Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Global river water quality under climate change and hydroclimatic extremes

Abstract

Climate change and extreme weather events (such as droughts, heatwaves, rainstorms and floods) pose serious challenges for water management, in terms of both water resources availability and water quality. However, the responses and mechanisms of river water quality under more frequent and intense hydroclimatic extremes are not well understood. In this Review, we assess the impacts of hydroclimatic extremes and multidecadal climate change on a wide range of water quality constituents to identify the key responses and driving mechanisms. Comparison of 965 case studies indicates that river water quality generally deteriorates under droughts and heatwaves (68% of compiled cases), rainstorms and floods (51%) and under long-term climate change (56%). Also improvements or mixed responses are reported owing to counteracting mechanisms, for example, increased pollutant mobilization versus dilution during flood events. River water quality responses under multidecadal climate change are driven by hydrological alterations, rises in water and soil temperatures and interactions among hydroclimatic, land use and human drivers. These complex interactions synergistically influence the sources, transport and transformation of all water quality constituents. Future research must target tools, techniques and models that support the design of robust water quality management strategies, in a world that is facing more frequent and severe hydroclimatic extremes.

Key points

  • River water quality is generally deteriorating under droughts and heatwaves (68% of case studies), rainstorms and floods (51%) and multidecadal historical and future climate change (56%), although improvements and mixed responses are also reported.

  • Droughts and heatwaves result in lower dissolved oxygen and increased river temperature, algae, salinity and concentrations of pollutants (such as pharmaceuticals) from point sources owing to lower dilution. By contrast, low flow during these events leads to reduced pollutant transport from agricultural and urban surface runoff, contributing to lower concentrations.

  • Rainstorms and floods generally increase the mobilization of plastics, suspended solids, absorbed metals, nutrients and other pollutants from agricultural and urban runoff, although high flow can dilute concentrations for salinity and other dissolved pollutants. The sequence of extreme events (such as droughts followed by floods) also impacts the magnitude and drivers of river water quality responses.

  • Multidecadal climate change is causing water temperatures and algae to generally increase, partly causing a general decrease in dissolved oxygen concentrations. Nutrient and pharmaceutical concentrations are mostly increasing under climate change, whereas biochemical oxygen demand, salinity, suspended sediment, metals and microorganisms show a mixture of increasing and decreasing trends.

  • The main driving mechanisms for multidecadal water quality changes in response to climate change include hydrological alterations, rises in water and soil temperatures and interactions of hydroclimatic drivers with land use. These impacts are compounded with other human-induced drivers.

  • Our findings stress the need to improve understanding of the complex hydroclimatic–geographic–human driver feedbacks; water quality constituent fate, transport, interactions and thresholds; and to develop technologies and water quality frameworks that support the design of robust water quality management strategies under increasing hydroclimatic extremes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Hydroclimatic drivers, geographic factors and human activities impacting river water quality.
Fig. 2: Responses and mechanisms impacting river water quality.
Fig. 3: Examples of water quality responses during drought, heatwave and flood events.
Fig. 4: Multidecadal water quality responses under climate change.

Similar content being viewed by others

Data availability

Details on the literature review and reports for each water quality constituent (group) are given in Supplementary Notes 1–12. The Supplementary Data file includes a spreadsheet with collected meta-data of all literature case studies in the compilation. River water quality monitoring data for Fig. 3 were retrieved from the USGS Water-Quality Data for the Nation database (https://waterdata.usgs.gov/nwis/qw) and Rijkswaterstaat Dutch Ministry of Infrastructure and Water database (https://waterinfo.rws.nl/#!/nav/expert/).

References

  1. Johnson, D. L. et al. Meanings of environmental terms. J. Environ. Qual. 26, 581–589 (1997).

    Article  Google Scholar 

  2. Boyd, C. E. Water quality: an introduction. Water Quality: An Introduction 1–357 (Springer, 2015); https://doi.org/10.1007/978-3-319-17446-4.

  3. van Vliet, M. T. H., Flörke, M. & Wada, Y. Quality matters for water scarcity. Nat. Geosci. 10, 800–802 (2017).

    Article  Google Scholar 

  4. Ma, T. et al. Pollution exacerbates China’s water scarcity and its regional inequality. Nat. Commun. 11, 650 (2020).

    Article  Google Scholar 

  5. van Vliet, M. T. H. et al. Global water scarcity including surface water quality and expansions of clean water technologies. Environ. Res. Lett. 16, 24020 (2021).

    Article  Google Scholar 

  6. Whitehead, P. G., Wilby, R. L., Battarbee, R. W., Kernan, M. & Wade, A. J. A review of the potential impacts of climate change on surface water quality. Hydrol. Sci. J.-J. Des. Sci. Hydrol. 54, 101–123 (2009).

    Article  Google Scholar 

  7. Hrdinka, T., Novický, O., Hanslík, E. & Rieder, M. Possible impacts of floods and droughts on water quality. J. Hydro-Environ. Res. 6, 145–150 (2012).

    Article  Google Scholar 

  8. Beusen, A. H. W., Bouwman, A. F., Van Beek, L. P. H., Mogollón, J. M. & Middelburg, J. J. Global riverine N and P transport to ocean increased during the twentieth century despite increased retention along the aquatic continuum. Biogeosciences 13, 2441–2451 (2016).

    Article  Google Scholar 

  9. Thorslund, J., Bierkens, M. F. P., Oude Essink, G. H. P., Sutanudjaja, E. H. & van Vliet, M. T. H. Common irrigation drivers of freshwater salinisation in river basins worldwide. Nat. Commun. 12, 4232 (2021).

    Article  Google Scholar 

  10. Strokal, M. et al. Global multi-pollutant modelling of water quality: scientific challenges and future directions. Curr. Opin. Environ. Sustain. 36, 116–125 (2019).

    Article  Google Scholar 

  11. Jones, E. R. et al. Current wastewater treatment targets are insufficient to protect surface water quality. Commun. Earth Environ. 3, 221 (2022).

    Article  Google Scholar 

  12. UNEP. A Snapshot of the World’s Water Quality — Towards a Global Assessment (United Nations Environment Programme, 2016).

  13. Kaushal, S. S. et al. Five state factors control progressive stages of freshwater salinization syndrome. Limnol. Oceanogr. Lett. https://doi.org/10.1002/LOL2.10248 (2022).

  14. Bouwman, A. F. et al. Lessons from temporal and spatial patterns in global use of N and P fertilizer on cropland. Sci. Rep. 7, 40366 (2017).

    Article  Google Scholar 

  15. Jones, E. R. et al. DynQual v1.0: a high-resolution global surface water quality model. Geosci. Model Dev. 16, 4481–4500 (2023).

    Article  Google Scholar 

  16. Gervasio, M. P., Soana, E., Granata, T., Colombo, D. & Castaldelli, G. An unexpected negative feedback between climate change and eutrophication: higher temperatures increase denitrification and buffer nitrogen loads in the Po River (Northern Italy). Environ. Res. Lett. 17, 84031 (2022).

    Article  Google Scholar 

  17. Paerl, H. W. & Huisman, J. Climate: blooms like it hot. Science 320, 57–58 (2008).

    Article  Google Scholar 

  18. Conley, D. J. et al. Controlling eutrophication: phosphorus and nitrogen. Science 323, 1014–1015 (2009).

    Article  Google Scholar 

  19. Cox, B. A. & Whitehead, P. G. Impacts of climate change scenarios on dissolved oxygen in the river Thames, UK. Hydrol. Res. 40, 138–152 (2009).

    Article  Google Scholar 

  20. Ficklin, D. L., Stewart, I. T. & Maurer, E. P. Effects of climate change on stream temperature, dissolved oxygen, and sediment concentration in the Sierra Nevada in California. Water Resour. Res. 49, 2765–2782 (2013).

    Article  Google Scholar 

  21. Diamantini, E. et al. Driver detection of water quality trends in three large European river basins. Sci. Total. Environ. 612, 49–62 (2018).

    Article  Google Scholar 

  22. Chapra, S. C., Camacho, L. A. & McBride, G. B. Impact of global warming on dissolved oxygen and bod assimilative capacity of the world’s rivers: modeling analysis. Water (Switzerland) 13, 2408 (2021).

    Article  Google Scholar 

  23. Sjerps, R. M. A., ter Laak, T. L. & Zwolsman, G. J. J. G. Projected impact of climate change and chemical emissions on the water quality of the European rivers Rhine and Meuse: a drinking water perspective. Sci. Total Environ. 601–602, 1682–1694 (2017).

    Article  Google Scholar 

  24. Wolff, E. & van Vliet, M. T. H. Impact of the 2018 drought on pharmaceutical concentrations and general water quality of the Rhine and Meuse rivers. Sci. Total Environ. 778, 146182 (2021).

    Article  Google Scholar 

  25. Hofstra, N. Quantifying the impact of climate change on enteric waterborne pathogen concentrations in surface water. Environ. Sustain. 3, 471–479 (2011).

    Google Scholar 

  26. Hunter, P. R. Climate change and waterborne and vector-borne disease. J. Appl. Microbiol. 94, 37S–46S (2003).

    Article  Google Scholar 

  27. DeVilbiss, S. E., Steele, M. K., Krometis, L. A. H. & Badgley, B. D. Freshwater salinization increases survival of Escherichia coli and risk of bacterial impairment. Water Res. 191, 116812 (2021).

    Article  Google Scholar 

  28. Leyden, E., Farkas, J., Hutson, J. & Mosley, L. M. Short-term seawater inundation induces metal mobilisation in freshwater and acid sulfate soil environments. Chemosphere 299, 134383 (2022).

    Article  Google Scholar 

  29. Zhang, Y. et al. How climate change and eutrophication interact with microplastic pollution and sediment resuspension in shallow lakes: a review. Sci. Total Environ. 705, 135979 (2020).

    Article  Google Scholar 

  30. Naqash, N., Prakash, S., Kapoor, D. & Singh, R. Interaction of freshwater microplastics with biota and heavy metals: a review. Environ. Chem. Lett. 18, 1813–1824 (2020).

    Article  Google Scholar 

  31. Mei, W. et al. Interactions between microplastics and organic compounds in aquatic environments: a mini review. Sci. Total Environ. 736, 139472 (2020).

    Article  Google Scholar 

  32. Wang, Y. et al. Interaction of microplastics with antibiotics in aquatic environment: distribution, adsorption, and toxicity. Environ. Sci. Technol. 55, 15579–15595 (2021).

    Article  Google Scholar 

  33. Caretta, M. A. et al. Water. in Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. https://doi.org/10.1017/9781009325844.006.552 (2022).

  34. Prudhomme, C. et al. Hydrological droughts in the 21st century, hotspots and uncertainties from a global multimodel ensemble experiment. Proc. Natl Acad. Sci. USA 111, 3262–3267 (2014).

    Article  Google Scholar 

  35. Trenberth, K. E. et al. Global warming and changes in drought. Nat. Clim. Change 4, 17–22 (2014).

    Article  Google Scholar 

  36. Christidis, N., Jones, G. S. & Stott, P. A. Dramatically increasing chance of extremely hot summers since the 2003 European heatwave. Nat. Clim. Change 5, 46–50 (2015).

    Article  Google Scholar 

  37. Perkins-Kirkpatrick, S. E. & Lewis, S. C. Increasing trends in regional heatwaves. Nat. Commun. 11, 3357 (2020).

    Article  Google Scholar 

  38. Ye, L., Shi, K., Xin, Z., Wang, C. & Zhang, C. Compound droughts and heat waves in china. Sustainability 11, 3270 (2019).

    Article  Google Scholar 

  39. Dankers, R. & Feyen, L. Flood hazard in Europe in an ensemble of regional climate scenarios. J. Geophys. Res. https://doi.org/10.1029/2008JD011523 (2009).

  40. Tabari, H. Climate change impact on flood and extreme precipitation increases with water availability. Sci. Rep. 10, 13768 (2020).

    Article  Google Scholar 

  41. Blöschl, G. et al. Changing climate both increases and decreases European river floods. Nature 573, 108–111 (2019).

    Article  Google Scholar 

  42. Mosley, L. M. Drought impacts on the water quality of freshwater systems; review and integration. Earth-Sci. Rev. 140, 203–214 (2015).

    Article  Google Scholar 

  43. Murdoch, P. S., Baron, J. S. & Miller, T. L. Potential effects of climate chance on surface-water quality in North America. J. Am. Water Resour. Assoc. 36, 347–366 (2000).

    Article  Google Scholar 

  44. Mishra, A., Alnahit, A. & Campbell, B. Impact of land uses, drought, flood, wildfire, and cascading events on water quality and microbial communities: a review and analysis. J. Hydrol. 596, 125707 (2021).

    Article  Google Scholar 

  45. Wada, Y., van Beek, L. P. H., Wanders, N. & Bierkens, M. F. P. Human water consumption intensifies hydrological drought worldwide. Environ. Res. Lett. 8, 34036 (2013).

    Article  Google Scholar 

  46. Gu, L. et al. Intensification of global hydrological droughts under anthropogenic climate warming. Water Resour. Res. 59, e2022WR032997 (2023).

    Article  Google Scholar 

  47. Fischer, E. M. & Schär, C. Consistent geographical patterns of changes in high-impact European heatwaves. Nat. Geosci. 3, 398–403 (2010).

    Article  Google Scholar 

  48. Arias, P.A. et al in Climate Change 2021: The Physical Science Basis (eds. Masson-Delmotte, V. et al.) 33−144 (Cambridge Univ. Press, 2021).

  49. Tassone, S. J. et al. Increasing heatwave frequency in streams and rivers of the United States. Limnol. Oceanogr. Lett. 8, 295–304 (2022).

    Article  Google Scholar 

  50. Woolway, R. I. et al. Lake heatwaves under climate change. Nature 589, 402–407 (2021).

    Article  Google Scholar 

  51. van Vliet, M. T. H. & Zwolsman, J. J. G. Impact of summer droughts on the water quality of the Meuse river. J. Hydrol. 353, 1–17 (2008).

    Article  Google Scholar 

  52. Hellwig, J., Stahl, K. & Lange, J. Patterns in the linkage of water quantity and quality during low-flows. Hydrol. Process. 31, 4195–4205 (2017).

    Article  Google Scholar 

  53. Jones, E. & van Vliet, M. T. H. Drought impacts on river salinity in the southern US: implications for water scarcity. Sci. Total Environ. 644, 844–853 (2018).

    Article  Google Scholar 

  54. Anderson, T. T. et al. Catchment-scale groundwater-flow and recharge paradox revealed from base flow analysis during the Australian Millennium Drought (Mt Lofty Ranges, South Australia). Hydrogeol. J. 29, 963–983 (2021).

    Article  Google Scholar 

  55. Abdullah, A. D. et al. Predicting the salt water intrusion in the Shatt al-Arab estuary using an analytical approach. Hydrol. Earth Syst. Sci. 20, 4031–4042 (2016).

    Article  Google Scholar 

  56. Garcés-Vargas, J. et al. Tidally forced saltwater intrusions might impact the quality of drinking water, the Valdivia River (40° S), Chile Estuary Case. Water 12, 1 (2020).

    Article  Google Scholar 

  57. Thorslund, J., Bierkens, M. F. P., Scaini, A., Sutanudjaja, E. H. & van Vliet, M. T. H. Salinity impacts on irrigation water-scarcity in food bowl regions of the US and Australia. Environ. Res. Lett. 17, 84002 (2022).

    Article  Google Scholar 

  58. Méndez-Freire, V., Villaseñor, T. & Mellado, C. Spatial and temporal changes in suspended sediment fluxes in Central Chile induced by the mega drought: the case of the Itata River Basin (36°–37°S). J. South Am. Earth Sci. https://doi.org/10.1016/j/jsames.2022/103930 (2022).

  59. Mosley, L. M. et al. The impact of extreme low flows on the water quality of the Lower Murray River and lakes (South Australia). Water Resour. Manag. 26, 3923–3946 (2012).

    Article  Google Scholar 

  60. Murphy, S. F., McCleskey, R. B., Martin, D. A., Writer, J. H. & Ebel, B. A. Fire, flood, and drought: extreme climate events alter flow paths and stream chemistry. J. Geophys. Res. Biogeosci. 123, 2513–2526 (2018).

    Article  Google Scholar 

  61. Scanlon, B. R., Fakhreddine, S., Reedy, R. C., Yang, Q. & Malito, J. G. Drivers of spatiotemporal variability in drinking water quality in the United States. Environ. Sci. Technol. 2022, 12965–12974 (2022).

    Article  Google Scholar 

  62. Rozemeijer, J. et al. Climate variability effects on eutrophication of groundwater, lakes, rivers, and coastal waters in the Netherlands. Sci. Total Environ. 771, 145366 (2021).

    Article  Google Scholar 

  63. Yu, L. et al. Groundwater impacts on surface water quality and nutrient loads in lowland polder catchments: monitoring the greater Amsterdam area. Hydrol. Earth Syst. Sci. 22, 487–508 (2018).

    Article  Google Scholar 

  64. Zhou, X. et al. Exploring the relations between sequential droughts and stream nitrogen dynamics in central Germany through catchment-scale mechanistic modelling. J. Hydrol. 614, 128615 (2022).

    Article  Google Scholar 

  65. Huisman, J. et al. Cyanobacterial blooms. Nat. Rev. Microbiol. 16, 471–483 (2018).

    Article  Google Scholar 

  66. Cox, B. A. A review of dissolved oxygen modelling techniques for lowland rivers. Sci. Total Environ. 314–316, 303–334 (2003).

    Article  Google Scholar 

  67. Paerl, H. W. Mitigating harmful cyanobacterial blooms in a human- and climatically-impacted world. Life 4, 988–1012 (2014).

    Article  Google Scholar 

  68. Chen, Y. J., Nicholson, E. & Cheng, S. T. Using machine learning to understand the implications of meteorological conditions for fish kills. Sci. Rep. 10, 17003 (2020).

    Article  Google Scholar 

  69. Mosley, L. M., Wallace, T., Rahman, J., Roberts, T. & Gibbs, M. An integrated model to predict and prevent hypoxia in floodplain-river systems. J. Environ. Manage. 286, 112213 (2021).

    Article  Google Scholar 

  70. Koehn, J. D. & Koehn, J. D. Key steps to improve the assessment, evaluation and management of fish kills: lessons from the Murray–Darling river system, Australia. Mar. Freshw. Res. 73, 269–281 (2021).

    Article  Google Scholar 

  71. Cheng, B. et al. Characterization and causes analysis for algae blooms in large river system. Sustain. Cities Soc. 51, 101707 (2019).

    Article  Google Scholar 

  72. Xia, R. et al. River algal blooms are well predicted by antecedent environmental conditions. Water Res. 185, 116221 (2020).

    Article  Google Scholar 

  73. Yang, N. et al. Dam-induced flow velocity decrease leads to the transition from heterotrophic to autotrophic system through modifying microbial food web dynamics. Environ. Res. 212, 113568 (2022).

    Article  Google Scholar 

  74. Lürling, M., Eshetu, F., Faassen, E. J., Kosten, S. & Huszar, V. L. M. Comparison of cyanobacterial and green algal growth rates at different temperatures. Freshw. Biol. 58, 552–559 (2013).

    Article  Google Scholar 

  75. Hallegraeff, G. M. et al. Perceived global increase in algal blooms is attributable to intensified monitoring and emerging bloom impacts. Commun. Earth Environ. 2, 1–10 (2021).

    Article  Google Scholar 

  76. Johnk, K. D. et al. Summer heatwaves promote blooms of harmful cyanobacteria. Glob. Change Biol. 14, 495–512 (2008).

    Article  Google Scholar 

  77. Whitworth, K. L. & Baldwin, D. S. Improving our capacity to manage hypoxic blackwater events in lowland rivers: the Blackwater Risk Assessment Tool. Ecol. Modell. 320, 292–298 (2016).

    Article  Google Scholar 

  78. Veraart, A. J., de Klein, J. J. M. & Scheffer, M. Warming can boost denitrification disproportionately due to altered oxygen dynamics. PLoS ONE 6, e18508 (2011).

    Article  Google Scholar 

  79. Hirabayashi, Y., Kanae, S., Emori, S., Oki, T. & Kimoto, M. Global projections of changing risks of floods and droughts in a changing climate. Hydrol. Sci. J.-J. Des. Sci. Hydrol. 53, 754–772 (2008).

    Article  Google Scholar 

  80. Breinl, K., Di Baldassarre, G., Mazzoleni, M., Lun, D. & Vico, G. Extreme dry and wet spells face changes in their duration. Environ. Res. Lett. 15, ab7d05 (2020).

    Article  Google Scholar 

  81. Blöschl, G. Three hypotheses on changing river flood hazards. Hydrol. Earth Syst. Sci. 26, 5015–5033 (2022).

    Article  Google Scholar 

  82. Carroll, R. W. H., Warwick, J. J., James, A. I. & Miller, J. R. Modeling erosion and overbank deposition during extreme flood conditions on the Carson River, Nevada. J. Hydrol. 297, 1–21 (2004).

    Article  Google Scholar 

  83. Dennis, I. A., Macklin, M. G., Coulthard, T. J. & Brewer, P. A. The impact of the October–November 2000 floods on contaminant metal dispersal in the River Swale catchment, North Yorkshire, UK. Hydrol. Process. 17, 1641–1657 (2003).

    Article  Google Scholar 

  84. Milačič, R., Zuliani, T., Vidmar, J., Oprčkal, P. & Ščančar, J. Potentially toxic elements in water and sediments of the Sava River under extreme flow events. Sci. Total Environ. 605–606, 894–905 (2017).

    Article  Google Scholar 

  85. Nábělková, J., Šťastná, G. & Komínková, D. Flood impact on water quality of small urban streams. Water Sci. Technol. 52, 267–274 (2005).

    Article  Google Scholar 

  86. Saha, A. et al. Impacts of a massive flood event on the physico-chemistry and water quality of River Pampa in Western Ghats of India. Int. J. Environ. Anal. Chem. 102, 7969–7987 (2020).

    Article  Google Scholar 

  87. van Emmerik, T. et al. Hydrology as a driver of floating river plastic transport. Earth’s Future 10, e2022EF002811 (2022).

    Article  Google Scholar 

  88. Roebroek, C. T. J. et al. Plastic in global rivers: are floods making it worse? Environ. Res. Lett. 16, 25003 (2021).

    Article  Google Scholar 

  89. Scircle, A., Cizdziel, J. V., Missling, K., Li, L. & Vianello, A. Single-pot method for the collection and preparation of natural water for microplastic analyses: microplastics in the Mississippi River System during and after historic flooding. Environ. Toxicol. Chem. 39, 986–995 (2020).

    Article  Google Scholar 

  90. Eppehimer, D. E. et al. Impacts of baseflow and flooding on microplastic pollution in an effluent-dependent arid land river in the USA. Environ. Sci. Pollut. Res. Int. 28, 45375–45389 (2021).

    Article  Google Scholar 

  91. Costa, I. Dda et al. Is the Paraíba do Sul river colourful? Prevalence of microplastics in freshwater, south-eastern Brazil. Mar. Freshw. Res. 73, 1439–1449 (2022).

    Article  Google Scholar 

  92. Constant, M. et al. Microplastic fluxes in a large and a small Mediterranean river catchments: the Têt and the Rhône, Northwestern Mediterranean Sea. Sci. Total Environ. 716, 136984 (2020).

    Article  Google Scholar 

  93. de Carvalho, A. R., Riem-Galliano, L., ter Halle, A. & Cucherousset, J. Interactive effect of urbanization and flood in modulating microplastic pollution in rivers. Environ. Pollut. https://doi.org/10.2139/ssrn.4045864 (2022).

  94. Treilles, R. et al. Microplastic and microfiber fluxes in the Seine River: flood events versus dry periods. Sci. Total Environ. 805, 150123 (2022).

    Article  Google Scholar 

  95. Zhdanov, I. et al. Assessment of seasonal variability of input of microplastics from the Northern Dvina river to the Arctic Ocean. Mar. Pollut. Bull. 175, 113370 (2022).

    Article  Google Scholar 

  96. Xu, D., Gao, B., Wan, X., Peng, W. & Zhang, B. Influence of catastrophic flood on microplastics organization in surface water of the Three Gorges Reservoir, China. Water Res. 211, 118018 (2022).

    Article  Google Scholar 

  97. Han, N., Ao, H., Mai, Z., Zhao, Q. & Wu, C. Characteristics of (micro)plastic transport in the upper reaches of the Yangtze river. Sci. Total Environ. 855, 158887 (2023).

    Article  Google Scholar 

  98. Hitchcock, J. N. Storm events as key moments of microplastic contamination in aquatic ecosystems. Sci. Total Environ. 734, 139436 (2020).

    Article  Google Scholar 

  99. Yang, C. P., Yu, Y. T. & Kao, C. M. Impact of climate change on Kaoping river water quality. Appl. Mech. Mater. 212–213, 137–140 (2012).

    Article  Google Scholar 

  100. Krein, A. et al. Concentrations and loads of dissolved xenobiotics and hormones in two small river catchments of different land use in Luxembourg. Hydrol. Process. 27, 284–296 (2013).

    Article  Google Scholar 

  101. Zouboulis, A. & Tolkou, A. Effect of climate change in wastewater treatment plants: reviewing the problems and solutions. Manag. Water Resour. Under Clim. Uncertain. https://doi.org/10.1007/978-3-319-10467-6_10/FIGURES/10 (2015).

  102. Biswas, T. K. & Mosley, L. M. From mountain ranges to sweeping plains, in droughts and flooding rains; river Murray water quality over the last four decades. Water Resour. Manag. 33, 1087–1101 (2019).

    Article  Google Scholar 

  103. Rodrigues, M. T. et al. Human adenovirus spread, rainfalls, and the occurrence of gastroenteritis cases in a Brazilian basin. Environ. Monit. Assess. 187, 720 (2015).

    Article  Google Scholar 

  104. Whitworth, K. L., Baldwin, D. S. & Kerr, J. L. Drought, floods and water quality: drivers of a severe hypoxic blackwater event in a major river system (the southern Murray–Darling Basin, Australia). J. Hydrol. 450–451, 190–198 (2012).

    Article  Google Scholar 

  105. Lee, M., Shevliakova, E., Malyshev, S., Milly, P. C. D. & Jaffé, P. R. C. G. L. Climate variability and extremes, interacting with nitrogen storage, amplify eutrophication risk. Geophys. Res. Lett. https://doi.org/10.1002/2016gl069254 (2016).

  106. Lee, M., Stock, C. A., Shevliakova, E., Malyshev, S. & Milly, P. C. D. Globally prevalent land nitrogen memory amplifies water pollution following drought years. Environ. Res. Lett. 16, 014049 (2021).

    Article  Google Scholar 

  107. Kaushal, S. S. et al. Interaction between urbanization and climate variability amplifies watershed nitrate export in Maryland. Environ. Sci. Technol. 42, 5872–5878 (2008).

    Article  Google Scholar 

  108. Kaushal, S. S. et al. Land use and climate variability amplify carbon, nutrient, and contaminant pulses: a review with management implications 1. J. Am. Water Resour. Assoc. 50, 585–614 (2014).

    Article  Google Scholar 

  109. Zhou, M. et al. Dilution or enrichment: the effects of flood on pollutants in urban rivers. Environ. Sci. Eur. 34, 61 (2022).

    Article  Google Scholar 

  110. Pailler, J. Y. et al. Behaviour and fluxes of dissolved antibiotics, analgesics and hormones during flood events in a small heterogeneous catchment in the grand Duchy of Luxembourg. Water Air Soil Pollut. 203, 79–98 (2009).

    Article  Google Scholar 

  111. Xie, H. & Ringler, C. Agricultural nutrient loadings to the freshwater environment: the role of climate change and socioeconomic change. Environ. Res. Lett. 12, 104008 (2017).

    Article  Google Scholar 

  112. Wang, M., Kroeze, C., Strokal, M., van Vliet, M. T. H. & Ma, L. Global change can make coastal eutrophication control in China more difficult. Earth’s Future 8, e2019EF001280 (2020).

    Article  Google Scholar 

  113. van Vliet, M. T. H. et al. Global river discharge and water temperature under climate change. Glob. Environ. Change Policy Dimens. 23, 450–464 (2013).

    Article  Google Scholar 

  114. Eisner, S. et al. An ensemble analysis of climate change impacts on streamflow seasonality across 11 large river basins. Clim. Change 141, 401–417 (2017).

    Article  Google Scholar 

  115. Abily, M. et al. Climate change impact on EU rivers’ dilution capacity and ecological status. Water Res. 199, 117166 (2021).

    Article  Google Scholar 

  116. Knapp, J. L. A., Von Freyberg, J., Studer, B., Kiewiet, L. & Kirchner, J. W. Concentration–discharge relationships vary among hydrological events, reflecting differences in event characteristics. Hydrol. Earth Syst. Sci. 24, 2561–2576 (2020).

    Article  Google Scholar 

  117. Kaushal, S. S. et al. Freshwater salinization syndrome on a continental scale. Proc. Natl Acad. Sci. USA 115, E574–E583 (2018).

    Article  Google Scholar 

  118. Bartholow, J. M. Recent water temperature trends in the lower Klamath river, California. North Am. J. Fish. Manag. 25, 152–162 (2005).

    Article  Google Scholar 

  119. Kaushal, S. S. et al. Rising stream and river temperatures in the United States. Front. Ecol. Environ. 8, 461–466 (2010).

    Article  Google Scholar 

  120. Pekarova, P. et al. Long-term trend and multi-annual variability of water temperature in the pristine Bela River basin (Slovakia). J. Hydrol. 400, 333–340 (2011).

    Article  Google Scholar 

  121. Webb, B. W. & Nobilis, F. Long-term changes in river temperature and the influence of climatic and hydrological factors. Hydrol. Sci. J.-J. Des. Sci. Hydrol. 52, 74–85 (2007).

    Article  Google Scholar 

  122. Lammers, R. B., Pundsack, J. W. & Shiklomanov, A. I. Variability in river temperature, discharge, and energy flux from the Russian pan-Arctic landmass. J. Geophys. Res. 112, 1–15, G04S59 (2007).

    Google Scholar 

  123. Liu, B. Z., Yang, D. Q., Ye, B. S. & Berezovskaya, S. Long-term open-water season stream temperature variations and changes over Lena River basin in Siberia. Glob. Planet. Change 48, 96–111 (2005).

    Article  Google Scholar 

  124. Wanders, N., van Vliet, M. T. H., Wada, Y., Bierkens, M. F. P. & van Beek, L. P. H. High-resolution global water temperature modeling. Water Resou. Res. 55, 2760–2778 (2019).

    Article  Google Scholar 

  125. Bosmans, J. et al. FutureStreams, a global dataset of future streamflow and water temperature. Sci. Data 9, 307 (2022).

    Article  Google Scholar 

  126. Punzet, M., Voß, F., Voß, A., Kynast, E. & Bärlund, I. A global approach to assess the potential impact of climate change on stream water temperatures and related in-stream first-order decay rates. J. Hydrometeorol. 13, 1052–1065 (2012).

    Article  Google Scholar 

  127. Delpla, I., Jung, A.-V., Baures, E., Clement, M. & Thomas, O. Impacts of climate change on surface water quality in relation to drinking water production. Environ. Int. 35, 1225–1233 (2009).

    Article  Google Scholar 

  128. Soong, J. L., Phillips, C. L., Ledna, C., Koven, C. D. & Torn, M. S. CMIP5 models predict rapid and deep soil warming over the 21st century. J. Geophys. Res. Biogeosci. 125, e2019JG005266 (2020).

    Article  Google Scholar 

  129. Zhang, Q., Qin, W., Feng, J. & Zhu, B. Responses of soil microbial carbon use efficiency to warming: review and prospects. Soil. Ecol. Lett. 4, 307–318 (2022).

    Article  Google Scholar 

  130. Melillo, J. M. et al. Long-term pattern and magnitude of soil carbon feedback to the climate system in a warming world. Science 358, 101–105 (2017).

    Article  Google Scholar 

  131. Koch, O., Tscherko, D. & Kandeler, E. Temperature sensitivity of microbial respiration, nitrogen mineralization, and potential soil enzyme activities in organic alpine soils. Glob. Biogeochem. Cycles 21, 4017 (2007).

    Article  Google Scholar 

  132. Hicks Pries, C. E., Castanha, C., Porras, R. C. & Torn, M. S. The whole-soil carbon flux in response to warming. Science 355, 1420–1423 (2017).

    Article  Google Scholar 

  133. Bai, E. et al. A meta-analysis of experimental warming effects on terrestrial nitrogen pools and dynamics. N. Phytol. 199, 441–451 (2013).

    Article  Google Scholar 

  134. Turner, M. M. & Henry, H. A. L. Net nitrogen mineralization and leaching in response to warming and nitrogen deposition in a temperate old field: the importance of winter temperature. Oecologia 162, 227–236 (2010).

    Article  Google Scholar 

  135. Valenca, R., Ramnath, K., Dittrich, T. M., Taylor, R. E. & Mohanty, S. K. Microbial quality of surface water and subsurface soil after wildfire. Water Res. 175, 115672 (2020).

    Article  Google Scholar 

  136. Abbott, B. W. et al. Tundra wildfire triggers sustained lateral nutrient loss in Alaskan Arctic. Glob. Change Biol. 27, 1408–1430 (2021).

    Article  Google Scholar 

  137. Santos, R. M. B., Sanches Fernandes, L. F., Pereira, M. G., Cortes, R. M. V. & Pacheco, F. A. L. Water resources planning for a river basin with recurrent wildfires. Sci. Total Environ. 526, 1–13 (2015).

    Article  Google Scholar 

  138. Sterling, S. M., Ducharne, A. & Polcher, J. The impact of global land-cover change on the terrestrial water cycle. Nat. Clim. Change 3, 385–390 (2012).

    Article  Google Scholar 

  139. Cao, Q., Sun, N., Yearsley, J., Nijssen, B. & Lettenmaier, D. P. Climate and land cover effects on the temperature of puget sound streams. Hydrol. Process. 30, 2286–2304 (2016).

    Article  Google Scholar 

  140. Green, P. et al. Pre-industrial and contemporary fluxes of nitrogen through rivers: a global assessment based on typology. Biogeochemistry 68, 71–105 (2004).

    Article  Google Scholar 

  141. Meybeck, M. Global analysis of river systems: from Earth system controls to Anthropocene syndromes. Philos. Trans. R. Soc. B Biol. Sci. 358, 1935–1955 (2003).

    Article  Google Scholar 

  142. Stets, E. G. et al. Landscape drivers of dynamic change in water quality of U.S. rivers. Environ. Sci. Technol. 54, 4336–4343 (2020).

    Article  Google Scholar 

  143. Bouraoui, F. & Grizzetti, B. Long term change of nutrient concentrations of rivers discharging in European seas. Sci. Total Environ. 409, 4899–4916 (2011).

    Article  Google Scholar 

  144. Miller, J. D. & Hutchins, M. The impacts of urbanisation and climate change on urban flooding and urban water quality: a review of the evidence concerning the United Kingdom. J. Hydrol. Reg. Stud. 12, 345–362 (2017).

    Article  Google Scholar 

  145. Marlow, T., Elliott, J. R. & Frickel, S. Future flooding increases unequal exposure risks to relic industrial pollution. Environ. Res. Lett. 17, 074021 (2022).

    Article  Google Scholar 

  146. Ntelekos, A. A., Oppenheimer, M., Smith, J. A. & Miller, A. J. Urbanization, climate change and flood policy in the United States. Clim. Change 103, 597–616 (2010).

    Article  Google Scholar 

  147. Koop, S. H. A. The challenges of water, waste and climate change in cities. Environ. Dev. Sustain. 19, 385–418 (2017).

    Article  Google Scholar 

  148. Strokal, M. et al. Urbanization: an increasing source of multiple pollutants to rivers in the 21st century. npj Urban Sustain. 1, 24 (2021).

    Article  Google Scholar 

  149. Bloomfield, J. P., Williams, R. J., Gooddy, D. C., Cape, J. N. & Guha, P. Impacts of climate change on the fate and behaviour of pesticides in surface and groundwater — a UK perspective. Sci. Total Environ. 369, 163–177 (2006).

    Article  Google Scholar 

  150. Jones, E. R. et al. Sub-Saharan Africa will increasingly become the dominant hotspot of surface water pollution. Nat. Water 1, 602–613 (2023).

    Article  Google Scholar 

  151. Morin-Crini, N. et al. Emerging contaminants: analysis, aquatic compartments and water pollution. Emerging Contaminants Vol. 1 https://doi.org/10.1007/978-3-030-69079-3_1 (2021).

  152. Pérez, C. J., Vega-Rodríguez, M. A., Reder, K. & Flörke, M. A multi-objective artificial bee colony-based optimization approach to design water quality monitoring networks in river basins. J. Clean. Prod. 166, 579–589 (2017).

    Article  Google Scholar 

  153. Ryberg, K. R. & Chanat, J. G. Climate extremes as drivers of surface-water-quality trends in the United States. Sci. Total Environ. 809, 152165 (2022).

    Article  Google Scholar 

  154. Mengel, M., Treu, S., Lange, S. & Frieler, K. ATTRICI v1.1 — counterfactual climate for impact attribution. Geosci. Model Dev. 14, 5269–5284 (2021).

    Article  Google Scholar 

  155. Michalak, A. M. Study role of climate change in extreme threats to water quality. Nature 535, 349–350 (2016).

    Article  Google Scholar 

  156. Sinha, E., Michalak, A. M. & Balaji, V. Eutrophication will increase during the 21st century as a result of precipitation changes. Science 357, 405–408 (2017).

    Article  Google Scholar 

  157. Sinha, E. et al. Modeling perennial bioenergy crops in the E3SM land model (ELMv2). J. Adv. Model. Earth Syst. https://doi.org/10.1029/2022MS003171 (2023).

  158. van Vliet, M. T. H. et al. Model inter-comparison design for large-scale water quality models. Curr. Opin. Environ. Sustain. 36, 59–67 (2019).

    Article  Google Scholar 

  159. WWQA. A Partnership Effort. https://www.unep.org/explore-topics/water/what-we-do/improving-and-assessing-world-water-quality-partnership-effort (accessed 2023).

  160. ISIMIP. Inter-Sectoral Impact Model Intercomparison Project. https://www.isimip.org/ (accessed 2023).

  161. Chen, X. et al. Multi-scale modeling of nutrient pollution in the rivers of China. Environ. Sci. Technol. 53, 9614–9625 (2019).

    Article  Google Scholar 

  162. Tang, T. et al. Bridging global, basin and local-scale water quality modeling towards enhancing water quality management worldwide. Curr. Opin. Environ. Sustain. 36, 39–48 (2019).

    Article  Google Scholar 

  163. Hofstra, N., Kroeze, C., Flörke, M. & van Vliet, M. T. H. Editorial overview: water quality: a new challenge for global scale model development and application. Curr. Opin. Environ. Sustain. 36, A1–A5 (2019).

    Article  Google Scholar 

  164. Strokal, M. et al. Cost-effective management of coastal eutrophication: a case study for the Yangtze River basin. Resour. Conserv. Recycl. 154, 104635 (2020).

    Article  Google Scholar 

  165. Wang, M. et al. Accounting for interactions between sustainable development goals is essential for water pollution control in China. Nat. Commun. 13, 730 (2022).

    Article  Google Scholar 

  166. Jarosiewicz, P., Fazi, S. & Zalewski, M. How to boost ecohydrological nature-based solutions in water quality management. Ecohydrol. Hydrobiol. 22, 226–233 (2022).

    Article  Google Scholar 

  167. Copernicus Global Land Surface — Lake Water Quality (Copernicus, 2023); https://land.copernicus.eu/global/products/lwq.

  168. IIWQ World Water Quality Information and Capacity Building Portal (UNESCO & EOMAP, 2023); http://www.worldwaterquality.org/.

  169. Dekker, A. & Hestir, E. Evaluating the Feasibility of Systematic Inland Water Quality Monitoring with Satellite Remote Sensing, CSIRO: Water for a Healthy Country National Research Flagship (CSIRO, 2012).

  170. Lymburner, L. et al. Landsat 8: providing continuity and increased precision for measuring multi-decadal time series of total suspended matter. Remote Sens. Environ. 185, 108–118 (2016).

    Article  Google Scholar 

  171. Mi, H., Fagherazzi, S., Qiao, G., Hong, Y. & Fichot, C. G. Climate change leads to a doubling of turbidity in a rapidly expanding Tibetan lake. Sci. Total Environ. 688, 952–959 (2019).

    Article  Google Scholar 

  172. Baltodano, A., Agramont, A., Reusen, I. & van Griensven, A. Land cover change and water quality: how remote sensing can help understand driver–impact relations in the Lake Titicaca basin. Water 14, 1021 (2022).

    Article  Google Scholar 

  173. Odermatt, D., Giardino, C. & Heege, T. Chlorophyll retrieval with MERIS Case-2-Regional in perialpine lakes. Remote Sens. Environ. 114, 607–617 (2010).

    Article  Google Scholar 

  174. Heege, T., Kiselev, V., Wettle, M. & Hung, N. N. Operational multi-sensor monitoring of turbidity for the entire Mekong Delta. Int. J. Remote Sens. 35, 2910–2926 (2014).

    Article  Google Scholar 

  175. Lisle, S., D, P. J. & H, M. W. An evaluation of nitrate, fDOM, and turbidity sensors in New Hampshire streams. Water Resour. Res. 54, 2466–2479 (2018).

    Article  Google Scholar 

  176. Handcock, R. N. et al. Accuracy and uncertainty of thermal-infrared remote sensing of stream temperatures at multiple spatial scales. Remote Sens. Environ. 100, 427–440 (2006).

    Article  Google Scholar 

  177. Chen, C. Q., Shi, P. & Mao, Q. W. Application of remote sensing techniques for monitoring the thermal pollution of cooling-water discharge from nuclear power plant. J. Environ. Sci. Heal. A 38, 1659–1668 (2003).

    Article  Google Scholar 

  178. Ling, F. et al. Monitoring thermal pollution in rivers downstream of dams with Landsat ETM+ thermal infrared images. Remote Sens. 9, 1175 (2017).

    Article  Google Scholar 

  179. Luo, L. et al. A novel early warning system (EWS) for water quality, integrating a high-frequency monitoring database with efficient data quality control technology at a large and deep lake (Lake Qiandao), China. Water 14, 602 (2022).

  180. Kirschke, S. et al. Citizen science projects in freshwater monitoring. From individual design to clusters? J. Environ. Manage 309, 114714 (2022).

    Article  Google Scholar 

  181. Deltares. Nitrate App. https://publicwiki.deltares.nl/display/wqapp (2023).

  182. Beusen, A. H. W. et al. Exploring river nitrogen and phosphorus loading and export to global coastal waters in the shared socio-economic pathways. Glob. Environ. Change 72, 102426 (2022).

    Article  Google Scholar 

  183. Jones, E. R., van Vliet, M. T. H., Qadir, M. & Bierkens, M. F. P. Country-level and gridded estimates of wastewater production, collection, treatment and reuse. Earth Syst. Sci. Data 13, 237–254 (2021).

    Article  Google Scholar 

  184. Ehalt Macedo, H. et al. Distribution and characteristics of wastewater treatment plants within the global river network. Earth Syst. Sci. Data 14, 559–577 (2022).

    Article  Google Scholar 

  185. Desbureaux, S. et al. Mapping global hotspots and trends of water quality (1992–2010): a data driven approach. Environ. Res. Lett. 17, 114048 (2022).

    Article  Google Scholar 

  186. Hameed, M. et al. Application of artificial intelligence (AI) techniques in water quality index prediction: a case study in tropical region, Malaysia. Neural Comput. Appl. 28, 893–905 (2017).

    Article  Google Scholar 

  187. Chau, K. A review on integration of artificial intelligence into water quality modelling. Mar. Pollut. Bull. 52, 726–733 (2006).

    Article  Google Scholar 

  188. Khan, Y. & Chai, S. S. Ensemble of ANN and ANFIS for water quality prediction and analysis — a data driven approach. J. Telecommun. Electron. Comput. Eng. 9, 117–122 (2017).

    Google Scholar 

  189. Heddam, S. & Kisi, O. Modelling daily dissolved oxygen concentration using least square support vector machine, multivariate adaptive regression splines and M5 model tree. J. Hydrol. 559, 499–509 (2018).

    Article  Google Scholar 

  190. Wang, X., Zhang, F. & Ding, J. Evaluation of water quality based on a machine learning algorithm and water quality index for the Ebinur Lake Watershed, China. Sci. Rep. 7, 12858 (2017).

    Article  Google Scholar 

  191. Yajima, H. & Derot, J. Application of the random forest model for chlorophyll-a forecasts in fresh and brackish water bodies in Japan, using multivariate long-term databases. J. Hydroinformatics 20, jh2017010 (2017).

    Google Scholar 

Download references

Acknowledgements

The authors kindly acknowledge J. Banken of Wageningen University and K. Schweden of Ruhr University Bochum for their assistance with collecting water quality literature. The authors thank M. Stoete of Utrecht University for her assistance in designing some figures. The authors also acknowledge the World Water Quality Alliance (WWQA), ISI-MIP and EU COST-Action PROCLIAS initiatives. M.T.H.v.V. was financially supported by the European Union (ERC Starting Grant, B-WEX, Project 101039426) and Netherlands Scientific Organisation (NWO) by a VIDI grant (VI.Vidi.193.019). M.S. was supported by the Netherlands Scientific Organisation (NWO) by a VENI grant (016.Veni.198.001). J.T. was financially supported by The Swedish Research Council Formas (Project No. 2018-00812).

Author information

Authors and Affiliations

Authors

Contributions

M.T.H.v.V. designed and led the study and manuscript effort. J.T. contributed to the design of the literature review. J.T., M.S., N.H., M.F., H.E.M., A.N., T.T. and M.T.H.v.V. collected literature for the analyses and wrote reports for specific water quality constituents for the supplementary information. L.M.M., S.S.K. and R.K. contributed to the writing of specific sections. All authors contributed to the writing of the manuscript.

Corresponding author

Correspondence to Michelle T. H. van Vliet.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Earth & Environment thanks J. Rozemeijer, D. Barceló, E. Douglas and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van Vliet, M.T.H., Thorslund, J., Strokal, M. et al. Global river water quality under climate change and hydroclimatic extremes. Nat Rev Earth Environ 4, 687–702 (2023). https://doi.org/10.1038/s43017-023-00472-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43017-023-00472-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing