar 

  64. Capotondi, A. & Alexander, M. A. Rossby waves in the tropical North Pacific and their role in decadal thermocline variability. J. Phys. Oceanogr. 31, 3496–3515 (2001).

    Article  Google Scholar 

  65. Capotondi, A., Alexander, M. A. & Deser, C. Why are there Rossby wave maxima in the Pacific at 10° S and 13° N. J. Phys. Oceanogr. 33, 1549–1563 (2003).

    Article  Google Scholar 

  66. Galanti, E. & Tziperman, E. A midlatitude–ENSO teleconnection mechanism via baroclinically unstable long Rossby waves. J. Phys. Oceanogr. 33, 1877–1888 (2003).

    Article  Google Scholar 

  67. Luo, J.-J. & Yamagata, T. Long-term El Niño–Southern Oscillation (ENSO)-like variation with special emphasis on the South Pacific. J. Geophys. Res. Ocean. 106, 22211–22227 (2001).

    Article  Google Scholar 

  68. Luo, J.-J. et al. South Pacific origin of the decadal ENSO-like variation as simulated by a coupled GCM. Geophys. Res. Lett. 30, 2250 (2003).

    Article  Google Scholar 

  69. Tatebe, H., Imada, Y., Mori, M., Kimoto, M. & Hasumi, H. Control of decadal and bidecadal climate variability in the tropical Pacific by the Off-Equatorial South Pacific Ocean. J. Clim. 26, 6524–6534 (2013).

    Article  Google Scholar 

  70. Johnson, G. C. & McPhaden, M. J. Interior pycnocline flow from the subtropical to the Equatorial Pacific Ocean. J. Phys. Oceanogr. 29, 3073–3089 (1999).

    Article  Google Scholar 

  71. Nonaka, M. & Xie, S.-P. Propagation of North Pacific interdecadal subsurface temperature anomalies in an ocean GCM. Geophys. Res. Lett. 27, 3747–3750 (2000).

    Article  Google Scholar 

  72. Zeller, M., McGregor, S. & Spence, P. Hemispheric asymmetry of the Pacific shallow meridional overturning circulation. J. Geophys. Res. Ocean. 124, 5765–5786 (2019).

    Article  Google Scholar 

  73. Lu, P. & McCreary, J. P. Influence of the ITCZ on the flow of thermocline water from the subtropical to the Equatorial Pacific Ocean. J. Phys. Oceanogr. 25, 3076–3088 (1995).

    Article  Google Scholar 

  74. Imada, Y., Tatebe, H., Watanabe, M., Ishii, M. & Kimoto, M. South Pacific influence on the termination of El Niño in 2014. Sci. Rep. 6, 30341 (2016).

    Article  Google Scholar 

  75. McPhaden, M. J. Playing hide and seek with El Niño. Nat. Clim. Change 5, 791–795 (2015).

    Article  Google Scholar 

  76. Jin, F.-F. An equatorial ocean recharge paradigm for ENSO. Part I: conceptual model. J. Atmos. Sci. 54, 811–829 (1997).

    Article  Google Scholar 

  77. Wang, X., Jin, F.-F. & Wang, Y. A tropical ocean recharge mechanism for climate variability. Part II: a unified theory for decadal and ENSO modes. J. Clim. 16, 3599–3616 (2003).

    Article  Google Scholar 

  78. Kleeman, R., McCreary, J. P. Jr. & Klinger, B. A. A mechanism for generating ENSO decadal variability. Geophys. Res. Lett. 26, 1743–1746 (1999).

    Article  Google Scholar 

  79. Klinger, B. A., McCreary, J. P. & Kleeman, R. The relationship between oscillating subtropical wind stress and equatorial temperature. J. Phys. Oceanogr. 32, 1507–1521 (2002).

    Article  Google Scholar 

  80. Solomon, A., McCreary, J. P., Kleeman, R. & Klinger, B. A. Interannual and decadal variability in an intermediate coupled model of the Pacific region. J. Clim. 16, 383–405 (2003).

    Article  Google Scholar 

  81. McPhaden, M. J. & Zhang, D. Pacific Ocean circulation rebounds. Geophys. Res. Lett. 31, L18301 (2004).

    Article  Google Scholar 

  82. Capotondi, A., Alexander, M. A., Deser, C. & McPhaden, M. J. Anatomy and decadal evolution of the Pacific subtropical–tropical cells (STCs). J. Clim. 18, 3739–3758 (2005).

    Article  Google Scholar 

  83. Cheng, W., McPhaden, M. J., Zhang, D. & Metzger, E. J. Recent changes in the Pacific subtropical cells inferred from an eddy-resolving ocean circulation model. J. Phys. Oceanogr. 37, 1340–1356 (2007).

    Article  Google Scholar 

  84. Lübbecke, J. F., Böning, C. W. & Biastoch, A. Variability in the subtropical–tropical cells and its effect on near-surface temperature of the equatorial Pacific: a model study. Ocean Sci. 4, 73–88 (2008).

    Article  Google Scholar 

  85. Farneti, R., Dwivedi, S., Kucharski, F., Molteni, F. & Griffies, S. M. On Pacific subtropical cell variability over the second half of the twentieth century. J. Clim. 27, 7102–7112 (2014).

    Article  Google Scholar 

  86. Schott, F. A., Stramma, L., Wang, W., Giese, B. S. & Zantopp, R. Pacific subtropical cell variability in the SODA 2.0.2/3 assimilation. Geophys. Res. Lett. 35, L10607 (2008).

    Article  Google Scholar 

  87. Zhang, D. & McPhaden, M. J. Decadal variability of the shallow Pacific meridional overturning circulation: relation to tropical sea surface temperatures in observations and climate change models. Ocean Model. 15, 250–273 (2006).

    Article  Google Scholar 

  88. Graffino, G., Farneti, R. & Kucharski, F. Low-frequency variability of the Pacific subtropical cells as reproduced by coupled models and ocean reanalyses. Clim. Dyn. 56, 3231–3254 (2021).

    Article  Google Scholar 

  89. Lee, T. & Fukumori, I. Interannual-to-decadal variations of tropical–subtropical exchange in the Pacific Ocean: boundary versus interior pycnocline transports. J. Clim. 16, 4022–4042 (2003).

    Article  Google Scholar 

  90. Zilberman, N. V., Roemmich, D. H. & Gille, S. T. The mean and the time variability of the shallow meridional overturning circulation in the tropical South Pacific ocean. J. Clim. 26, 4069–4087 (2013).

    Article  Google Scholar 

  91. Kessler, W. S., Hristova, H. G. & Davis, R. E. Equatorward western boundary transport from the South Pacific: glider observations, dynamics and consequences. Prog. Oceanogr. 175, 208–225 (2019).

    Article  Google Scholar 

  92. Mayer, M., Haimberger, L. & Balmaseda, M. A. On the energy exchange between tropical ocean basins related to ENSO. J. Clim. 27, 6393–6403 (2014).

    Article  Google Scholar 

  93. Mayer, M., Alonso Balmaseda, M. & Haimberger, L. Unprecedented 2015/2016 Indo-Pacific heat transfer speeds up tropical Pacific heat recharge. Geophys. Res. Lett. 45, 3274–3284 (2018).

    Article  Google Scholar 

  94. Mayer, M. & Balmaseda, M. A. Indian Ocean impact on ENSO evolution 2014–2016 in a set of seasonal forecasting experiments. Clim. Dyn. 56, 2631–2649 (2021).

    Article  Google Scholar 

  95. Nonaka, M., Xie, S.-P. & McCreary, J. P. Decadal variations in the subtropical cells and equatorial pacific SST. Geophys. Res. Lett. 29, 20-1–20-4 (2002).

    Article  Google Scholar 

  96. Graffino, G., Farneti, R., Kucharski, F. & Molteni, F. The effect of wind stress anomalies and location in driving Pacific subtropical cells and tropical climate. J. Clim. 32, 1641–1660 (2019).

    Article  Google Scholar 

  97. Zhang, H., Clement, A. & Di Nezio, P. The South Pacific Meridional Mode: a mechanism for ENSO-like variability. J. Clim. 27, 769–783 (2014).

    Article  Google Scholar 

  98. Chiang, J. C. H. & Vimont, D. J. Analogous Pacific and Atlantic meridional modes of tropical atmosphere–ocean variability. J. Clim. 17, 4143–4158 (2004).

    Article  Google Scholar 

  99. Xie, S.-P. & Philander, S. G. H. A coupled ocean–atmosphere model of relevance to the ITCZ in the eastern Pacific. Tellus A 46, 340–350 (1994).

    Article  Google Scholar 

  100. Amaya, D. J. et al. The North Pacific pacemaker effect on historical ENSO and its mechanisms. J. Clim. 32, 7643–7661 (2019).

    Article  Google Scholar 

  101. Anderson, B. T., Perez, R. C. & Karspeck, A. Triggering of El Niño onset through trade wind-induced charging of the equatorial Pacific. Geophys. Res. Lett. 40, 1212–1216 (2013).

    Article  Google Scholar 

  102. Chakravorty, S. et al. Ocean dynamics are key to extratropical forcing of El Niño. J. Clim. 34, 8739–8753 (2021).

    Article  Google Scholar 

  103. Hu, R., Lian, T., Feng, J. & Chen, D. Pacific meridional mode does not induce strong positive SST anomalies in the central Equatorial Pacific. J. Clim. 36, 4113–4131 (2023).

    Article  Google Scholar 

  104. Vimont, D. J., Alexander, M. A. & Newman, M. Optimal growth of central and East Pacific ENSO events. Geophys. Res. Lett. 41, 4027–4034 (2014).

    Article  Google Scholar 

  105. Capotondi, A. & Sardeshmukh, P. D. Optimal precursors of different types of ENSO events. Geophys. Res. Lett. 42, 9952–9960 (2015).

    Article  Google Scholar 

  106. Capotondi, A. & Ricciardulli, L. The influence of Pacific winds on ENSO diversity. Sci. Rep. 11, 18672 (2021).

    Article  Google Scholar 

  107. Di Lorenzo, E. et al. ENSO and meridional modes: a null hypothesis for Pacific climate variability. Geophys. Res. Lett. 42, 9440–9448 (2015).

    Article  Google Scholar 

  108. Okumura, Y. M. Origins of tropical Pacific decadal variability: role of stochastic atmospheric forcing from the South Pacific. J. Clim. 26, 9791–9796 (2013).

    Article  Google Scholar 

  109. Zhao, Y. & Di Lorenzo, E. The impacts of extra-tropical ENSO precursors on tropical Pacific decadal-scale variability. Sci. Rep. 10, 3031 (2020).

    Article  Google Scholar 

  110. Stuecker, M. F. Revisiting the Pacific meridional mode. Sci. Rep. 8, 3216 (2018).

    Article  Google Scholar 

  111. Sanchez, S. C., Amaya, D. J., Miller, A. J., Xie, S.-P. & Charles, C. D. The Pacific meridional mode over the last millennium. Clim. Dyn. 53, 3547–3560 (2019).

    Article  Google Scholar 

  112. McGregor, S., Holbrook, N. J. & Power, S. B. The response of a stochastically forced ENSO model to observed off-equatorial wind stress forcing. J. Clim. 22, 2512–2525 (2009).

    Article  Google Scholar 

  113. Liguori, G. & Di Lorenzo, E. Separating the North and South Pacific meridional modes contributions to ENSO and tropical decadal variability. Geophys. Res. Lett. 46, 906–915 (2019).

    Article  Google Scholar 

  114. Chung, C. T. Y., Power, S. B., Sullivan, A. & Delage, F. The role of the South Pacific in modulating tropical Pacific variability. Sci. Rep. 9, 18311 (2019).

    Article  Google Scholar 

  115. Sun, T. & Okumura, Y. M. Role of stochastic atmospheric forcing from the South and North Pacific in tropical Pacific decadal variability. J. Clim. 32, 4013–4038 (2019).

    Article  Google Scholar 

  116. Lou, J., Holbrook, N. J. & O’Kane, T. J. South Pacific decadal climate variability and potential predictability. J. Clim. 32, 6051–6069 (2019).

    Article  Google Scholar 

  117. Newman, M. et al. The Pacific decadal oscillation, revisited. J. Clim. 29, 4399–4427 (2016).

    Article  Google Scholar 

  118. Capotondi, A., Newman, M., Xu, T. & Di Lorenzo, E. An optimal precursor of Northeast Pacific marine heatwaves and central Pacific El Niño events. Geophys. Res. Lett. 49, e2021GL097350 (2022).

    Article  Google Scholar 

  119. Lorenzo, E. D. et al. Modes and mechanisms of Pacific decadal-scale variability. Annu. Rev. Mar. Sci. 15, 249–275 (2023).

    Article  Google Scholar 

  120. Zhang, Y. et al. Atmospheric forcing of the Pacific meridional mode: tropical Pacific-driven versus internal variability. Geophys. Res. Lett. 49, e2022GL098148 (2022).

    Article  Google Scholar 

  121. Stuecker, M. F. et al. Strong remote control of future equatorial warming by off-equatorial forcing. Nat. Clim. Change 10, 124–129 (2020).

    Article  Google Scholar 

  122. Hazeleger, W., Severijns, C., Seager, R. & Molteni, F. Tropical Pacific-driven decadal energy transport variability. J. Clim. 18, 2037–2051 (2005).

    Article  Google Scholar 

  123. Farneti, R., Molteni, F. & Kucharski, F. Pacific interdecadal variability driven by tropical–extratropical interactions. Clim. Dyn. 42, 3337–3355 (2014).

    Article  Google Scholar 

  124. Cai, W. et al. Pantropical climate interactions. Science 363, eaav4236 (2019).

    Article  Google Scholar 

  125. Gill, A. E. Some simple solutions for heat-induced tropical circulation. Q. J. R. Meteorol. Soc. 106, 447–462 (1980).

    Google Scholar 

  126. Mochizuki, T., Kimoto, M., Watanabe, M., Chikamoto, Y. & Ishii, M. Interbasin effects of the Indian Ocean on Pacific decadal climate change. Geophys. Res. Lett. 43, 7168–7175 (2016).

    Article  Google Scholar 

  127. Kucharski, F. et al. The teleconnection of the tropical Atlantic to Indo-Pacific Sea surface temperatures on inter-annual to centennial time scales: a review of recent findings. Atmosphere 7, 29 (2016).

    Article  Google Scholar 

  128. Li, X., Xie, S.-P., Gille, S. T. & Yoo, C. Atlantic-induced pan-tropical climate change over the past three decades. Nat. Clim. Change 6, 275–279 (2016).

    Article  Google Scholar 

  129. Ruprich-Robert, Y. et al. Assessing the climate impacts of the observed Atlantic multidecadal variability using the GFDL CM2.1 and NCAR CESM1 global coupled models. J. Clim. 30, 2785–2810 (2017).

    Article  Google Scholar 

  130. Ruprich-Robert, Y. et al. Impacts of Atlantic multidecadal variability on the tropical Pacific: a multi-model study. npj Clim. Atmos. Sci. 4, 33 (2021).

    Article  Google Scholar 

  131. Sun, C. et al. Western tropical Pacific multidecadal variability forced by the Atlantic multidecadal oscillation. Nat. Commun. 8, 15998 (2017).

    Article  Google Scholar 

  132. Johnson, Z. F., Chikamoto, Y., Wang, S. Y. S., McPhaden, M. J. & Mochizuki, T. Pacific decadal oscillation remotely forced by the equatorial Pacific and the Atlantic Oceans. Clim. Dyn. 55, 789–811 (2020).

    Article  Google Scholar 

  133. Xie, S.-P., Okumura, Y., Miyama, T. & Timmermann, A. Influences of Atlantic climate change on the tropical Pacific via the central American isthmus. J. Clim. 21, 3914–3928 (2008).

    Article  Google Scholar 

  134. Orihuela-Pinto, B., England, M. H. & Taschetto, A. S. Interbasin and interhemispheric impacts of a collapsed Atlantic overturning circulation. Nat. Clim. Change 12, 558–565 (2022).

    Article  Google Scholar 

  135. Ham, Y.-G., Kug, J.-S., Park, J.-Y. & Jin, F.-F. Sea surface temperature in the north tropical Atlantic as a trigger for El Niño/Southern Oscillation events. Nat. Geosci. 6, 112–116 (2013).

    Article  Google Scholar 

  136. Dhame, S., Taschetto, A. S., Santoso, A. & Meissner, K. J. Indian Ocean warming modulates global atmospheric circulation trends. Clim. Dyn. 55, 2053–2073 (2020).

    Article  Google Scholar 

  137. Polo, I., Martin-Rey, M., Rodriguez-Fonseca, B., Kucharski, F. & Mechoso, C. R. Processes in the Pacific La Niña onset triggered by the Atlantic Niño. Clim. Dyn. 44, 115–131 (2015).

    Article  Google Scholar 

  138. Kucharski, F. et al. Atlantic forcing of Pacific decadal variability. Clim. Dyn. 46, 2337–2351 (2016).

    Article  Google Scholar 

  139. Chikamoto, Y., Mochizuki, T., Timmermann, A., Kimoto, M. & Watanabe, M. Potential tropical Atlantic impacts on Pacific decadal climate trends. Geophys. Res. Lett. 43, 7143–7151 (2016).

    Article  Google Scholar 

  140. Chikamoto, Y. et al. Skilful multi-year predictions of tropical trans-basin climate variability. Nat. Commun. 6, 6869 (2015).

    Article  Google Scholar 

  141. Sobel, A. H., Nilsson, J. & Polvani, L. M. The weak temperature gradient approximation and balanced tropical moisture waves. J. Atmos. Sci. 58, 3650–3665 (2001).

    Article  Google Scholar 

  142. Bretherton, C. S. & Sobel, A. H. The Gill model and the weak temperature gradient approximation. J. Atmos. Sci. 60, 451–460 (2003).

    Article  Google Scholar 

  143. Chiang, J. C. H. & Sobel, A. H. Tropical tropospheric temperature variations caused by ENSO and their influence on the remote tropical climate. J. Clim. 15, 2616–2631 (2002).

    Article  Google Scholar 

  144. Bjerknes, J. Atmospheric teleconnections from the equatorial Pacific. Mon. Weather Rev. 97, 163–172 (1969).

    Article  Google Scholar 

  145. Naha, R., McGregor, S. & Singh, M. Exploring the symmetries of pantropical connections between the tropical Atlantic and Pacific basins. J. Clim. 36, 5251–5265 (2023).

    Article  Google Scholar 

  146. Kajtar, J. B., Santoso, A., England, M. H. & Cai, W. Tropical climate variability: interactions across the Pacific, Indian, and Atlantic Oceans. Clim. Dyn. 48, 2173–2190 (2017).

    Article  Google Scholar 

  147. Terray, P., Masson, S., Prodhomme, C., Roxy, M. K. & Sooraj, K. P. Impacts of Indian and Atlantic oceans on ENSO in a comprehensive modeling framework. Clim. Dyn. 46, 2507–2533 (2016).

    Article  Google Scholar 

  148. Meehl, G. A. et al. Atlantic and Pacific tropics connected by mutually interactive decadal-timescale processes. Nat. Geosci. 14, 36–42 (2021).

    Article  Google Scholar 

  149. O’Reilly, C. H. et al. Challenges with interpreting the impact of Atlantic multidecadal variability using SST-restoring experiments. npj Clim. Atmos. Sci. 6, 14 (2023).

    Article  Google Scholar 

  150. Penland, C. & Sardeshmukh, P. D. The optimal-growth of tropical sea-surface temperature anomalies. J. Clim. 8, 1999–2024 (1995).

    Article  Google Scholar 

  151. Zhao, Y., Newman, M., Capotondi, A., Di Lorenzo, E. & Sun, D. Removing the effects of tropical dynamics from North Pacific climate variability. J. Clim. 34, 9249–9265 (2021).

    Google Scholar 

  152. Zhao, Y., Jin, Y., Li, J. & Capotondi, A. The role of extratropical Pacific in crossing ENSO spring predictability barrier. Geophys. Res. Lett. 49, e2022GL099488 (2022).

    Article  Google Scholar 

  153. Zhao, Y., Jin, Y., Capotondi, A., Li, J. & Sun, D. The role of tropical Atlantic in ENSO predictability barrier. Geophys. Res. Lett. 50, e2022GL101853 (2023).

    Article  Google Scholar 

  154. Qiu, B. & Chen, S. Interannual-to-decadal variability in the bifurcation of the North equatorial current off the Philippines. J. Phys. Oceanogr. 40, 2525–2538 (2010).

    Article  Google Scholar 

  155. Capotondi, A., Alexander, M. A., Bond, N. A., Curchitser, E. N. & Scott, J. D. Enhanced upper ocean stratification with climate change in the CMIP3 models. J. Geophys. Res. Ocean. 117, C04031 (2012).

    Article  Google Scholar 

  156. Geng, T., Yang, Y. & Wu, L. On the mechanisms of Pacific decadal oscillation modulation in a warming climate. J. Clim. 32, 1443–1459 (2019).

    Article  Google Scholar 

  157. Xu, Y. & Hu, A. How would the twenty-first-century warming influence Pacific decadal variability and its connection to North American rainfall: assessment based on a revised procedure for the IPO/PDO. J. Clim. 31, 1547–1563 (2018).

    Article  Google Scholar 

  158. Jia, F. et al. Weakening Atlantic Niño–Pacific connection under greenhouse warming. Sci. Adv. 5, eaax4111 (2019).

    Article  Google Scholar 

  159. Jia, F., Cai, W., Gan, B., Wu, L. & Di Lorenzo, E. Enhanced North Pacific impact on El Niño/Southern Oscillation under greenhouse warming. Nat. Clim. Change 11, 840–847 (2021).

    Article  Google Scholar 

  160. Liguori, G. & Di Lorenzo, E. Meridional modes and increasing Pacific decadal variability under anthropogenic forcing. Geophys. Res. Lett. 45, 983–991 (2018).

    Article  Google Scholar 

  161. Huang, B. Y. et al. Extended reconstructed sea surface temperature, version 5 (ERSSTv5): upgrades, validations, and intercomparisons. J. Clim. 30, 8179–8205 (2017).

    Article  Google Scholar 

  162. Kalnay, E. et al. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc. 77, 437–472 (1996).

    Article  Google Scholar 

  163. Zuo, H., Balmaseda, M. A., Tietsche, S., Mogensen, K. & Mayer, M. The ECMWF operational ensemble reanalysis–analysis system for ocean and sea ice: a description of the system and assessment. Ocean Sci. 15, 779–808 (2019).

    Article  Google Scholar 

  164. Balmaseda, M. A., Mogensen, K. & Weaver, A. T. Evaluation of the ECMWF ocean reanalysis system ORAS4. Q. J. Roy. Meteor. Soc. 139, 1132–1161 (2013).

    Article  Google Scholar 

  165. Behringer, D. & Xue, Y. in Eighth Symposium on Integrated Observing and Assimilation Systems for Atmosphere, Oceans, and Land Surface (AMS, 2004).

  166. Carton, J. A. & Giese, B. S. A reanalysis of ocean climate using Simple Ocean Data Assimilation (SODA). Mon. Weather Rev. 136, 2999–3017 (2008).

    Article  Google Scholar 

  167. Zuo, H., Balmaseda, M. A. & Mogensen, K. The new eddy-permitting ORAP5 ocean reanalysis: description, evaluation and uncertainties in climate signals. Clim. Dyn. 49, 791–811 (2017).

    Article  Google Scholar 

  168. You, Y. & Furtado, J. C. The South Pacific meridional mode and its role in tropical Pacific climate variability. J. Clim. 31, 10141–10163 (2018).

    Article  Google Scholar 

  169. Naha, R., McGregor, S. & Singh, M. Exploring the asymmetries of pan-tropical connections from the tropical Indian to the Pacific basin. J. Clim. https://doi.org/10.1175/JCLI-D-22-0845.1 (2023).

  170. Hu, D. et al. Pacific western boundary currents and their roles in climate. Nature 522, 299–308 (2015).

    Article  Google Scholar 

  171. Cobb, K. M., Charles, C. D., Cheng, H. & Edwards, R. L. El Niño/Southern Oscillation and tropical Pacific climate during the last millennium. Nature 424, 271–276 (2003).

    Article  Google Scholar 

  172. Ramos, R. D., Goodkin, N. F., Siringan, F. P. & Hughen, K. A. Coral records of temperature and salinity in the tropical Western Pacific reveal influence of the Pacific decadal oscillation since the late nineteenth century. Paleoceanogr. Paleoclimatol. 34, 1344–1358 (2019).

    Article  Google Scholar 

  173. Nurhati, I. S., Cobb, K. M. & Di Lorenzo, E. Decadal-scale SST and salinity variations in the central tropical Pacific: signatures of natural and anthropogenic climate change. J. Clim. 24, 3294–3308 (2011).

    Article  Google Scholar 

  174. Sanchez, S. C., Charles, C. D., Carriquiry, J. D. & Villaescusa, J. A. Two centuries of coherent decadal climate variability across the Pacific North American region. Geophys. Res. Lett. 43, 9208–9216 (2016).

    Article  Google Scholar 

  175. Dassié, E. P., Hasson, A., Khodri, M., Lebas, N. & Linsley, B. K. Spatiotemporal variability of the South Pacific convergence zone fresh pool eastern front from coral-derived surface salinity data. J. Clim. 31, 3265–3288 (2018).

    Article  Google Scholar 

  176. Thompson, D. M., Cole, J. E., Shen, G. T., Tudhope, A. W. & Meehl, G. A. Early twentieth-century warming linked to tropical Pacific wind strength. Nat. Geosci. 8, 117–121 (2015).

    Article  Google Scholar 

  177. Guilderson, T. P. & Schrag, D. P. Abrupt shift in subsurface temperatures in the tropical Pacific associated with changes in El Nino. Science 281, 240–243 (1998).

    Article  Google Scholar 

  178. Druffel, E. R. M. et al. Seasonal radiocarbon and oxygen isotopes in a Galapagos coral: calibration with climate indices. Geophys. Res. Lett. 41, 5099–5105 (2014).

    Article  Google Scholar 

  179. Abram, N. J. et al. Coupling of Indo-Pacific climate variability over the last millennium. Nature 579, 385–392 (2020).

    Article  Google Scholar 

  180. Cobb, K. M., Charles, C. D. & Hunter, D. E. A central tropical Pacific coral demonstrates Pacific, Indian, and Atlantic decadal climate connections. Geophys. Res. Lett. 28, 2209–2212 (2001).

    Article  Google Scholar 

  181. Huang, B. et al. Extended reconstructed sea surface temperature version 4 (ERSST.v4). Part I: upgrades and intercomparisons. J. Clim. 28, 911–930 (2015).

    Article  Google Scholar 

  182. Hirahara, S., Ishii, M. & Fukuda, Y. Centennial-scale sea surface temperature analysis and its uncertainty. J. Clim. 27, 57–75 (2014).

    Article  Google Scholar 

  183. Rayner, N. A. et al. Global analyses of sea surface temperature sea ice and night marine air temperature since the late nineteenth century. J. Geophys. Res. 108, 4407 (2003).

    Google Scholar 

  184. Kaplan, A. et al. Analyses of global sea surface temperature 1856–1991. J. Geophys. Res. 103, 18567–18589 (1998).

    Article  Google Scholar 

  185. Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc. 93, 485–498 (2012).

    Article  Google Scholar 

  186. Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).

    Article  Google Scholar 

  187. Braconnot, P. et al. Evaluation of climate models using palaeoclimatic data. Nat. Clim. Change 2, 417–424 (2012).

    Article  Google Scholar 

  188. Otto-Bliesner, B. L. et al. Climate variability and change since 850 CE: an ensemble approach with the community earth system model. Bull. Amer. Meteor. Soc. 97, 735–754 (2016).

    Article  Google Scholar 

  189. Cobb, K. M. et al. Highly variable El Niño–Southern Oscillation throughout the Holocene. Science 339, 67–70 (2013).

    Article  Google Scholar 

  190. Dunbar, R. B., Wellington, G. M., Colgan, M. W. & Glynn, P. W. Eastern Pacific sea surface temperature since 1600 A.D.: the δ18O record of climate variability in Galápagos corals. Paleoceanography 9, 291–315 (1994).

    Article  Google Scholar 

  191. Sanchez, S. C. et al. A continuous record of central tropical Pacific climate since the midnineteenth century reconstructed from Fanning and Palmyra Island corals: a case study in coral data reanalysis. Paleoceanogr. Paleoclimatol. 35, e2020PA003848 (2020).

    Article  Google Scholar 

  192. Emile-Geay, J., Cobb, K. M., Mann, M. E. & Wittenberg, A. T. Estimating central equatorial Pacific SST variability over the past millennium. Part II: reconstructions and implications. J. Clim. 26, 2329–2352 (2013).

    Article  Google Scholar 

  193. Li, J. et al. El Niño modulations over the past seven centuries. Nat. Clim. Change 3, 822–826 (2013).

    Article  Google Scholar 

  194. Hakim, G. J. et al. The last millennium climate reanalysis project: framework and first results. J. Geophys. Res. Atmos. 121, 6745–6764 (2016).

    Article  Google Scholar 

  195. Steiger, N. J., Smerdon, J. E., Cook, E. R. & Cook, B. I. A reconstruction of global hydroclimate and dynamical variables over the common era. Sci. Data 5, 180086 (2018).

    Article  Google Scholar 

  196. Bechtold, B. Violin plots for Matlab, GitHub project. GitHub https://github.com/bastibe/Violinplot-Matlab (2016).

Download references

Acknowledgements

This paper is a product of the CLIVAR Pacific Region Panel working group on ‘Tropical Pacific Decadal Variability’. The authors thank CLIVAR for their sponsorship and J. Li at the CLIVAR Program Office for her help. The paper was finalized during a workshop held at Monash University, Australia. The authors acknowledge workshop funding support from the Faculty of Science and the School of Earth Atmosphere and Environment at Monash University, as well as CLIVAR and US CLIVAR. The authors also thank N. Renier from the Woods Hole Oceanographic Institution graphics team for her help in the preparation of the figure in Box 1. A.C. was supported by the NOAA Climate Program Office’s Climate Variability and Predictability (CVP) and Modeling, Analysis, Predictions and Projections (MAPP) programmes and by DOE Award No. DE-SC0023228. S.M. was supported by the Australian Research Council (grant numbers FT160100162 and DP200102329) and the Australian Government’s National Environmental Science Program (NESP2) Climate Systems Hub. S.C. was supported by IRD (French National Research Institute for Sustainable Development). M.F.S. was supported by NSF grant AGS-2141728 and NOAA’s Climate Program Office’s MAPP programme grant NA20OAR4310445. This is IPRC publication 1611 and SOEST contribution 11719. J.S. was supported by NOAA’s Global Ocean Monitoring and Observing Program (Award NA20OAR4320278). Y.I. and Y.K. were supported by the Program for Advanced Studies of Climate Change Projection (SENTAN, JPMXD0722680395) from the Ministry of Education, Culture, Sports, Science and Technology, Japan. A.S is supported by Australian Government’s NESP and was supported by the Centre for Southern Hemisphere Oceans Research. K.B.K. was supported by the NASA Sea Level Change Science Program, Award 80NSSC20K1123. N.J.H. and A.S.T. were supported by funding from the ARC Centre of Excellence for Climate Extremes (grant number CE170100023) and acknowledge support from the NESP2 Climate Systems Hub. M.M. was supported by the Austrian Science Fund project P33177. S.S. was supported by the US Department of Energy, DE-SC0019418 and the US National Science Foundation (NSF), OCE-2202794 and AGS-1805143. C.M.-V. was supported by Proyecto ANID Fondecyt 3200621. R.M.H. was supported by the Australian Research Council through grant number DE21010004. C.C.U. was supported by NSF award AGS-2002083 and the James E. and Barbara V. Moltz Fellowship for Climate-Related Research. G.A.M. was supported by the Regional and Global Model Analysis component of the Earth and Environmental System Modelling Program of the US Department of Energy’s Office of Biological and Environmental Research under Award Number DE-SC0022070 and also by the National Center for Atmospheric Research, which is a major facility sponsored by the NSF under Cooperative Agreement No. 1852977. N.S. acknowledges support from the joint JAMSTEC-IPRC Collaborative Research project JICore and from the US Office of Naval Research through the Climate Resilience Collaborative at the University of Hawai’i at Mānoa. M.J.M. was supported by NOAA. This is PMEL contribution no. 5499.

Author information

Authors and Affiliations

Authors

Contributions

A.C. and S.M. conceived the Review. A.C., S.M., M.J.M., S.C., N.J.H., Y.I., S.C.S., J.S., M.F.S. and M.Z. coordinated the writing of the various sections. A.C., S.M., C.C.U. and S.C.S led the analyses and the preparation of the figures. All authors contributed to the discussion and interpretation of the material and assisted with the writing of the manuscript, led by A.C.

Corresponding author

Correspondence to Antonietta Capotondi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Earth & Environment thanks Xiaopei Lin, Masami Nonaka, Xichen Li and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Capotondi, A., McGregor, S., McPhaden, M.J. et al. Mechanisms of tropical Pacific decadal variability. Nat Rev Earth Environ 4, 754–769 (2023). https://doi.org/10.1038/s43017-023-00486-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43017-023-00486-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing