Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Genesis and evolution of kimberlites

Abstract

Kimberlites are volcanic rocks enriched in CO2 and H2O and derive from the deepest-sourced melts (up to 300 km) that reach Earth’s surface. The mantle processes that generate such deep melts and allow them to traverse through thick (≥150 km), cold lithosphere carrying dense mantle fragments, such as xenoliths and diamonds, are debated. In this Review, we explore the composition, formation and evolution of kimberlite melts and the mechanisms of their ascent. Both deep-mantle plumes and shallower convective motions linked to lithospheric extension could trigger kimberlite melting by bringing upwelling mantle rocks to depths above Fe-metal stability (~160–250 km depth). Despite the CO2 enrichment in kimberlite melts, their sources are peridotites not necessarily enriched in carbon. Kimberlite primary melts are transitional between silicate and carbonate compositions and evolve towards increasing silica and lower CO2 concentrations during ascent, while concurrently interacting with the lithospheric mantle. These ascent processes promote the exsolution of CO2–H2O fluids during decompression, a prerequisite for the fast ascent (up to tens of metres per second) of kimberlite magmas. Key unresolved questions include the volatile and alkali budget of kimberlites and their mantle sources; their relationship with ‘superdeep’ diamonds; and their potential link to plumes from the core–mantle boundary.

Key points

  • Kimberlite rocks are unlike kimberlite melts, owing to entrainment and assimilation of mantle and crustal fragments, fluid loss during ascent and emplacement, and post-emplacement alteration including ubiquitous serpentinization.

  • Reconstructed kimberlite melts have silicate–carbonate compositions enriched in Mg and Ca and poor in Al, but the exact concentrations of volatile (CO2, H2O) and alkali elements are poorly constrained.

  • The sources of kimberlites are unlikely to be located in the lithospheric mantle. Petrological and geochemical constraints support partial melting in the upper convecting mantle (<250–300 km).

  • Melting is probably triggered by oxidation of reduced carbon during upwelling of mantle peridotites above the metal saturation depth. Geodynamic processes driving upwelling include deep-mantle plumes, lithospheric extension and small-scale convection in the upper mantle.

  • Kimberlite ascent to the surface is a complex process that involves locally extensive priming of magmatic conduits by previously failed pulses of kimberlite melt. Very fast ascent is probably triggered by exsolution of CO2-rich fluids following melt decompression and interaction with wall rocks in the lithospheric mantle.

  • Major unknowns include the origin of serpentine and the melt H2O budget; conditions of crystallization including pressure, temperature and oxygen fugacity; and the composition and depths of fluid exsolution from kimberlite melts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Spatial and temporal distribution of kimberlites.
Fig. 2: Typical kimberlite features and evolution during ascent and emplacement.
Fig. 3: Comparison of proposed primary kimberlite melt compositions and experimental melts of carbonate-bearing peridotites.
Fig. 4: Pressure and temperature conditions of kimberlite melt generation.
Fig. 5: Possible geodynamic scenarios to generate kimberlites.
Fig. 6: Kimberlites and large low-shearwave-velocity provinces (LLSVPs).
Fig. 7: Interaction between kimberlite melts and lithospheric-mantle wall rocks.

Similar content being viewed by others

Data availability

Data for Figs. 3 and 4 can be found in the Supplementary Data file.

References

  1. Stern, R. J., Leybourne, M. I. & Tsujimori, T. Kimberlites and the start of plate tectonics. Geology 44, 799–802 (2016).

    Article  Google Scholar 

  2. Tappe, S., Smart, K., Torsvik, T., Massuyeau, M. & de Wit, M. Geodynamics of kimberlites on a cooling Earth: clues to plate tectonic evolution and deep volatile cycles. Earth Planet. Sci. Lett. 484, 1–14 (2018).

    Article  Google Scholar 

  3. Woodhead, J. et al. Kimberlites reveal 2.5-billion-year evolution of a deep, isolated mantle reservoir. Nature 573, 578–581 (2019).

    Article  Google Scholar 

  4. Giuliani, A., Jackson, M. G., Fitzpayne, A. & Dalton, H. Remnants of early Earth differentiation in the deepest mantle-derived lavas. Proc. Natl Acad. Sci. USA 118, e2015211118 (2021).

    Article  Google Scholar 

  5. Giuliani, A. et al. Perturbation of the deep-Earth carbon cycle in response to the Cambrian explosion. Sci. Adv. 8, eabj1325 (2022).

    Article  Google Scholar 

  6. Giuliani, A. & Pearson, D. G. Kimberlites: from deep Earth to diamond mines. Elements 15, 377–380 (2019).

    Article  Google Scholar 

  7. Moore, R. O. & Gurney, J. J. Pyroxene solid solution in garnets included in diamond. Nature 318, 553–555 (1985).

    Article  Google Scholar 

  8. Scott Smith, B. H., Danchin, R. V., Harris, J. W. & Stracke, K. J. Kimberlites near Orroroo, South Australia. In Kimberlites and Related Rocks. Proceedings of the 3rd International Kimberlite Conference Vol. 1 (ed. Kornprobst, J.) 121–142 (Elsevier, 1985).

  9. Pearson, D. G. et al. Hydrous mantle transition zone indicated by ringwoodite included within diamond. Nature 507, 221–224 (2014).

    Article  Google Scholar 

  10. Nestola, F. et al. CaSiO3 perovskite in diamond indicates the recycling of oceanic crust into the lower mantle. Nature 555, 237–240 (2018).

    Article  Google Scholar 

  11. Tschauner, O. et al. Ice-VII inclusions in diamonds: evidence for aqueous fluid in Earth’s deep mantle. Science 359, 1136 (2018).

    Article  Google Scholar 

  12. Nixon, P. H. & Boyd, F. R. in Lesotho Kimberlites (ed. Nixon, P. H.) 48–56 (Cape and Transvaal Printers, 1973).

  13. Dawson, J. B. & Smith, J. V. Occurrence of diamond in a mica–garnet Iherzolite xenolith from kimberlite. Nature 254, 580–581 (1975).

    Article  Google Scholar 

  14. Pearson, D. G., Canil, D. & Shirey, S. B. in Treatise on Geochemistry Vol. 2, The Mantle and Core (ed. Carlson, R.) 171–275 (Pergamon, 2003).

  15. Griffin, W. L., O’Reilly, S. Y., Afonso, J. C. & Begg, G. C. The composition and evolution of lithospheric mantle: a re-evaluation and its tectonic implications. J. Petrol. 50, 1185–1204 (2009).

    Article  Google Scholar 

  16. Clifford, T. N. Tectono-metallogenic units and metallogenic provinces of Africa. Earth Planet. Sci. Lett. 1, 421–434 (1966).

    Article  Google Scholar 

  17. Pearson, D. G. et al. Deep continental roots and cratons. Nature 596, 199–210 (2021).

    Article  Google Scholar 

  18. Canil, D. & Fedortchouk, Y. Garnet dissolution and the emplacement of kimberlites. Earth Planet. Sci. Lett. 167, 227–237 (1999).

    Article  Google Scholar 

  19. Peslier, A. H., Woodland, A. B. & Wolff, J. A. Fast kimberlite ascent rates estimated from hydrogen diffusion profiles in xenolithic mantle olivines from southern Africa. Geochim. Cosmochim. Acta 72, 2711–2722 (2008).

    Article  Google Scholar 

  20. Sparks, R. S. J. et al. Dynamical constraints on kimberlite volcanism. J. Volcanol. Geotherm. Res. 155, 18–48 (2006).

    Article  Google Scholar 

  21. Wilson, L. & Head, J. W. An integrated model of kimberlite ascent and eruption. Nature 447, 53–57 (2007).

    Article  Google Scholar 

  22. Russell, J. K., Porritt, L. A., Lavallee, Y. & Dingwell, D. B. Kimberlite ascent by assimilation-fuelled buoyancy. Nature 481, 352–356 (2012).

    Article  Google Scholar 

  23. Russell, J. K., Sparks, R. S. J. & Kavanagh, J. L. Kimberlite volcanology: transport, ascent, and eruption. Elements 15, 405–410 (2019).

    Article  Google Scholar 

  24. Brett, R. C., Russell, J. K., Andrews, G. D. M. & Jones, T. J. The ascent of kimberlite: insights from olivine. Earth Planet. Sci. Lett. 424, 119–131 (2015).

    Article  Google Scholar 

  25. Heaman, L. M., Phillips, D. & Pearson, G. Dating kimberlites: methods and emplacement patterns through time. Elements 15, 399–404 (2019).

    Article  Google Scholar 

  26. Kjarsgaard, B. A. et al. A review of the geology of global diamond mines and deposits. Rev. Mineral. Geochem. 88, 1–117 (2022).

    Article  Google Scholar 

  27. Mazrouei, S., Ghent, R. R., Bottke, W. F., Parker, A. H. & Gernon, T. M. Earth and Moon impact flux increased at the end of the Paleozoic. Science 363, 253–257 (2019).

    Article  Google Scholar 

  28. Jelsma, H., Barnett, W., Richards, S. & Lister, G. Tectonic setting of kimberlites. Lithos 112S, 155–165 (2009).

    Article  Google Scholar 

  29. Jelsma, H. A. et al. Preferential distribution along transcontinental corridors of kimberlites and related rocks of Southern Africa. South Afr. J. Geol. 107, 301–324 (2004).

    Article  Google Scholar 

  30. Torsvik, T. H., Burke, K., Steinberger, B., Webb, S. J. & Ashwal, L. D. Diamonds sampled by plumes from the core–mantle boundary. Nature 466, 352–355 (2010).

    Article  Google Scholar 

  31. Braun, J., Guillocheau, F., Robin, C., Baby, G. & Jelsma, H. Rapid erosion of the Southern African Plateau as it climbs over a mantle superswell. J. Geophys. Res. Solid. Earth 119, 6093–6112 (2014).

    Article  Google Scholar 

  32. Mitchell, R. H. Kimberlites: Mineralogy, Geochemistry and Petrology (Plenum, 1986).

  33. Mitchell, R. H. Petrology of hypabyssal kimberlites: relevance to primary magma compositions. J. Volcanol. Geotherm. Res. 174, 1–8 (2008).

    Article  Google Scholar 

  34. Mitchell, R. H., Giuliani, A. & O’Brien, H. What is a kimberlite? petrology and mineralogy of hypabyssal kimberlites. Elements 15, 381–386 (2019).

    Article  Google Scholar 

  35. Kamenetsky, M. B. et al. Kimberlite melts rich in alkali chlorides and carbonates: a potent metasomatic agent in the mantle. Geology 32, 845–848 (2004).

    Article  Google Scholar 

  36. Foley, S. F., Yaxley, G. M. & Kjarsgaard, B. A. Kimberlites from source to surface: insights from experiments. Elements 15, 393–398 (2019).

    Article  Google Scholar 

  37. Kjarsgaard, B. A., Pearson, D. G., Tappe, S., Nowell, G. M. & Dowall, D. P. Geochemistry of hypabyssal kimberlites from Lac de Gras, Canada: comparisons to a global database and applications to the parent magma problem. Lithos 112S, 236–248 (2009).

    Article  Google Scholar 

  38. Kamenetsky, V. S. & Yaxley, G. M. Carbonate–silicate liquid immiscibility in the mantle propels kimberlite magma ascent. Geochim. Cosmochim. Acta 158, 48–56 (2015).

    Article  Google Scholar 

  39. Tovey, M. et al. Controls on the emplacement style of coherent kimberlites in the Lac de Gras field, Canada. J. Petrol. 63, egac028 (2022).

    Article  Google Scholar 

  40. Haggerty, S. E. Superkimberlites: a geodynamic diamond window to the Earth’s core. Earth Planet. Sci. Lett. 122, 57–69 (1994).

    Article  Google Scholar 

  41. Gregoire, M., Rabinowicz, M. & Janse, A. J. A. Mantle mush compaction: a key to understand the mechanisms of concentration of kimberlite melts and initiation of swarms of kimberlite dykes. J. Petrol. 47, 631–646 (2006).

    Article  Google Scholar 

  42. Stamm, N. & Schmidt, M. W. Asthenospheric kimberlites: volatile contents and bulk compositions at 7 GPa. Earth Planet. Sci. Lett. 474, 309–321 (2017).

    Article  Google Scholar 

  43. Tappe, S. et al. A fresh isotopic look at Greenland kimberlites: cratonic mantle lithosphere imprint on deep source signal. Earth Planet. Sci. Lett. 305, 235–248 (2011).

    Article  Google Scholar 

  44. Becker, M. & le Roex, A. P. Geochemistry of South African on- and off-craton, group I and group II kimberlites: petrogenesis and source region evolution. J. Petrol. 47, 673–703 (2006).

    Article  Google Scholar 

  45. Tainton, K. M. & McKenzie, D. A. N. The generation of kimberlites, lamproites, and their source rocks. J. Petrol. 35, 787–817 (1994).

    Article  Google Scholar 

  46. Sun, C. & Dasgupta, R. Slab–mantle interaction, carbon transport, and kimberlite generation in the deep upper mantle. Earth Planet. Sci. Lett. 506, 38–52 (2019).

    Article  Google Scholar 

  47. Sparks, R. S. J. Kimberlite volcanism. Annu. Rev. Earth Planet. Sci. 41, 497–528 (2013).

    Article  Google Scholar 

  48. Boyd, F. R. & Clement, C. R. Compositional zoning of olivines in kimberlites of the De Beers mine, Kimberley, South Africa. Carnegie Inst. Wash. Yearb. 76, 485–493 (1977).

    Google Scholar 

  49. Mitchell, R. H. Composition of olivine, silica activity and oxygen fugacity in kimberlite. Lithos 6, 65–81 (1973).

    Article  Google Scholar 

  50. Abersteiner, A. et al. Composition and emplacement of the Benfontein kimberlite sill complex (Kimberley, South Africa): textural, petrographic and melt inclusion constraints. Lithos 324–325, 297–314 (2019).

    Article  Google Scholar 

  51. Shee, S. R., Clement, C. R. & Skinner, E. M. W. in Kimberlites, Related Rocks and Mantle Xenoliths: 5th International Kimberlite Conference Vol. 1 (eds Meyer, H. O. A. & Leonardos, O. H.) 98–114 (CPRM, 1994).

  52. Soltys, A., Giuliani, A., Phillips, D. & Kamenetsky, V. S. Kimberlite metasomatism of the lithosphere and the evolution of olivine in carbonate-rich melts — evidence from the Kimberley kimberlites (South Africa). J. Petrol. 61, egaa062 (2020).

    Article  Google Scholar 

  53. Zurevinski, S. & Mitchell, R. Highly evolved hypabyssal kimberlite sills from Wemindji, Quebec, Canada: insights into the process of flow differentiation in kimberlite magmas. Contrib. Mineral. Petrol. 161, 765–776 (2011).

    Article  Google Scholar 

  54. Arndt, N. T. et al. Olivine, and the origin of kimberlite. J. Petrol. 51, 573–602 (2010).

    Article  Google Scholar 

  55. Brett, R. C., Russell, J. K. & Moss, S. Origin of olivine in kimberlite: phenocryst or impostor. Lithos 112S, 201–212 (2009).

    Article  Google Scholar 

  56. Fedortchouk, Y. & Canil, D. Intensive variables in kimberlite magmas, Lac de Gras, Canada and implications for diamond survival. J. Petrol. 45, 1725–1745 (2004).

    Article  Google Scholar 

  57. Giuliani, A., Phillips, D., Kamenetsky, V. S. & Goemann, K. Constraints on kimberlite ascent mechanisms revealed by phlogopite compositions in kimberlites and mantle xenoliths. Lithos 240–243, 189–201 (2016).

    Article  Google Scholar 

  58. Kamenetsky, V. S. et al. Olivine in the Udachnaya-East kimberlite (Yakutia, Russia): types, compositions and origins. J. Petrol. 49, 823–839 (2008).

    Article  Google Scholar 

  59. Dawson, J. B. Kimberlites and Their Xenoliths (Springer, 1980).

  60. Kopylova, M. G., Matveev, S. & Raudsepp, M. Searching for parental kimberlite melt. Geochim. Cosmochim. Acta 71, 3616–3629 (2007).

    Article  Google Scholar 

  61. le Roex, A. P., Bell, D. R. & Davis, P. Petrogenesis of group I kimberlites from Kimberley, South Africa: evidence from bulk-rock geochemistry. J. Petrol. 44, 2261–2286 (2003).

    Article  Google Scholar 

  62. Nielsen, T. F. D. & Sand, K. K. The Majuagaa kimberlite dike, Maniitsoq region, western Greenland: constraints on an Mg-rich silicocarbonatitic melt composition from groundmass mineralogy and bulk compositions. Can. Mineralogist 46, 1043–1061 (2008).

    Article  Google Scholar 

  63. Price, S. E., Russell, J. K. & Kopylova, M. G. Primitive magma from the Jericho pipe, N.W.T., Canada: constraints on primary kimberlite melt chemistry. J. Petrol. 41, 789–808 (2000).

    Article  Google Scholar 

  64. Soltys, A., Giuliani, A. & Phillips, D. A new approach to reconstructing the composition and evolution of kimberlite melts: a case study of the archetypal Bultfontein kimberlite (Kimberley, South Africa). Lithos 304–307, 1–15 (2018).

    Article  Google Scholar 

  65. Soltys, A. et al. In-situ assimilation of mantle minerals by kimberlitic magmas — direct evidence from a garnet wehrlite xenolith entrained in the Bultfontein kimberlite (Kimberley, South Africa). Lithos 256–257, 182–196 (2016).

    Article  Google Scholar 

  66. Kamenetsky, V. S. et al. Can pyroxenes be liquidus minerals in the kimberlite magma? Lithos 112S, 213–222 (2009).

    Article  Google Scholar 

  67. Giuliani, A. et al. Kimberlite genesis from a common carbonate-rich primary melt modified by lithospheric mantle assimilation. Sci. Adv. 6, eaaz0424 (2020).

    Article  Google Scholar 

  68. Stone, R. S. & Luth, R. W. Orthopyroxene survival in deep carbonatite melts: implications for kimberlites. Contrib. Mineral. Petrol. 171, 1–9 (2016).

    Article  Google Scholar 

  69. Giuliani, A. et al. Stable isotope (C, O, S) compositions of volatile-rich minerals in kimberlites: a review. Chem. Geol. 374–375, 61–83 (2014).

    Article  Google Scholar 

  70. Giuliani, A. et al. The final stages of kimberlite petrogenesis: petrography, mineral chemistry, melt inclusions and Sr–C–O isotope geochemistry of the Bultfontein kimberlite (Kimberley, South Africa). Chem. Geol. 455, 342–356 (2017).

    Article  Google Scholar 

  71. Mitchell, R. H. Paragenesis and oxygen isotope studies of serpentine in kimberlite. In Proceedings of the 10th International Kimberlite Conference Vol. 1, 1–12 (Geological Society of India, 2013).

  72. Sparks, R. S. J. et al. The nature of erupting kimberlite melts. Lithos 112S, 429–438 (2009).

    Article  Google Scholar 

  73. Stripp, G. R., Field, M., Schumacher, J. C., Sparks, R. S. J. & Cressey, G. Post-emplacement serpentinization and related hydrothermal metamorphism in a kimberlite from Venetia, South Africa. J. Metamorph. Geol. 24, 515–534 (2006).

    Article  Google Scholar 

  74. White, J. L. et al. Kimberlite sills and dykes associated with the Wesselton kimberlite pipe, Kimberley, South Africa. South. Afr. J. Geol. 115, 1–32 (2012).

    Article  Google Scholar 

  75. Brooker, R., Sparks, R., Kavanagh, J. & Field, M. The volatile content of hypabyssal kimberlite magmas: some constraints from experiments on natural rock compositions. Bull. Volcanol. 73, 959–981 (2011).

    Article  Google Scholar 

  76. Pearson, D. G., Woodhead, J. & Janney, P. E. Kimberlites as geochemical probes of Earth’s mantle. Elements 15, 387–392 (2019).

    Article  Google Scholar 

  77. Casetta, F., Asenbaum, R., Ashchepkov, I., Abart, R. & Ntaflos, T. Mantle-derived cargo vs liquid line of descent: reconstructing the PTfO2X path of the Udachnaya–East kimberlite melts during ascent in the Siberian sub-cratonic lithosphere. J. Petrol. 64, egac122 (2023).

    Article  Google Scholar 

  78. Bellis, A. & Canil, D. Ferric iron in CaTiO3 perovskite as an oxygen barometer for kimberlitic magmas I: experimental calibration. J. Petrol. 48, 219–230 (2007).

    Article  Google Scholar 

  79. Canil, D. & Bellis, A. J. Ferric iron in CaTiO3 perovskite as an oxygen barometer for kimberlite magmas II: applications. J. Petrol. 48, 231–252 (2007).

    Article  Google Scholar 

  80. Castillo-Oliver, M. et al. Trace-element geochemistry and U–Pb dating of perovskite in kimberlites of the Lunda Norte province (NE Angola): petrogenetic and tectonic implications. Chem. Geol. 426, 118–134 (2016).

    Article  Google Scholar 

  81. Dalton, H., Giuliani, A., O’Brien, H., Phillips, D. & Hergt, J. The role of lithospheric heterogeneity on the composition of kimberlite magmas from a single field: the case of Kaavi-Kuopio, Finland. Lithos 354–355, 105333 (2020).

    Article  Google Scholar 

  82. Bell, D. R., Schmitz, M. D. & Janney, P. E. Mesozoic thermal evolution of the southern African mantle lithosphere. Lithos 71, 273–287 (2003).

    Article  Google Scholar 

  83. Grütter, H. S. Pyroxene xenocryst geotherms: techniques and application. Lithos 112, 1167–1178 (2009).

    Article  Google Scholar 

  84. Creighton, S. et al. Oxidation of the Kaapvaal lithospheric mantle driven by metasomatism. Contrib. Mineral. Petrol. 157, 491–504 (2009).

    Article  Google Scholar 

  85. Stagno, V., Ojwang, D. O., McCammon, C. A. & Frost, D. J. The oxidation state of the mantle and the extraction of carbon from Earth’s interior. Nature 493, 84–88 (2013).

    Article  Google Scholar 

  86. Nowell, G. M. et al. Hf isotope systematics of kimberlites and their megacrysts: new constraints on their source regions. J. Petrol. 45, 1583–1612 (2004).

    Article  Google Scholar 

  87. Smith, C. B. Pb, Sr and Nd isotopic evidence for sources of southern African Cretaceous kimberlites. Nature 304, 51–54 (1983).

    Article  Google Scholar 

  88. French, S. W. & Romanowicz, B. Broad plumes rooted at the base of the Earth’s mantle beneath major hotspots. Nature 525, 95–99 (2015).

    Article  Google Scholar 

  89. Ballmer, M. D., Hunen, J. v., Ito, G., Tackley, P. J. & Bianco, T. A. Non‐hotspot volcano chains originating from small‐scale sublithospheric convection. Geophys. Res. Lett. https://doi.org/10.1029/2007GL031636 (2007).

  90. Frost, D. J. & McCammon, C. A. The redox state of Earth’s mantle. Annu. Rev. Earth Planet. Sci. 36, 389–420 (2008).

    Article  Google Scholar 

  91. Rohrbach, A. et al. Metal saturation in the upper mantle. Nature 449, 456–458 (2007).

    Article  Google Scholar 

  92. Rohrbach, A. & Schmidt, M. W. Redox freezing and melting in the Earth’s deep mantle resulting from carbon-iron redox coupling. Nature 472, 209–212 (2011).

    Article  Google Scholar 

  93. Thomson, A. R., Walter, M. J., Kohn, S. C. & Brooker, R. A. Slab melting as a barrier to deep carbon subduction. Nature 529, 76–79 (2016).

    Article  Google Scholar 

  94. Fedortchouk, Y. A new approach to understanding diamond surface features based on a review of experimental and natural diamond studies. Earth Sci. Rev. 193, 45–65 (2019).

    Article  Google Scholar 

  95. Fedortchouk, Y. et al. Diamond-destructive mantle metasomatism: evidence from the internal and external textures of diamonds and their nitrogen defects. Lithos 414–415, 106616 (2022).

    Article  Google Scholar 

  96. Brey, G. P., Bulatov, V. K., Girnis, A. V. & Lahaye, Y. Experimental melting of carbonated peridotite at 6–10 GPa. J. Petrol. 49, 797–821 (2008).

    Article  Google Scholar 

  97. Brey, G. P. & Green, D. H. Solubility of CO2 in olivine melilitite at high pressures and role of CO2 in the Earth’s upper mantle. Contrib. Mineral. Petrol. 55, 217–230 (1976).

    Article  Google Scholar 

  98. Foley, S. F. et al. The composition of near-solidus melts of peridotite in the presence of CO2 and H2O between 40 and 60 kbar. Lithos 112S, 274–283 (2009).

    Article  Google Scholar 

  99. Wyllie, P. J. & Huang, W.-L. Influence of mantle CO2 in the generation of carbonatites and kimberlites. Nature 257, 297–299 (1975).

    Article  Google Scholar 

  100. Hirschmann, M. M. Comparative deep Earth volatile cycles: the case for C recycling from exosphere/mantle fractionation of major (H2O, C, N) volatiles and from H2O/Ce, CO2/Ba, and CO2/Nb exosphere ratios. Earth Planet. Sci. Lett. 502, 262–273 (2018).

    Article  Google Scholar 

  101. Rosenthal, A., Hauri, E. H. & Hirschmann, M. M. Experimental determination of C, F, and H partitioning between mantle minerals and carbonated basalt, CO2/Ba and CO2/Nb systematics of partial melting, and the CO2 contents of basaltic source regions. Earth Planet. Sci. Lett. 412, 77–87 (2015).

    Article  Google Scholar 

  102. Green, D. H., Falloon, T. J. & Taylor, W. R. in Magmatic Processes: Physicochemical Principles. Geochemical Society Special Publication No. 1 (ed. Mysen, B. O.) 139–154 (The Geochemical Society, 1987).

  103. Arndt, N. Komatiites, kimberlites, and boninites. J. Geophys. Res. Solid Earth 108, 2293 (2003).

    Article  Google Scholar 

  104. Gudfinnsson, G. H. & Presnall, D. C. Continuous gradations among primary carbonatitic, kimberlitic, melilititic, basaltic, picritic, and komatiitic melts in equilibrium with garnet lherzolite at 3–8 GPa. J. Petrol. 46, 1645–1659 (2005).

    Article  Google Scholar 

  105. Abersteiner, A., Giuliani, A., Kamenetsky, V. S. & Phillips, D. Petrographic and melt-inclusion constraints on the petrogenesis of a magmaclast from the Venetia kimberlite cluster, South Africa. Chem. Geol. 455, 331–341 (2017).

    Article  Google Scholar 

  106. Hirschmann, M. M., Tenner, T., Aubaud, C. & Withers, A. C. Dehydration melting of nominally anhydrous mantle: the primacy of partitioning. Phys. Earth Planet. Inter. 176, 54–68 (2009).

    Article  Google Scholar 

  107. Dixon, J. E., Leist, L., Langmuir, C. & Schilling, J.-G. Recycled dehydrated lithosphere observed in plume-influenced mid-ocean-ridge basalt. Nature 420, 385–389 (2002).

    Article  Google Scholar 

  108. Bizimis, M. & Peslier, A. H. Water in Hawaiian garnet pyroxenites: implications for water heterogeneity in the mantle. Chem. Geol. 397, 61–75 (2015).

    Article  Google Scholar 

  109. Dixon, J., Clague, D. A., Cousens, B., Monsalve, M. L. & Uhl, J. Carbonatite and silicate melt metasomatism of the mantle surrounding the Hawaiian plume: evidence from volatiles, trace elements, and radiogenic isotopes in rejuvenated-stage lavas from Niihau, Hawaii. Geochem. Geophys. Geosyst. https://doi.org/10.1029/2008GC002076 (2008).

  110. Boyd, F. R. & Nixon, P. H. Origins of the ultramafic nodules from some kimberlites of northern lesotho and the monastery mine, South Africa. Phys. Chem. Earth 9, 431–454 (1975).

    Article  Google Scholar 

  111. Griffin, W. L. et al. Trace-element zoning in garnets from sheared mantle xenoliths. Geochim. Cosmochim. Acta 53, 561–567 (1989).

    Article  Google Scholar 

  112. Morgan, W. J. Convection plumes in the lower mantle. Nature 230, 42–43 (1971).

    Article  Google Scholar 

  113. Richards, M. A., Duncan, R. A. & Courtillot, V. E. Flood basalts and hot-spot tracks: plume heads and tails. Science 246, 103–107 (1989).

    Article  Google Scholar 

  114. Campbell, I. H. & Griffiths, R. W. Implications of mantle plume structure for the evolution of flood basalts. Earth Planet. Sci. Lett. 99, 79–93 (1990).

    Article  Google Scholar 

  115. Putirka, K. D., Perfit, M., Ryerson, F. J. & Jackson, M. G. Ambient and excess mantle temperatures, olivine thermometry, and active vs. passive upwelling. Chem. Geol. 241, 177–206 (2007).

    Article  Google Scholar 

  116. Koppers, A. A. P. et al. Mantle plumes and their role in Earth processes. Nat. Rev. Earth Environ. 2, 382–401 (2021).

    Article  Google Scholar 

  117. le Roex, A. P. Geochemical correlation between southern African kimberlites and South Atlantic hotspots. Nature 324, 243–245 (1986).

    Article  Google Scholar 

  118. Moore, A., Blenkinsop, T. & Cotterill, F. Controls on post-Gondwana alkaline volcanism in southern Africa. Earth Planet. Sci. Lett. 268, 151–164 (2008).

    Article  Google Scholar 

  119. Flowers, R. M. & Schoene, B. (U–Th)/He thermochronometry constraints on unroofing of the eastern Kaapvaal craton and significance for uplift of the southern African Plateau. Geology 38, 827–830 (2010).

    Article  Google Scholar 

  120. Stanley, J. R., Flowers, R. M. & Bell, D. R. Kimberlite (U–Th)/He dating links surface erosion with lithospheric heating, thinning, and metasomatism in the southern African Plateau. Geology 41, 1243–1246 (2013).

    Article  Google Scholar 

  121. Nyblade, A. A. & Sleep, N. H. Long lasting epeirogenic uplift from mantle plumes and the origin of the Southern African plateau. Geochem. Geophys. Geosyst. https://doi.org/10.1029/2003GC000573 (2003).

  122. Celli, N. L., Lebedev, S., Schaeffer, A. J. & Gaina, C. African cratonic lithosphere carved by mantle plumes. Nat. Commun. 11, 92 (2020).

    Article  Google Scholar 

  123. Hu, J. et al. Modification of the Western Gondwana craton by plume–lithosphere interaction. Nat. Geosci. 11, 203–210 (2018).

    Article  Google Scholar 

  124. Heaman, L. M. & Kjarsgaard, B. A. Timing of eastern North American kimberlite magmatism: continental extension of the great meteor hotspot track. Earth Planet. Sci. Lett. 178, 253–268 (2000).

    Article  Google Scholar 

  125. Davaille, A. & Romanowicz, B. Deflating the LLSVPs: bundles of mantle thermochemical plumes rather than thick stagnant ‘piles’. Tectonics 39, e2020TC006265 (2020).

    Article  Google Scholar 

  126. Davies, D. R., Goes, S. & Lau, H. C. P. in The Earth’s Heterogeneous Mantle: A Geophysical, Geodynamical, and Geochemical Perspective (eds Khan, A. & Deschamps, F.) 441–477 (Springer, 2015).

  127. Garnero, E. J., McNamara, A. K. & Shim, S.-H. Continent-sized anomalous zones with low seismic velocity at the base of Earth’s mantle. Nat. Geosci. 9, 481–489 (2016).

    Article  Google Scholar 

  128. Hager, B. H., Clayton, R. W., Richards, M. A., Comer, R. P. & Dziewonski, A. M. Lower mantle heterogeneity, dynamic topography and the geoid. Nature 313, 541–545 (1985).

    Article  Google Scholar 

  129. Jones, T. D., Sime, N. & van Keken, P. E. Burying Earth’s primitive mantle in the slab graveyard. Geochem. Geophys. Geosyst. 22, e2020GC009396 (2021).

    Article  Google Scholar 

  130. Lau, H. C. P. et al. Tidal tomography constrains Earth’s deep-mantle buoyancy. Nature 551, 321–326 (2017).

    Article  Google Scholar 

  131. McNamara, A. K. & Zhong, S. Thermochemical structures beneath Africa and the Pacific Ocean. Nature 437, 1136–1139 (2005).

    Article  Google Scholar 

  132. Ni, S., Tan, E., Gurnis, M. & Helmberger, D. Sharp sides to the African superplume. Science 296, 1850 (2002).

    Article  Google Scholar 

  133. Richards, F. D., Hoggard, M. J., Ghelichkhan, S., Koelemeijer, P. & Lau, H. C. P. Geodynamic, geodetic, and seismic constraints favour deflated and dense-cored LLVPs. Earth Planet. Sci. Lett. 602, 117964 (2023).

    Article  Google Scholar 

  134. Burke, K., Steinberger, B., Torsvik, T. H. & Smethurst, M. A. Plume generation zones at the margins of large low shear velocity provinces on the core–mantle boundary. Earth Planet. Sci. Lett. 265, 49–60 (2008).

    Article  Google Scholar 

  135. Thorne, M. S., Garnero, E. J. & Grand, S. P. Geographic correlation between hot spots and deep mantle lateral shear-wave velocity gradients. Phys. Earth Planet. Inter. 146, 47–63 (2004).

    Article  Google Scholar 

  136. Torsvik, T. H., Smethurst, M. A., Burke, K. & Steinberger, B. Large igneous provinces generated from the margins of the large low-velocity provinces in the deep mantle. Geophys. J. Int. 167, 1447–1460 (2006).

    Article  Google Scholar 

  137. Flament, N., Bodur, Ö. F., Williams, S. E. & Merdith, A. S. Assembly of the basal mantle structure beneath Africa. Nature 603, 846–851 (2022).

    Article  Google Scholar 

  138. Grabreck, A., Flament, N. & Bodur, Ö. F. Mapping global kimberlite potential from reconstructions of mantle flow over the past billion years. PLoS ONE 17, e0268066 (2022).

    Article  Google Scholar 

  139. Nakanishi, N. et al. Tungsten-182 evidence for an ancient kimberlite source. Proc. Natl Acad. Sci. USA 118, e2020680118 (2021).

    Article  Google Scholar 

  140. Schersten, A., Elliott, T., Hawkesworth, C. & Norman, M. Tungsten isotope evidence that mantle plumes contain no contribution from the Earth’s core. Nature 427, 234–237 (2004).

    Article  Google Scholar 

  141. Kleine, T. & Walker, R. J. Tungsten isotopes in planets. Annu. Rev. Earth Planet. Sci. 45, 389–417 (2017).

    Article  Google Scholar 

  142. Jackson, M. G. et al. Ancient helium and tungsten isotopic signatures preserved in mantle domains least modified by crustal recycling. Proc. Natl Acad. Sci. USA 117, 202009663 (2020).

    Article  Google Scholar 

  143. Mundl, A. et al. Tungsten-182 heterogeneity in modern ocean island basalts. Science 356, 66–69 (2017).

    Article  Google Scholar 

  144. Mundl-Petermeier, A. et al. Anomalous 182W in high 3He/4He ocean island basalts: fingerprints of Earth’s core? Geochim. Cosmochim. Acta 271, 194–211 (2020).

    Article  Google Scholar 

  145. Tappe, S., Budde, G., Stracke, A., Wilson, A. & Kleine, T. The tungsten-182 record of kimberlites above the African superplume: exploring links to the core–mantle boundary. Earth Planet. Sci. Lett. 547, 116473 (2020).

    Article  Google Scholar 

  146. Sumino, H., Kaneoka, I., Matsufuji, K. & Sobolev, A. V. Deep mantle origin of kimberlite magmas revealed by neon isotopes. Geophys. Res. Lett. 33, L16318 (2006).

    Article  Google Scholar 

  147. Tachibana, Y., Kaneoka, I., Gaffney, A. & Upton, B. Ocean-island basalt-like source of kimberlite magmas from West Greenland revealed by high 3He/4He ratios. Geology 34, 273–276 (2006).

    Article  Google Scholar 

  148. Harte, B. & Cayzer, N. Decompression and unmixing of crystals included in diamonds from the mantle transition zone. Phys. Chem. Miner. 34, 647–656 (2007).

    Article  Google Scholar 

  149. King, S. D. & Ritsema, J. African hot spot volcanism: small-scale convection in the upper mantle beneath cratons. Science 290, 1137–1140 (2000).

    Article  Google Scholar 

  150. Davies, D. R. & Rawlinson, N. On the origin of recent intraplate volcanism in Australia. Geology 42, 1031–1034 (2014).

    Article  Google Scholar 

  151. Jaques, A. L. & Milligan, P. R. Patterns and controls on the distribution of diamondiferous intrusions in Australia. Lithos 77, 783–802 (2004).

    Article  Google Scholar 

  152. Kjarsgaard, B. A., Heaman, L. M., Sarkar, C. & Pearson, D. G. The North America mid‐Cretaceous kimberlite corridor: wet, edge‐driven decompression melting of an OIB‐type deep mantle source. Geochem. Geophys. Geosyst. 18, 2727–2747 (2017).

    Article  Google Scholar 

  153. Phillips, D. et al. A petrographic and 40Ar/39Ar geochronological study of the voorspoed kimberlite, South Africa: implications for the origin of group II kimberlite magmatism. South. Afr. J. Geol. 101, 299–306 (1998).

    Google Scholar 

  154. Zhang, W., Johnston, S. T. & Currie, C. A. Kimberlite magmatism induced by west-dipping subduction of the North American plate. Geology 47, 395–398 (2019).

    Article  Google Scholar 

  155. White, S. H., de Boorder, H. & Smith, C. B. Structural controls of kimberlite and lamproite emplacement. J. Geochem. Explor. 53, 245–264 (1995).

    Article  Google Scholar 

  156. Heaman, L. M., Kjarsgaard, B. A. & Creaser, R. A. The temporal evolution of North American kimberlites. Lithos 76, 377–397 (2004).

    Article  Google Scholar 

  157. Helmstaedt, H. & Gurney, J. J. Kimberlites of southern Africa: are they related to subduction proceses? In Kimberlites and Related Rocks. Proceedings of the 3rd International Kimberlite Conference Vol. 1 (ed. Kornprobst, J.) 425–434 (Elsevier, 1985).

  158. McCandless, T. Kimberlites: mantle expressions of deep-seated subduction. In Proceedings of the 7th International Kimberlite Conference Vol. 2 (eds Gurney, J. J. et al.) 545–549 (Red Roof Design, 1999).

  159. Sharp, W. E. A plate tectonic origin for diamond-bearing kimberlites. Earth Planet. Sci. Lett. 21, 351–354 (1974).

    Article  Google Scholar 

  160. van der Meer, D. G., van Hinsbergen, D. J. J. & Spakman, W. Atlas of the underworld: slab remnants in the mantle, their sinking history, and a new outlook on lower mantle viscosity. Tectonophysics 723, 309–448 (2018).

    Article  Google Scholar 

  161. Chen, Y. et al. Reconciling seismic structures and Late Cretaceous kimberlite magmatism in northern Alberta, Canada. Geology 48, 872–876 (2020).

    Article  Google Scholar 

  162. Currie, C. A. & Beaumont, C. Are diamond-bearing Cretaceous kimberlites related to low-angle subduction beneath western North America? Earth Planet. Sci. Lett. 303, 59–70 (2011).

    Article  Google Scholar 

  163. Tappe, S., Pearson, G. D., Kjarsgaard, B. A., Nowell, G. & Dowall, D. Mantle transition zone input to kimberlite magmatism near a subduction zone: origin of anomalous Nd–Hf isotope systematics at Lac de Gras, Canada. Earth Planet. Sci. Lett. 371–372, 235–251 (2013).

    Article  Google Scholar 

  164. Hofmann, A. W. Mantle geochemistry: the message from oceanic volcanism. Nature 385, 219–229 (1997).

    Article  Google Scholar 

  165. White, W. M. & Hofmann, A. W. Sr and Nd isotope geochemistry of oceanic basalts and mantle evolution. Nature 296, 821–825 (1982).

    Article  Google Scholar 

  166. Fitzpayne, A. et al. Sulfur isotope constraints on the petrogenesis of the Kimberley kimberlites. Geochem. Geophys. Geosyst. 22, e2021GC009845 (2021).

    Article  Google Scholar 

  167. Duke, G. I., Carlson, R. W., Frost, C. D., Hearn, B. C. Jr & Eby, G. N. Continent-scale linearity of kimberlite–carbonatite magmatism, mid-continent North America. Earth Planet. Sci. Lett. 403, 1–14 (2014).

    Article  Google Scholar 

  168. Kelley, S. P. & Wartho, J. A. Rapid kimberlite ascent and the significance of Ar–Ar ages in xenolith phlogopites. Science 289, 609–611 (2000).

    Article  Google Scholar 

  169. Bussweiler, Y. et al. The evolution of calcite-bearing kimberlites by melt-rock reaction: evidence from polymineralic inclusions within clinopyroxene and garnet megacrysts from Lac de Gras kimberlites, Canada. Contrib. Mineral. Petrol. 171, 1–25 (2016).

    Article  Google Scholar 

  170. Chepurov, A. I. et al. The stability of ortho- and clinopyroxenes, olivine, and garnet in kimberlitic magma. Russian Geol. Geophys. 54, 406–415 (2013).

    Article  Google Scholar 

  171. Hunter, R. H. & Taylor, L. A. Instability of garnet from the mantle: glass as evidence of metasomatic melting. Geology 10, 617–620 (1982).

    Article  Google Scholar 

  172. Clement, C. R., Harris, J. W., Robinson, D. N. & Hawthorne, J. B. in Mineral Deposits of Southern Africa (eds Anhaeusser, C. R. & Maske, S.) 2193–2214 (Geological Society of South Africa, 1986).

  173. Field, M., Stiefenhofer, J., Robey, J. & Kurszlaukis, S. Kimberlite-hosted diamond deposits of southern Africa: a review. Ore Geology Reviews 34, 33–75 (2008).

    Article  Google Scholar 

  174. Naidoo, P., Stiefenhofer, J., Field, M. & Dobbe, R. Recent advances in the geology of Koffiefontein mine, Free State province, South Africa. Lithos 76, 161–182 (2004).

    Article  Google Scholar 

  175. Scott Smith, B. H. Canadian kimberlites: geological characteristics relevant to emplacement. J. Volcanol. Geotherm. Res. 174, 9–19 (2008).

    Article  Google Scholar 

  176. Eggler, D. H., McCallum, M. E. & Smith, C. B. Megacryst assemblages in kimberlite from northern Colorado and southern Wyoming: petrology, geothermometry–barometry and areal distribution. In The Mantle Sample. Proceedings of the 2nd International Kimberlite Conference Vol. 2 (eds Boyd, F. R. & Meyer, H. O. A.) 213–226 (American Geophysical Union, 1979).

  177. Gurney, J. J., Jakob, W. R. O. & Dawson, J. B. Megacrysts from the Monastery kimberlite pipe, South Africa. In The Mantle Sample. Proceedings of the 2nd International Kimberlite Conference Vol. 2 (eds Boyd, F. R. & Meyer, H. O. A.) 227–243 (American Geophysical Union, 1979).

  178. Kopylova, M. G., Nowell, G. M., Pearson, D. G. & Markovic, G. Crystallization of megacrysts from protokimberlitic fluids: geochemical evidence from high-Cr megacrysts in the Jericho kimberlite. Lithos 112S, 284–295 (2009).

    Article  Google Scholar 

  179. Woodhead, J., Hergt, J., Giuliani, A., Phillips, D. & Maas, R. Tracking continental-scale modification of the Earth’s mantle using zircon megacrysts. Geochem. Perspect. Lett. 4, 1–6 (2017).

    Article  Google Scholar 

  180. Giuliani, A. et al. Oxide, sulphide and carbonate minerals in a mantle polymict breccia: metasomatism by proto-kimberlite magmas, and relationship to the kimberlite megacrystic suite. Chem. Geol. 353, 4–18 (2013).

    Article  Google Scholar 

  181. Giuliani, A. et al. Petrogenesis of mantle polymict breccias: insights into mantle processes coeval with kimberlite magmatism. J. Petrol. 55, 831–858 (2014).

    Article  Google Scholar 

  182. Lawless, P. J., Gurney, J. J. & Dawson, J. B. Polymict peridotites from the Bultfontein and de Beers mines, Kimberley, South Africa. In The Mantle Sample. Proceedings of the 2nd International Kimberlite Conference Vol. 2 (eds Boyd, F. R. & Meyer, H. O. A.) 145–155 (American Geophysical Union, 1979).

  183. Pokhilenko, N. P. Polymict breccia xenoliths: evidence for the complex character of kimberlite formation. Lithos 112S, 934–941 (2009).

    Article  Google Scholar 

  184. Zhang, H. F. et al. Recent fluid processes in the Kaapvaal craton, South Africa: coupled oxygen isotope and trace element disequilibrium in polymict peridotites. Earth Planet. Sci. Lett. 176, 57–72 (2000).

    Article  Google Scholar 

  185. Zhang, H. F., Menzies, M. A. & Mattey, D. Mixed mantle provenance: diverse garnet compositions in polymict peridotites, Kaapvaal craton, South Africa. Earth Planet. Sci. Lett. 216, 329–346 (2003).

    Article  Google Scholar 

  186. Aulbach, S., Viljoen, K. S. & Gerdes, A. Diamondiferous and barren eclogites and pyroxenites from the western Kaapvaal craton record subduction processes and mantle metasomatism, respectively. Lithos 368–369, 105588 (2020).

    Article  Google Scholar 

  187. Fitzpayne, A., Giuliani, A., Hergt, J., Woodhead, J. D. & Maas, R. Isotopic analyses of clinopyroxenes demonstrate the effects of kimberlite melt metasomatism upon the lithospheric mantle. Lithos 370–371, 105595 (2020).

    Article  Google Scholar 

  188. Heckel, C., Woodland, A. B., Linckens, J., Gibson, S. A. & Seitz, H.-M. Sheared peridotites from kimberley (Kaapvaal craton, RSA): record of multiple metasomatic events accompanied with deformation. J. Petrol. 63, egac096 (2022).

    Article  Google Scholar 

  189. Kargin, A. et al. Titanium-rich metasomatism in the lithospheric mantle beneath the Arkhangelsk diamond province, Russia: insights from ilmenite-bearing xenoliths and HP–HT reaction experiments. Contrib. Mineral. Petrol. 176, 101 (2021).

    Article  Google Scholar 

  190. Kargin, A. V., Sazonova, L. V., Nosova, A. A. & Tretyachenko, V. V. Composition of garnet and clinopyroxene in peridotite xenoliths from the Grib kimberlite pipe, Arkhangelsk diamond province, Russia: evidence for mantle metasomatism associated with kimberlite melts. Lithos 262, 442–455 (2016).

    Article  Google Scholar 

  191. Tappe, S. et al. Sheared peridotite and megacryst formation beneath the kaapvaal craton: a snapshot of tectonomagmatic processes across the lithosphere–asthenosphere transition. J. Petrol. 62, egab046 (2021).

    Article  Google Scholar 

  192. Dawson, J. B., Hill, P. & Kinny, P. Mineral chemistry of a zircon-bearing, composite, veined and metasomatised upper-mantle peridotite xenolith from kimberlite. Contrib. Mineral. Petrol. 140, 720–733 (2001).

    Article  Google Scholar 

  193. Fitzpayne, A. et al. Kimberlite-related metasomatism recorded in MARID and PIC mantle xenoliths. Mineral. Petrol. 112, 71–84 (2018).

    Article  Google Scholar 

  194. Giuliani, A. Insights into kimberlite petrogenesis and mantle metasomatism from a review of the compositional zoning of olivine in kimberlites worldwide. Lithos 312–313, 322–342 (2018).

    Article  Google Scholar 

  195. Sarkar, S., Giuliani, A., Ghosh, S. & Phillips, D. Petrogenesis of coeval lamproites and kimberlites from the Wajrakarur field, Southern India: new insights from olivine compositions. Lithos 406–407, 106524 (2021).

    Article  Google Scholar 

  196. Tovey, M. et al. The spatial and temporal evolution of primitive melt compositions within the Lac de Gras kimberlite field, Canada: source evolution vs lithospheric mantle assimilation. Lithos 392–393, 106142 (2021).

    Article  Google Scholar 

  197. Viljoen, A., Howarth, G. H., Giuliani, A., Fitzpayne, A. & Costin, G. Correlations between olivine composition and groundmass mineralogy in Sierra Leone kimberlites provide constraints on craton-specific melt–lithosphere interactions. Lithos 430–431, 106846 (2022).

    Article  Google Scholar 

  198. Lim, E., Giuliani, A., Phillips, D. & Goemann, K. Origin of complex zoning in olivine from diverse, diamondiferous kimberlites and tectonic settings: Ekati (Canada), Alto Paranaiba (Brazil) and Kaalvallei (South Africa). Mineral. Petrol. 112, 539–554 (2018).

    Article  Google Scholar 

  199. Howarth, G. H., Giuliani, A., Soltys, A. & Bussweiler, Y. Compositional variations in primitive kimberlite melts and entrained mantle cargo from a global survey of trace element compositions in kimberlite olivine. J. Petrol. 63, egac062 (2022).

    Article  Google Scholar 

  200. Xu, J.-Y. et al. Light oxygen isotopes in mantle-derived magmas reflect assimilation of sub-continental lithospheric mantle material. Nat. Commun. 12, 6295 (2021).

    Article  Google Scholar 

  201. Fitzpayne, A. et al. Major-, trace-element and Sr-Nd-Hf isotope geochemistry of diamondiferous dykes from Tonguma and Koidu, Sierra Leone: highly micaceous kimberlites formed by assimilation of metasomatised lithospheric mantle rocks. Chem. Geol. 630, 121475 (2023).

    Article  Google Scholar 

  202. Moussallam, Y., Morizet, Y. & Gaillard, F. H2O–CO2 solubility in low SiO2-melts and the unique mode of kimberlite degassing and emplacement. Earth Planet. Sci. Lett. 447, 151–160 (2016).

    Article  Google Scholar 

  203. Boyd, S. R. et al. Multiple growth events during diamond genesis: an integrated study of carbon and nitrogen isotopes and nitrogen aggregation state in coated stones. Earth Planet. Sci. Lett. 86, 341–353 (1987).

    Article  Google Scholar 

  204. Burgess, R., Layzelle, E., Turner, G. & Harris, J. W. Constraints on the age and halogen composition of mantle fluids in Siberian coated diamonds. Earth Planet. Sci. Lett. 197, 193–203 (2002).

    Article  Google Scholar 

  205. Timmerman, S. et al. U–Th/He systematics of fluid-rich ‘fibrous’ diamonds – evidence for pre- and syn-kimberlite eruption ages. Chem. Geol. 515, 22–36 (2019).

    Article  Google Scholar 

  206. Navon, O., Hutcheon, I. D., Rossman, G. R. & Wasserburg, G. J. Mantle-derived fluids in diamond micro-inclusions. Nature 335, 784–789 (1988).

    Article  Google Scholar 

  207. Schrauder, M. & Navon, O. Hydrous and carbonatitic mantle fluids in fibrous diamonds from Jwaneng, Botswana. Geochim. Cosmochim. Acta 58, 761–771 (1994).

    Article  Google Scholar 

  208. Weiss, Y., Czas, J. & Navon, O. Fluid inclusions in fibrous diamonds. Rev. Mineral. Geochem. 88, 475–532 (2022).

    Article  Google Scholar 

  209. Weiss, Y., Griffin, W. L. & Navon, O. Diamond-forming fluids in fibrous diamonds: the trace-element perspective. Earth Planet. Sci. Lett. 376, 110–125 (2013).

    Article  Google Scholar 

  210. Brooker, R. A., Kohn, S. C., Holloway, J. R. & McMillan, P. F. Structural controls on the solubility of CO2 in silicate melts: part I: bulk solubility data. Chem. Geol. 174, 225–239 (2001).

    Article  Google Scholar 

  211. Russell, J. K. et al. Kimberlite: Rapid ascent of lithospherically modified carbonatitic melts. In Proceedings of the 10th International Kimberlite Conference. (eds Pearson, D. et al.) https://doi.org/10.1007/978-81-322-1170-9_12 (Springer, 2013).

  212. Fedortchouk, Y., Chinn, I. L. & Kopylova, M. G. Three styles of diamond resorption in a single kimberlite: effects of volcanic degassing and assimilation. Geology 45, 871–874 (2017).

    Article  Google Scholar 

  213. Zhang, Z., Fedortchouk, Y., Hanley, J. J. & Kerr, M. Diamond resorption and immiscibility of C–O–H fluid in kimberlites: evidence from experiments in H2O–CO2–SiO2–MgO–CaO system at 1–3 GPa. Lithos 380–381, 105858 (2021).

    Article  Google Scholar 

  214. Moss, S., Russell, J. K., Brett, R. C. & Andrews, G. D. M. Spatial and temporal evolution of kimberlite magma at A154N, Diavik, Northwest Territories, Canada. Lithos 112, 541–552 (2009).

    Article  Google Scholar 

  215. Tovey, M., Giuliani, A., Phillips, D. & Moss, S. Controls on the explosive emplacement of diamondiferous kimberlites: new insights from hypabyssal and pyroclastic units in the Diavik mine, Canada. Lithos 360–361, 105410 (2020).

    Article  Google Scholar 

  216. Stachel, T. & Luth, R. W. Diamond formation — where, when and how? Lithos 220–223, 200–220 (2015).

    Article  Google Scholar 

  217. Smith, E. M. et al. Large gem diamonds from metallic liquid in Earth’s deep mantle. Science 354, 1403–1405 (2016).

    Article  Google Scholar 

  218. Dasgupta, R. & Hirschmann, M. A modified iterative sandwich method for determination of near-solidus partial melt compositions. II. Application to determination of near-solidus melt compositions of carbonated peridotite. Contrib. Mineral. Petrol. 154, 647–661 (2007).

    Article  Google Scholar 

  219. Dasgupta, R., Hirschmann, M. M. & Smith, N. D. Partial melting experiments of peridotite + CO2 at 3 GPa and genesis of alkalic ocean island basalts. J. Petrol. 48, 2093–2124 (2007).

    Article  Google Scholar 

  220. Dasgupta, R., Hirschmann, M. M., McDonough, W. F., Spiegelman, M. & Withers, A. C. Trace element partitioning between garnet lherzolite and carbonatite at 6.6 and 8.6 GPa with applications to the geochemistry of the mantle and of mantle-derived melts. Chem. Geol. 262, 57–77 (2009).

    Article  Google Scholar 

  221. Dasgupta, R. et al. Carbon-dioxide-rich silicate melt in the Earth’s upper mantle. Nature 493, 211 (2013).

    Article  Google Scholar 

  222. Pintér, Z. et al. Experimental investigation of the composition of incipient melts in upper mantle peridotites in the presence of CO2 and H2O. Lithos 396–397, 106224 (2021).

    Article  Google Scholar 

  223. Brey, G. P., Bulatov, V. K. & Girnis, A. V. Influence of water and fluorine on melting of carbonated peridotite at 6 and 10 GPa. Lithos 112S, 249–259 (2009).

    Article  Google Scholar 

  224. Torsvik, T. H., Steinberger, B., Ashwal, L. D., Doubrovine, P. V. & Trønnes, R. G. Earth evolution and dynamics — a tribute to Kevin Burke. Can. J. Earth Sci. 53, 1073–1087 (2016).

    Article  Google Scholar 

  225. Doubrovine, P. V., Steinberger, B. & Torsvik, T. H. A failure to reject: testing the correlation between large igneous provinces and deep mantle structures with EDF statistics. Geochem. Geophys. Geosyst. 17, 1130–1163 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank H. Grutter, P. Janney and Y. Weiss for providing data and/or images used in some of the figures. A.G. is funded by the Swiss National Foundation (Ambizione fellowship no. PZ00P2_180126/1). T.H.T. acknowledges financial support from the Research Council of Norway through its Centres of Excellence scheme, project number 332523 (PHAB).

Author information

Authors and Affiliations

Authors

Contributions

A.G. and T.H.T. researched data. A.G. wrote the article. M.W.S. contributed substantially to discussion of the contents. M.W.S., T.H.T. and Y.F. reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Andrea Giuliani.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Earth and Environment thanks V. Stagno, L. Porritt and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Adiabatic

In this context, it indicates the depth-dependent temperature variability of the mantle in the absence of thermal perturbations.

Buffer

A redox buffer such as the one based on equilibrium between quartz, fayalite and magnetite (QFM), or on metallic iron and iron oxide (or wüstite), is an assemblage of compounds that define oxygen fugacity as a function of temperature and pressure.

Deuteric

This term refers to the magmatic origin of a fluid. Deuteric fluids can be released during crystallization of a magma at shallow crustal conditions or during magma ascent. As fluids principally migrate upwards, these can affect the composition of previously crystallized overlying magmatic rocks.

Hypabyssal

Subvolcanic rock crystallized at shallow depth (less than a few kilometres) from a magma that did not reach the surface.

Incompatible trace elements

Elements occurring in very low amounts (parts per million or μg g−1 level) in the mantle, which become concentrated in the melt phase on partial melting.

Lamproites

Mantle-derived magmatic rocks highly enriched in mica and therefore K2O. The cratonic variety commonly hosts abundant olivine (hence called olivine lamproite) and is therefore rich in MgO and poor in SiO2 compared with lamproites associated with subduction zones.

Metasomatism

Process of enrichment mediated by melts or fluids.

Phenocrysts

Magmatic crystals with idiomorphic to subidiomorphic shape.

Plume

Solid-state upwelling commonly but not necessarily rooted at the core–mantle boundary.

Primary melts

Melts in equilibrium with their mantle source.

Redox freezing

Crystallization of a solid phase from a fluid or melt in response to changes in oxygen fugacity conditions.

Redox melting

Partial melting triggered by a change in oxidation fugacity conditions and, therefore, element speciation (for example, oxidation of carbon).

Solidus

Temperature at which melting begins for a given pressure and volatile content.

Ultramafic

Rock composition highly enriched in MgO (>20 wt%) and depleted in SiO2 (<40–45 wt%).

Xenocrysts

Nominally ‘foreign crystals’, that is, grains entrained from the wall rocks by an ascending magma.

Xenoliths

Nominally ‘foreign rocks’, that is, rock fragments entrained from the wall rocks by an ascending magma.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giuliani, A., Schmidt, M.W., Torsvik, T.H. et al. Genesis and evolution of kimberlites. Nat Rev Earth Environ 4, 738–753 (2023). https://doi.org/10.1038/s43017-023-00481-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43017-023-00481-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing