Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Environmental impacts of cotton and opportunities for improvement

Abstract

Cotton — supplying approximately a quarter of global textile fibres — has various environmental impacts, including water use, toxicity, eutrophication and greenhouse gas emissions. In this Review, we identify these impacts across multiple life cycle stages. Environmental impacts at the cultivation stage depend on levels of irrigation, pesticide and fertilizer applications. At the textile manufacturing stage, impacts depend on energy infrastructure and manufacturing technologies. At the use phase, impacts depend on consumer habits related to buying, washing, drying and ironing. Depending on the impact category and country, cotton cultivation, manufacturing or use can dominate such impacts. For example, the use phase dominates greenhouse gas emissions in countries with carbon-intensive energy grids. Use of alternative fibres has the potential to reduce these environmental impacts, particularly jute and flax, which have much lower water demands. Opportunities for farmers, manufacturers and consumers to improve the environmental sustainability of cotton textiles include, among others, improving water-use efficiency in agriculture, innovative recycling and laundering less frequently. Future cotton sustainability assessments are needed to fill data gaps related to developing and emerging countries, the number of uses of a cotton garment and further environmental impacts such as salinization, as well as socio-economic impacts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Global maps of cotton production, blue water use, pesticide use and nitrogen fertilizer use.
Fig. 2: Life cycle of cotton from cultivation to end of life.
Fig. 3: Environmental impacts of cotton textiles at different life cycle stages.
Fig. 4: Environmental impact comparison between cotton and alternatives.
Fig. 5: Opportunities for improvements for different stakeholders.

Similar content being viewed by others

References

  1. Baydar, G., Ciliz, N. & Mammadov, A. Life cycle assessment of cotton textile products in Turkey. Resour. Conserv. Recycl. 104, 213–223 (2015).

    Article  Google Scholar 

  2. OECD/FAO. Cotton. in OECD-FAO Agricultural Outlook 2022-2031, Paris https://doi.org/10.1787/f1b0b29c-en (OECD Press, 2022).

  3. USDA. Oilseeds: World Markets and Trade, Version 9 June 2023. https://apps.fas.usda.gov/psdonline/circulars/oilseeds.pdf (2023).

  4. Jabran, K. & Chauhan, B. S. Cotton Production (John Wiley & Sons Press, 2019).

  5. Radhakrishnan, S. Sustainable Cotton Production: Sustainable Fibres and Textiles (Elsevier Press, 2017).

  6. Steduto, P., Hsiao, T. C., Fereres, E. & Raes, D. Crop yield response to water. Vol. 66 (FAO Rome, 2012).

  7. Huang, B., Zhao, J., Geng, Y., Tian, Y. & Jiang, P. Energy-related GHG emissions of the textile industry in China. Resour. Conserv. Recycl. 119, 69–77 (2017).

    Article  Google Scholar 

  8. Niinimaki, K. et al. The environmental price of fast fashion. Nat. Rev. Earth Environ. 1, 189–200 (2020).

    Article  Google Scholar 

  9. Peters, G., Li, M. & Lenzen, M. The need to decelerate fast fashion in a hot climate — a global sustainability perspective on the garment industry. J. Clean. Prod. 295, 126390 (2021).

    Article  Google Scholar 

  10. FAO. FAOSTAT Food and Agriculture Data. Crops and Livestock Products. https://www.fao.org/faostat/en/#data/QCL (2023).

  11. USDA. Cotton: World Markets and Trade, Version 9, June 2023. https://apps.fas.usda.gov/psdonline/circulars/cotton.pdf (2023).

  12. Grogan, D., Frolking, S., Wisser, D., Prusevich, A. & Glidden, S. Global gridded crop harvested area, production, yield, and monthly physical area data circa 2015. Sci. Data 9, 15 (2022).

    Article  Google Scholar 

  13. Weinzettel, J. & Pfister, S. International trade of global scarce water use in agriculture: modeling on watershed level with monthly resolution. Ecol. Econ. 159, 301–311 (2019).

    Article  Google Scholar 

  14. Hamilton, H. A. et al. Trade and the role of non-food commodities for global eutrophication. Nat. Sustain. 1, 314–321 (2018).

    Article  Google Scholar 

  15. Mair, S., Druckman, A. & Jackson, T. Global inequities and emissions in Western European textiles and clothing consumption. J. Clean. Prod. 132, 57–69 (2016).

    Article  Google Scholar 

  16. Valodka, I., Snieška, V. & Mihi-Ramirez, A. Impact of the international trade on the EU clothing industry carbon emissions. Eng. Econ. 31, 314–322 (2020).

    Article  Google Scholar 

  17. Zhao, M. et al. Virtual carbon and water flows embodied in global fashion trade — a case study of denim products. J. Clean. Prod. 303, 127080 (2021).

    Article  Google Scholar 

  18. Mekonnen, M. M. & Hoekstra, A. Y. The green, blue and grey water footprint of crops and derived crop products. Hydrol. Earth Syst. Sci. 15, 1577–1600 (2011).

    Article  Google Scholar 

  19. Portmann, F. T., Siebert, S. & Döll, P. MIRCA2000 — global monthly irrigated and rainfed crop areas around the year 2000: a new high‐resolution data set for agricultural and hydrological modeling. Glob. Biogeochem. Cycle 24, GB1011 (2010).

    Article  Google Scholar 

  20. Mekonnen, M. M. & Hoekstra, A. Y. Sustainability of the blue water footprint of crops. Adv. Water Resour. 143, 103679 (2020).

    Article  Google Scholar 

  21. Gustafson, D. I. et al. Climate adaptation imperatives: global sustainability trends and eco-efficiency metrics in four major crops — canola, cotton, maize, and soybeans. Int. J. Agric. Sustain. 12, 146–163 (2014).

    Article  Google Scholar 

  22. Roth, G., Harris, G., Gillies, M., Montgomery, J. & Wigginton, D. Water-use efficiency and productivity trends in Australian irrigated cotton: a review. Crop Pasture Sci. 64, 1033–1048 (2013).

  23. Liu, S., Luo, G. & Wang, H. Temporal and spatial changes in crop water use efficiency in central Asia from 1960 to 2016. Sustainability 12, 572 (2020).

    Article  Google Scholar 

  24. Jans, Y., von Bloh, W., Schaphoff, S. & Müller, C. Global cotton production under climate change — implications for yield and water consumption. Hydrol. Earth Syst. Sci. 25, 2027–2044 (2021).

    Article  Google Scholar 

  25. Luo, Q., Bange, M., Johnston, D. & Braunack, M. Cotton crop water use and water use efficiency in a changing climate. Agric. Ecosyst. Environ. 202, 126–134 (2015).

    Article  Google Scholar 

  26. Yang, Y., Yang, Y., Han, S., Macadam, I. & Li Liu, D. Prediction of cotton yield and water demand under climate change and future adaptation measures. Agric. Water Manag. 144, 42–53 (2014).

    Article  Google Scholar 

  27. Bonetti, S., Sutanudjaja, E. H., Mabhaudhi, T., Slotow, R. & Dalin, C. Climate change impacts on water sustainability of South African crop production. Environ. Res. Lett. 17, 084017 (2022).

    Article  Google Scholar 

  28. Blanc, E., Caron, J., Fant, C. & Monier, E. Is current irrigation sustainable in the United States? An integrated assessment of climate change impact on water resources and irrigated crop yields. Earth Future 5, 877–892 (2017).

    Article  Google Scholar 

  29. Pesticide Action Network UK. Is Cotton Conquering its Chemical Addiction? A Review of Pesticide Use in Global Cotton Production. issuu.com https://issuu.com/pan-uk/docs/cottons_chemical_addiction_-_update?e=28041656/62705601 (2018).

  30. Maggi, F., Tang, F. H. M., la Cecilia, D. & McBratney, A. PEST-CHEMGRIDS, global gridded maps of the top 20 crop-specific pesticide application rates from 2015 to 2025. Sci. Data 6, 170 (2019).

    Article  Google Scholar 

  31. Coupe, R. H. & Capel, P. D. Trends in pesticide use on soybean, corn and cotton since the introduction of major genetically modified crops in the United States. Pest. Manage. Sci. 72, 1013–1022 (2016).

    Article  Google Scholar 

  32. Kouser, S., Spielman, D. J. & Qaim, M. Transgenic cotton and farmers′ health in Pakistan. PLoS ONE 14, 10 (2019).

    Article  Google Scholar 

  33. Qaim, M. & De Janvry, A. Bt cotton and pesticide use in Argentina: economic and environmental effects. Environ. Dev. Econ. 10, 179–200 (2005).

    Article  Google Scholar 

  34. Tang, F. H., Lenzen, M., McBratney, A. & Maggi, F. Risk of pesticide pollution at the global scale. Nat. Geosci. 14, 206–210 (2021).

    Article  Google Scholar 

  35. Tudi, M. et al. Agriculture development, pesticide application and its impact on the environment. Int. J. Environ. Res. Public Health 18, 1112 (2021).

    Article  Google Scholar 

  36. Maggi, F. & Tang, F. H. M. Estimated decline in global earthworm population size caused by pesticide residue in soil. Soil Security 5, 100014 (2021).

    Article  Google Scholar 

  37. Memon, Q. U. A. et al. Health problems from pesticide exposure and personal protective measures among women cotton workers in southern Pakistan. Sci. Total. Environ. 685, 659–666 (2019).

    Article  Google Scholar 

  38. Bakhsh, K. et al. Occupational hazards and health cost of women cotton pickers in Pakistani Punjab. BMC Public Health 16, 961 (2016).

    Article  Google Scholar 

  39. Jwaideh, M. A., Sutanudjaja, E. H. & Dalin, C. Global impacts of nitrogen and phosphorus fertiliser use for major crops on aquatic biodiversity. Int. J. Life Cycle Assess. 27, 1058–1080 (2022).

    Article  Google Scholar 

  40. Ludemann, C. I., Gruere, A., Heffer, P. & Dobermann, A. Global data on fertilizer use by crop and by country. Sci. Data 9, 501 (2022).

    Article  Google Scholar 

  41. Ma, L., Zhang, Y., Chen, S., Yu, L. & Zhu, Y. Environmental effects and their causes of agricultural production: evidence from the farming regions of China. Ecol. Indic. 144, 109549 (2022).

    Article  Google Scholar 

  42. Brackin, R., Buckley, S., Pirie, R. & Visser, F. Predicting nitrogen mineralisation in Australian irrigated cotton cropping systems. Soil Res. 57, 247–256 (2019).

    Article  Google Scholar 

  43. Harris, S. J. et al. Isotopic evidence for nitrate sources and controls on denitrification in groundwater beneath an irrigated agricultural district. Sci. Total Environ. 817, 152606 (2022).

    Article  Google Scholar 

  44. Kidron, G. J. & Zilberman, A. Low cotton yield is associated with micronutrient deficiency in West Africa. Agron. J. 111, 1977–1984 (2019).

    Article  Google Scholar 

  45. ISO. ISO 14044:2996. Environmental Management — Life Cycle Assessment — Requirements and Guidelines (2006).

  46. Kazan, H., Akgul, D. & Kerc, A. Life cycle assessment of cotton woven shirts and alternative manufacturing techniques. Clean. Technol. Environ. Policy 22, 849–864 (2020).

    Article  Google Scholar 

  47. Avadí, A. et al. Life cycle assessment of organic and conventional non-Bt cotton products from Mali. Int. J. Life Cycle Assess. 25, 678–697 (2020).

    Article  Google Scholar 

  48. Munasinghe, P., Druckman, A. & Dissanayake, D. G. K. A systematic review of the life cycle inventory of clothing. J. Clean. Prod. 320, 128852 (2021).

    Article  Google Scholar 

  49. Morita, A. M., Moore, C. C. S., Nogueira, A. R., Kulay, L. & Ravagnani, M. A. D. S. S. Assessment of potential alternatives for improving environmental trouser jeans manufacturing performance in Brazil. J. Clean. Prod. 247, 119156 (2020).

    Article  Google Scholar 

  50. Bartl, A. Textiles Production and End-of-Life Management Options 251–279 (Elsevier Press, 2020).

  51. Johnson, S., Echeverria, D., Venditti, R., Jameel, H. & Yao, Y. Supply chain of waste cotton recycling and reuse: a review. AATCC J. Res. 7, 19–31 (2020).

    Article  Google Scholar 

  52. Sandin, G., Roos, S., Spak, B., Zamani, B. & Peters, G. Environmental assessment of Swedish clothing consumption — six garments, sustainable futures. Mistra Future Fashion http://mistrafuturefashion.com/wp-content/uploads/2019/08/G.Sandin-Environmental-assessment-of-Swedish-clothing-consumption.MistraFutureFashionReport-2019.05.pdf (2019).

  53. Klint, E. & Peters, G. Sharing is caring — the importance of capital goods when assessing environmental impacts from private and shared laundry systems in Sweden. Int. J. Life Cycle Assess. 26, 1085–1099 (2021).

    Article  Google Scholar 

  54. Vos, R. The spatially explicit water footprint of blue jeans: spatial methods in action for sustainable consumer products and corporate management of water. Case Stud. Environ. 3, 1–14 (2019).

    Article  Google Scholar 

  55. Li, X., Ren, J., Wu, Z., Wu, X. & Ding, X. Development of a novel process-level water footprint assessment for textile production based on modularity. J. Clean. Prod. 291, 125884 (2021).

    Article  Google Scholar 

  56. Roos, S., Posner, S., Jönsson, C. & Peters, G. M. Is unbleached cotton better than bleached? Exploring the limits of life-cycle assessment in the textile sector. Cloth. Text. Res. J. 33, 231–247 (2015).

    Article  Google Scholar 

  57. Zhang, Y., Liu, X., Xiao, R. & Yuan, Z. Life cycle assessment of cotton T-shirts in China. Int. J. Life Cycle Assess. 20, 994–1004 (2015).

    Article  Google Scholar 

  58. Fidan, F. S., Aydogan, E. K. & Uzal, N. The impact of organic cotton use and consumer habits in the sustainability of jean production using the LCA approach. Environ. Sci. Pollut. Res. 30, 8853–8867 (2022).

    Article  Google Scholar 

  59. Qian, J., Qiu, Y., Ji, X., Yang, Y. & Wang, L. Ecotoxicological impact assessment of the production of cotton fabric. AATCC J. Res. 7, 23–32 (2020).

    Article  Google Scholar 

  60. Tun, T. & Harn-Wei, K. Integrated Policy Design Through Life Cycle Sustainability Assessment: A Case Study of Cotton Garments 303–330 (World Scientific Press, 2015).

  61. Schmutz, M., Hischier, R. & Som, C. Factors allowing users to influence the environmental performance of their T-shirt. Sustainability 13, 2498 (2021).

    Article  Google Scholar 

  62. van der Velden, N. M., Patel, M. K. & Vogtländer, J. G. LCA benchmarking study on textiles made of cotton, polyester, nylon, acryl, or elastane. Int. J. Life Cycle Assess. 19, 331–356 (2014).

    Article  Google Scholar 

  63. Moazzem, S., Daver, F., Crossin, E. & Wang, L. Assessing environmental impact of textile supply chain using life cycle assessment methodology. J. Text. Inst. 109, 1574–1585 (2018).

    Article  Google Scholar 

  64. Kooistra, K., Termorshuizen, A. J. & Pyburn, R. The Sustainability of Cotton: Consequences for Man and Environment (Science Shop Wageningen UR Press, 2006).

  65. Ecoinvent Centre. Ecoinvent Database (Version 3.6). [Cut-off System Model S]. Retrieved from Simapro Software Version 9.3.0.2 (2023).

  66. La Rosa, A. D. & Grammatikos, S. A. Comparative life cycle assessment of cotton and other natural fibers for textile applications. Fibers 7, 101 (2019).

    Article  Google Scholar 

  67. Astudillo, M. F., Thalwitz, G. & Vollrath, F. Life cycle assessment of Indian silk. J. Clean. Prod. 81, 158–167 (2014).

    Article  Google Scholar 

  68. Babu, K. Natural Textile Fibres: Animal and Silk Fibres (Elsevier Press, 2015).

  69. European Environment Agency. Plastic in Textiles : Towards a Circular Economy for Synthetic Textiles in Europe (Publications Office Press, 2021).

  70. Shen, L., Worrell, E. & Patel, M. K. Environmental impact assessment of man-made cellulose fibres. Resour. Conserv. Recycl. 55, 260–274 (2010).

    Article  Google Scholar 

  71. Guo, S., Li, X., Zhao, R. & Gong, Y. Comparison of life cycle assessment between lyocell fiber and viscose fiber in China. Int. J. Life Cycle Assess. 26, 1545–1555 (2021).

    Article  Google Scholar 

  72. Barnes, E. M. et al. Forty years of increasing cotton’s water productivity and why the trend will continue. Appl. Eng. Agric. 36, 457–478 (2020).

    Article  Google Scholar 

  73. Mitchell-McCallister, D., Cano, A. & West, C. Meta-analysis of crop water use efficiency by irrigation system in the Texas High Plains. Irrig. Sci. 38, 535–546 (2020).

    Article  Google Scholar 

  74. Himanshu, S. K. et al. Evaluation of growth-stage-based variable deficit irrigation strategies for cotton production in the Texas High Plains. Agric. Water Manag. 280, 108222 (2023).

    Article  Google Scholar 

  75. Bordovsky, J. P. Low-energy precision application (LEPA) irrigation: a forty-year review. Trans. ASABE 62, 1343–1353 (2019).

    Article  Google Scholar 

  76. Zong, R., Wang, Z., Zhang, J. & Li, W. The response of photosynthetic capacity and yield of cotton to various mulching practices under drip irrigation in Northwest China. Agric. Water Manag. 249, 106814 (2021).

    Article  Google Scholar 

  77. Li, N. et al. Optimal irrigation amount can increase cotton lint yield by improving canopy structure and microenvironment under non-film deep drip irrigation. J. Clean. Prod. 360, 132156 (2022).

    Article  Google Scholar 

  78. Cheng, M. et al. Water productivity and seed cotton yield in response to deficit irrigation: a global meta-analysis. Agric. Water Manag. 255, 107027 (2021).

    Article  Google Scholar 

  79. Chen, X. et al. Environmental impact assessment of water-saving irrigation systems across 60 irrigation construction projects in northern China. J. Clean. Prod. 245, 118883 (2020).

    Article  Google Scholar 

  80. Krishna, V. V. & Qaim, M. Bt cotton and sustainability of pesticide reductions in India. Agric. Sys. 107, 47–55 (2012).

    Article  Google Scholar 

  81. Kothari, K. et al. Potential genotype-based climate change adaptation strategies for sustaining cotton production in the Texas high plains: a simulation study. Field Crop. Res. 271, 108261 (2021).

    Article  Google Scholar 

  82. Kranthi, K. R. & Stone, G. D. Long-term impacts of Bt cotton in India. Nat. Plants 6, 188–196 (2020).

    Article  Google Scholar 

  83. Lu, Y., Wu, K., Jiang, Y., Guo, Y. & Desneux, N. Widespread adoption of Bt cotton and insecticide decrease promotes biocontrol services. Nature 487, 362–365 (2012).

    Article  Google Scholar 

  84. Wilson, L. et al. IPM in the transgenic era: a review of the challenges from emerging pests in Australian cotton systems. Crop. Pasture Sci. 64, 737–749 (2013).

    Article  Google Scholar 

  85. Chi, B., Zhang, D. & Dong, H. Control of cotton pests and diseases by intercropping: a review. J. Integr. Agric. 20, 3089–3100 (2021).

    Article  Google Scholar 

  86. Gagic, V., Holding, M., Venables, W. N., Hulthen, A. D. & Schellhorn, N. A. Better outcomes for pest pressure, insecticide use, and yield in less intensive agricultural landscapes. Proc. Natl Acad. Sci. USA 118, e2018100118 (2021).

    Article  Google Scholar 

  87. Hedayati, M., Brock, P. M., Nachimuthu, G. & Schwenke, G. Farm-level strategies to reduce the life cycle greenhouse gas emissions of cotton production: an Australian perspective. J. Clean. Prod. 212, 974–985 (2019).

    Article  Google Scholar 

  88. Nachimuthu, G. et al. A review of phosphorus nutrition in irrigated cotton farming systems of Australia. J. Cotton Res. 5, 6 (2022).

    Article  Google Scholar 

  89. Cothren, J. T. & Oosterhuis, D. Use of growth regulators in cotton production. in Physiology of Cotton 289–303 (Springer Dordrecht Press, 2010).

  90. Geng, J. et al. Synchronized relationships between nitrogen release of controlled release nitrogen fertilizers and nitrogen requirements of cotton. Field Crop. Res. 184, 9–16 (2015).

    Article  Google Scholar 

  91. Feng, W. et al. Split-nitrogen application increases nitrogen-use efficiency and yield of cotton. Nutr. Cycl. Agroecosyst. 125, 393–407 (2023).

    Article  Google Scholar 

  92. Scheer, C. et al. Improving nitrogen use efficiency in irrigated cotton production. Nutr. Cycl. Agroecosyst. 125, 95–106 (2023).

    Article  Google Scholar 

  93. Yu, J., Yin, X., Raper, T. B., Jagadamma, S. & Chi, D. Nitrogen consumption and productivity of cotton under sensor-based variable-rate nitrogen fertilization. Agron. J. 111, 3320–3328 (2019).

    Article  Google Scholar 

  94. Prananto, J. A., Minasny, B. & Weaver, T. Rapid and cost-effective nutrient content analysis of cotton leaves using near-infrared spectroscopy (NIRS). PeerJ 9, e11042 (2021).

    Article  Google Scholar 

  95. Altenbuchner, C., Vogel, S. & Larcher, M. Social, economic and environmental impacts of organic cotton production on the livelihood of smallholder farmers in Odisha, India. Renew. Agr. Food Syst. 33, 373–385 (2018).

    Article  Google Scholar 

  96. Imran, M. A. et al. Impact of climate smart agriculture (CSA) practices on cotton production and livelihood of farmers in Punjab, Pakistan. Sustainability 10, 2101 (2018).

    Article  Google Scholar 

  97. Antille, D. L., Bennett, J. M. & Jensen, T. A. Soil compaction and controlled traffic considerations in Australian cotton-farming systems. Crop. Pasture Sci. 67, 1–28 (2016).

    Article  Google Scholar 

  98. Grundy, P. R., Spargo, G. M., Yeates, S. J. & Bell, K. L. Improving subtropical cotton production by using late winter sowing to reduce climatic risk. Field Crop. Res. 274, 108308 (2021).

    Article  Google Scholar 

  99. Liu, Q., Niu, J., Wood, J. D. & Kang, S. Z. Spatial optimization of cropping pattern in the upper-middle reaches of the Heihe river basin, Northwest China. Agric. Water Manag. 264, 107479 (2022).

    Article  Google Scholar 

  100. Guo, X. X., Li, K. L., Liu, Y. Z., Zhuang, M. H. & Wang, C. Toward the economic-environmental sustainability of smallholder farming systems through judicious management strategies and optimized planting structures. Renew. Sustain. Energy Rev. 165, 112619 (2022).

    Article  Google Scholar 

  101. Moazzem, S., Crossin, E., Daver, F. & Wang, L. Assessing environmental impact reduction opportunities through life cycle assessment of apparel products. Sustain. Prod. Consump. 28, 663–674 (2021).

    Article  Google Scholar 

  102. Liu, Y. et al. Could the recycled yarns substitute for the virgin cotton yarns: a comparative LCA. Int. J. Life Cycle Assess. 25, 2050–2062 (2020).

    Article  Google Scholar 

  103. Sharma, A. K., Sharma, C., Mullick, S. C. & Kandpal, T. C. GHG mitigation potential of solar industrial process heating in producing cotton based textiles in India. J. Clean. Prod. 145, 74–84 (2017).

    Article  Google Scholar 

  104. Fidan, F., Aydoğan, E. & Uzal, N. An integrated life cycle assessment approach for denim fabric production using recycled cotton fibers and combined heat and power plant. J. Clean. Prod. 287, 125439 (2021).

    Article  Google Scholar 

  105. Zhang, L., Leung, M. Y., Boriskina, S. & Tao, X. Advancing life cycle sustainability of textiles through technological innovations. Nat. Sustain. 6, 243–253 (2023).

    Article  Google Scholar 

  106. Peila, R. et al. Washing off intensification of cotton and wool fabrics by ultrasounds. Ultrason. Sonochem. 23, 324–332 (2015).

    Article  Google Scholar 

  107. Pei, L., Luo, Y., Saleem, M. A. & Wang, J. Sustainable pilot scale reactive dyeing based on silicone oil for improving dye fixation and reducing discharges. J. Clean. Prod. 279, 123831 (2021).

    Article  Google Scholar 

  108. Atav, R., Yüksel, M. F., Dilden, D. B. & İzer, G. Colored cotton fabric production without dyeing within the sustainablity concept in textile. Ind. Crop. Prod. 187, 115419 (2022).

    Article  Google Scholar 

  109. Bechtold, T., Mahmud‐Ali, A. & Mussak, R. Anthocyanin dyes extracted from grape pomace for the purpose of textile dyeing. J. Sci. Food Agric. 87, 2589–2595 (2007).

    Article  Google Scholar 

  110. Tang, A. Y. & Kan, C. W. Non‐aqueous dyeing of cotton fibre with reactive dyes: a review. Color. Technol. 136, 214–223 (2020).

    Article  Google Scholar 

  111. Rai, S., Saremi, R., Sharma, S. & Minko, S. Environment-friendly nanocellulose-indigo dyeing of textiles. Green Chem. 23, 7937–7944 (2021).

    Article  Google Scholar 

  112. Hu, E., Shang, S., Tao, X., Jiang, S. & Chiu, K. L. Minimizing freshwater consumption in the wash-off step in textile reactive dyeing by catalytic ozonation with carbon aerogel hosted bimetallic catalyst. Polymers 10, 193 (2018).

    Article  Google Scholar 

  113. Rosa, J. M. et al. Application of continuous H2O2/UV advanced oxidative process as an option to reduce the consumption of inputs, costs and environmental impacts of textile effluents. J. Clean. Prod. 246, 119012 (2020).

    Article  Google Scholar 

  114. Ozturk, E. Improving water-use efficiency and environmental performances in an integrated woven-knitted fabric printing-dyeing textile mill. J. Clean. Prod. 379, 134805 (2022).

    Article  Google Scholar 

  115. Esteve-Turrillas, F. A. & de La Guardia, M. Environmental impact of recover cotton in textile industry. Resour. Conserv. Recycl. 116, 107–115 (2017).

    Article  Google Scholar 

  116. Lindström, K., Sjöblom, T., Persson, A. & Kadi, N. Improving mechanical textile recycling by lubricant pre-treatment to mitigate length loss of fibers. Sustainability 12, 8706 (2020).

    Article  Google Scholar 

  117. Yurtaslan, Ö., Altun Kurtoğlu, Ş. & Yılmaz, D. Closed-loop mechanical recycling opportunities in industrial cotton wastes. J. Nat. Fibers 19, 11802–11817 (2022).

    Article  Google Scholar 

  118. Islam, S. & Bhat, G. Environmentally-friendly thermal and acoustic insulation materials from recycled textiles. J. Environ. Manage. 251, 109536 (2019).

    Article  Google Scholar 

  119. Peters, G. M., Sandin, G. & Spak, B. R. Environmental prospects for mixed textile recycling in Sweden. ACS Sustain. Chem. Eng. 7, 11682–11690 (2019).

    Article  Google Scholar 

  120. Mölsä, K. M., Horn, S., Dahlbo, H. & Rissanen, M. Linear, reuse or recycling? An environmental comparison of different life cycle options for cotton roller towels. J. Clean. Prod. 374, 133976 (2022).

    Article  Google Scholar 

  121. Oelerich, J., Bijleveld, M., Bouwhuis, G. H. & Brinks, G. J. The life cycle assessment of cellulose pulp from waste cotton via the SaXcell™ process. IOP Conf. Ser. Mater. Sci. Eng. 254, 192012 (2017).

    Article  Google Scholar 

  122. Rosson, L. & Byrne, N. Comparative gate-to-gate life cycle assessment for the alkali and acid pre-treatment step in the chemical recycling of waste cotton. Sustainability 12, 8613 (2020).

    Article  Google Scholar 

  123. Ellen MacArthur Foundation. A New Textiles Economy: Redesigning Fashion’s Future (MacArthur Foundation, 2017).

  124. Ozdamar Ertekin, Z. & Atik, D. Sustainable markets: motivating factors, barriers, and remedies for mobilization of slow fashion. J. Macromarketing 35, 53–69 (2015).

    Article  Google Scholar 

  125. Shahmohammadi, S. et al. Quantifying drivers of variability in life cycle greenhouse gas emissions of consumer products — a case study on laundry washing in Europe. Int. J. Life Cycle Assess. 23, 1940–1949 (2018).

    Article  Google Scholar 

  126. Sohn, J., Nielsen, K. S., Birkved, M., Joanes, T. & Gwozdz, W. The environmental impacts of clothing: evidence from United States and three European countries. Sustain. Prod. Consump. 27, 2153–2164 (2021).

    Article  Google Scholar 

  127. McQueen, R. H., Batcheller, J. C., Moran, L. J., Zhang, H. & Hooper, P. M. Reducing laundering frequency to prolong the life of denim jeans. Int. J. Consum. Stud. 41, 36–45 (2017).

    Article  Google Scholar 

  128. Zamani, B., Sandin, G. & Peters, G. M. Life cycle assessment of clothing libraries: can collaborative consumption reduce the environmental impact of fast fashion? J. Clean. Prod. 162, 1368–1375 (2017).

    Article  Google Scholar 

  129. Laitala, K., Klepp, I. G., Kettlewell, R. & Wiedemann, S. Laundry care regimes: do the practices of keeping clothes clean have different environmental impacts based on the fibre content? Sustainability 12, 7537 (2020).

    Article  Google Scholar 

  130. Steinberger, J. K., Friot, D., Jolliet, O. & Erkman, S. A spatially explicit life cycle inventory of the global textile chain. Int. J. Life Cycle Assess. 14, 443–455 (2009).

    Article  Google Scholar 

  131. Luo, Y., Song, K., Ding, X. & Wu, X. Environmental sustainability of textiles and apparel: a review of evaluation methods. Environ. Impact Assess. Rev. 86, 106497 (2021).

    Article  Google Scholar 

  132. Liang, J. & Shi, W. Cotton/halophytes intercropping decreases salt accumulation and improves soil physicochemical properties and crop productivity in saline-alkali soils under mulched drip irrigation: a three-year field experiment. Field. Crop. Res. 262, 108027 (2021).

    Article  Google Scholar 

  133. Roos, S., Zamani, B., Sandin, G., Peters, G. M. & Svanström, M. A life cycle assessment (LCA)-based approach to guiding an industry sector towards sustainability: the case of the Swedish apparel sector. J. Clean. Prod. 133, 691–700 (2016).

    Article  Google Scholar 

  134. Zamani, B., Sandin, G., Svanström, M. & Peters, G. M. Hotspot identification in the clothing industry using social life cycle assessment — opportunities and challenges of input-output modelling. Int. J. Life Cycle Assess. 23, 536–546 (2018).

    Article  Google Scholar 

  135. Costa, D., Quinteiro, P. & Dias, A. C. A systematic review of life cycle sustainability assessment: current state, methodological challenges, and implementation issues. Sci. Total. Environ. 686, 774–787 (2019).

    Article  Google Scholar 

  136. Mueller, N. D. et al. Closing yield gaps through nutrient and water management. Nature 490, 254–257 (2012).

    Article  Google Scholar 

  137. Cherrett, N., Barrett, J., Clemett, A., Chadwick, M., Chadwick, M. J. Ecological Footprint and Water Analysis of Cotton Hemp and Polyester (Stockholm Environment Institute, 2005).

  138. Muthu, S. S., Li, Y., Hu, J. & Mok, P. Y. Quantification of environmental impact and ecological sustainability for textile fibres. Ecol. Indic. 13, 66–74 (2012).

    Article  Google Scholar 

  139. Pré Sustainability. Simapro Database Manual: Methods library. Pré Sustainability: Amersfoort, the Netherlands (2020).

Download references

Acknowledgements

Z.W. and Z.Z. are supported by the National Key R&D Program of China (grant number 2022YFE0125700). J.H. is supported by the National Key R&D Program of China (grant number 2022YFD2300600). L.S. is supported by the European Union’s Horizon 2020 research and innovation programme (grant number 101003880) and European Union’s Horizon Europe research and innovation programme (grant number 101059379).

Author information

Authors and Affiliations

Authors

Contributions

L.S. conceived the idea for the work. L.S. and Z.Z. prepared the visualizations. All authors contributed to the writing of the article. L.S. coordinated and supervised the work.

Corresponding authors

Correspondence to Jing Huang or Zhanbiao Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Earth & Environment thanks Yubing Fan, Minna Halme, Helena Dahlbo and Srinivasulu Ale for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Huang, J., Yao, Y. et al. Environmental impacts of cotton and opportunities for improvement. Nat Rev Earth Environ 4, 703–715 (2023). https://doi.org/10.1038/s43017-023-00476-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43017-023-00476-z

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene