Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Coupled iron cycling and organic matter transformation across redox interfaces

Abstract

Soils and sediments are major reservoirs of organic matter (OM), whose dynamic turnover has a major impact on carbon cycling and global climate. OM in soils and sediments is predominantly associated with minerals, which decelerate OM decomposition and could help store carbon. However, iron (Fe) minerals could also degrade OM and release a fraction of OM to the atmosphere as CO2 and CH4, but the coupling of these processes is only partly understood. In this Review, we describe the mechanisms and importance of coupled iron–carbon (Fe–C) cycles. Oxygenation of structural Fe(II) in minerals generates reactive oxygen species, which either degrades or synthesizes OM. Reactive oxygen species can also either decrease or increase extracellular enzyme activity and microbial activity, thus indirectly transforming OM. In addition, Fe(III) reduction contributes to OM oxidation through anaerobic respiration. By contrast, OM affects the redox properties of Fe minerals by serving as electron donor, acceptor, shuttle, buffer or conductor and by co-precipitation and complexation with Fe minerals. These feedback mechanisms can result in complex interconnected Fe–C cycling processes; hence, future work must focus on attaining the net impact of combined Fe–C cycles.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Redox potentials of Fe minerals and some representative organic matter.
Fig. 2: Three example interactions among ROS, enzymes and substrate resulting in different effects on organic matter transformation.
Fig. 3: Transformation of organic matter driven by Fe redox cycling.
Fig. 4: Organic matter as an electron shuttle or electron conductor to enhance Fe(III) bioreduction.
Fig. 5: Site-specific roles of organic matter as electron donor and shuttle in expandable clay minerals.
Fig. 6: Functions of organic matter in moderating redox cycling of Fe minerals arranged into a sequence.

Similar content being viewed by others

References

  1. Hedges, J. I. & Keil, R. G. Sedimentary organic-matter preservation — an assessment and speculative synthesis. Mar. Chem. 49, 81–115 (1995).

    Article  Google Scholar 

  2. Singh, M. et al. Stabilization of soil organic carbon as influenced by clay mineralogy. Adv. Agron. 148, 33–84 (2018).

    Article  Google Scholar 

  3. Keil, R. G. & Mayer, L. M. Mineral Matrices and Organic Matter 2nd edn, 337–359 (Elsevier, 2014).

  4. Lehmann, J. & Kleber, M. The contentious nature of soil organic matter. Nature 528, 60–68 (2015).

    Article  Google Scholar 

  5. Lalonde, K., Mucci, A., Ouellet, A. & Gelinas, Y. Preservation of organic matter in sediments promoted by iron. Nature 483, 198–200 (2012).

    Article  Google Scholar 

  6. Torn, M. S., Trumbore, S. E., Chadwick, O. A., Vitousek, P. M. & Hendricks, D. M. Mineral control of soil organic carbon storage and turnover. Nature 389, 170–173 (1997).

    Article  Google Scholar 

  7. Cotrufo, M. F., Ranalli, M. G., Haddix, M. L., Six, J. & Lugato, E. Soil carbon storage informed by particulate and mineral-associated organic matter. Nat. Geosci. 12, 989–994 (2019).

    Article  Google Scholar 

  8. Heckman, K. A. et al. Moisture-driven divergence in mineral-associated soil carbon persistence. Proc. Natl Acad. Sci. USA 120, e2210044120 (2023).

    Article  Google Scholar 

  9. Kleber, M. et al. Mineral–organic associations: formation, properties, and relevance in soil environments. Adv. Agron. 130, 1–140 (2015).

    Article  Google Scholar 

  10. Throckmorton, H. M. et al. The soil matrix increases microbial C stabilization in temperate and tropical forest soils. Biogeochemistry 122, 35–45 (2015).

    Article  Google Scholar 

  11. Basile-Doelsch, I., Balesdent, J. & Pellerin, S. Reviews and syntheses: the mechanisms underlying carbon storage in soil. Biogeosciences 17, 5223–5242 (2020).

    Article  Google Scholar 

  12. Hall, S. J. & Silver, W. L. Iron oxidation stimulates organic matter decomposition in humid tropical forest soils. Glob. Change Biol. 19, 2804–2813 (2013).

    Article  Google Scholar 

  13. Baek, G., Kim, J. & Lee, C. A review of the effects of iron compounds on methanogenesis in anaerobic environments. Renew. Sustain. Energy Rev. 113, 109282 (2019).

    Article  Google Scholar 

  14. Kleber, M. et al. Dynamic interactions at the mineral–organic matter interface. Nat. Rev. Earth Environ. 2, 402–421 (2021).

    Article  Google Scholar 

  15. Di Iorio, E. et al. Environmental implications of interaction between humic substances and iron oxide nanoparticles: a review. Chemosphere 303, 135172 (2022).

    Article  Google Scholar 

  16. Kramer, M. G. & Chadwick, O. A. Climate-driven thresholds in reactive mineral retention of soil carbon at the global scale. Nat. Clim. Change 8, 1104 (2018).

    Article  Google Scholar 

  17. Faust, J. C. et al. Millennial scale persistence of organic carbon bound to iron in Arctic marine sediments. Nat. Commun. 12, 275 (2021).

    Article  Google Scholar 

  18. Ye, C., Huang, W., Hall, S. J. & Hu, S. Association of organic carbon with reactive iron oxides driven by soil pH at the global scale. Glob. Biogeochem. Cycles 36, e2021GB007128 (2022).

    Article  Google Scholar 

  19. Chen, C., Hall, S. J., Coward, E. & Thompson, A. Iron-mediated organic matter decomposition in humid soils can counteract protection. Nat. Commun. 11, 2255 (2020).

    Article  Google Scholar 

  20. Dong, H. et al. A critical review of mineral–microbe interaction and co-evolution: mechanisms and applications. Natl Sci. Rev. 9, nwac128 (2022).

    Article  Google Scholar 

  21. Zhang, X., Yuan, Z. & Hu, S. Anaerobic oxidation of methane mediated by microbial extracellular respiration. Environ. Microbiol. Rep. 13, 790–804 (2021).

    Article  Google Scholar 

  22. Borch, T. et al. Biogeochemical redox processes and their impact on contaminant dynamics. Environ. Sci. Technol. 44, 15–23 (2010).

    Article  Google Scholar 

  23. Moore, O. C. et al. The role of electron donors in arsenic-release by redox-transformation of iron oxide minerals — a review. Chem. Geol. 619, 121322 (2023).

    Article  Google Scholar 

  24. Kappler, A. et al. An evolving view on biogeochemical cycling of iron. Nat. Rev. Microbiol. 19, 360–374 (2021).

    Article  Google Scholar 

  25. Weber, K. A., Achenbach, L. A. & Coates, J. D. Microorganisms pumping iron: anaerobic microbial iron oxidation and reduction. Nat. Rev. Microbiol. 4, 752–764 (2006).

    Article  Google Scholar 

  26. Bryce, C. et al. Microbial anaerobic Fe(II) oxidation — ecology, mechanisms and environmental implications. Environ. Microbiol. 20, 3462–3483 (2018).

    Article  Google Scholar 

  27. Burdige, D. J. Preservation of organic matter in marine sediments: controls, mechanisms, and an imbalance in sediment organic carbon budgets? Chem. Rev. 107, 467–485 (2007).

    Article  Google Scholar 

  28. Dittmar, T. & Stubbins, A. Dissolved Organic Matter in Aquatic Systems 2nd edn (Oxford, 2014).

  29. Oades, J. M. Minerals in Soil Environments 2nd edn, Vol. 1 (eds Dixon, J. B. & Weed, S. B.) (Wiley, 1989).

  30. Rakshit, S., Uchimiya, M. & Sposito, G. Iron(III) bioreduction in soil in the presence of added humic substances. Soil. Sci. Soc. Am. J. 73, 65–71 (2009).

    Article  Google Scholar 

  31. Fujii, M., Imaoka, A., Yoshimura, C. & Waite, T. D. Effects of molecular composition of natural organic matter on ferric iron complexation at circumneutral pH. Environ. Sci. Technol. 48, 4414–4424 (2014).

    Article  Google Scholar 

  32. Aeschbacher, M., Sander, M. & Schwarzenbach, R. P. Novel electrochemical approach to assess the redox properties of humic substances. Environ. Sci. Technol. 44, 87–93 (2010).

    Article  Google Scholar 

  33. Aeschbacher, M., Vergari, D., Schwarzenbach, R. P. & Sander, M. Electrochemical analysis of proton and electron transfer equilibria of the reducible moieties in humic acids. Environ. Sci. Technol. 45, 8385–8394 (2011).

    Article  Google Scholar 

  34. Klupfel, L., Piepenbrock, A., Kappler, A. & Sander, M. Humic substances as fully regenerable electron acceptors in recurrently anoxic environments. Nat. Geosci. 7, 195–200 (2014).

    Article  Google Scholar 

  35. Yang, P. et al. Loss and increase of the electron exchange capacity of natural organic matter during its reduction and reoxidation: the role of quinone and nonquinone moieties. Environ. Sci. Technol. 56, 6744–6753 (2022).

    Article  Google Scholar 

  36. Aeschbacher, M., Graf, C., Schwarzenbach, R. P. & Sander, M. Antioxidant properties of humic substances. Environ. Sci. Technol. 46, 4916–4925 (2012).

    Article  Google Scholar 

  37. Li, S., Kappler, A., Zhu, Y. G. & Haderlein, S. B. Mediated electrochemical analysis as emerging tool to unravel links between microbial redox cycling of natural organic matter and anoxic nitrogen cycling. Earth Sci. Rev. 208, 103281 (2020).

    Article  Google Scholar 

  38. Joshi, P., Schroth, M. H. & Sander, M. Redox properties of peat particulate organic matter: quantification of electron accepting capacities and assessment of electron transfer reversibility. J. Geophys. Res. Biogeosci. 126, e2021JG006329 (2021).

    Article  Google Scholar 

  39. Chi, J. L., Fan, Y. K., Wang, L. J., Putnis, C. V. & Zhang, W. J. Retention of soil organic matter by occlusion within soil minerals. Rev. Environ. Sci. Bio. 21, 727–746 (2022).

    Article  Google Scholar 

  40. Bao, Y. et al. Interactions between organic matter and Fe (hydr)oxides and their influences on immobilization and remobilization of metal(loid)s: a review. Crit. Rev. Environ. Sci. Technol. 52, 4016–4037 (2022).

    Article  Google Scholar 

  41. Curti, L. et al. Carboxyl-richness controls organic carbon preservation during coprecipitation with iron (oxyhydr)oxides in the natural environment. Commun. Earth. Environ. 2, 229 (2021).

    Article  Google Scholar 

  42. Sodano, M. et al. Dissolved organic carbon retention by coprecipitation during the oxidation of ferrous iron. Geoderma 307, 19–29 (2017).

    Article  Google Scholar 

  43. Barre, P., Fernandez-Ugalde, O., Virto, I., Velde, B. & Chenu, C. Impact of phyllosilicate mineralogy on organic carbon stabilization in soils: incomplete knowledge and exciting prospects. Geoderma 235, 382–395 (2014).

    Article  Google Scholar 

  44. Lenhardt, K. R., Breitzke, H., Buntkowsky, G., Mikutta, C. & Rennert, T. Interactions of dissolved organic matter with short-range ordered aluminosilicates by adsorption and co-precipitation. Geoderma 423, 115960 (2022).

    Article  Google Scholar 

  45. von Lützow, M. et al. SOM fractionation methods: relevance to functional pools and to stabilization mechanisms. Soil. Biol. Biochem. 39, 2183–2207 (2007).

    Article  Google Scholar 

  46. Giniyatullin, K. G. et al. Irreversible fixation of organic components in labile interspaces as a mechanism for the chemical stabilization of clay-organic structures. Eurasian Soil Sci. 45, 1068–1080 (2012).

    Article  Google Scholar 

  47. Ilbert, M. & Bonnefoy, V. Insight into the evolution of the iron oxidation pathways. BBA-Bioenergetics 1827, 161–175 (2013).

    Article  Google Scholar 

  48. Emerson, D., Fleming, E. J. & McBeth, J. M. Iron-oxidizing bacteria: an environmental and genomic perspective. Annu. Rev. Microbiol. 64, 561–583 (2010).

    Article  Google Scholar 

  49. Quatrini, R. & Johnson, D. B. Microbiomes in extremely acidic environments: functionalities and interactions that allow survival and growth of prokaryotes at low pH. Curr. Opin. Microbiol. 43, 139–147 (2018).

    Article  Google Scholar 

  50. Cory, R. M. & Kling, G. W. Interactions between sunlight and microorganisms influence dissolved organic matter degradation along the aquatic continuum. Limnol. Oceanogr. Lett. 3, 102–116 (2018).

    Article  Google Scholar 

  51. Mopper, K., Kieber, D. J. & Stubbins, A. in Biogeochemistry of Marine Dissolved Organic Matter (eds Hansell, D. & Carlson, C.) 389–450 (Academic Press, 2015).

  52. Tong, M. et al. Production of abundant hydroxyl radicals from oxygenation of subsurface sediments. Environ. Sci. Technol. 50, 214–221 (2016).

    Article  Google Scholar 

  53. Zeng, Q. et al. Mutual interactions between reduced Fe-bearing clay minerals and humic acids under dark, oxygenated conditions: hydroxyl radical generation and humic acid transformation. Environ. Sci. Technol. 54, 15013–15023 (2020).

    Article  Google Scholar 

  54. Chen, N. et al. Active iron phases regulate the abiotic transformation of organic carbon during redox fluctuation cycles of paddy soil. Environ. Sci. Technol. 55, 14281–14293 (2021).

    Article  Google Scholar 

  55. Murad, E. & Fischer, W. R. The Geobiochemical Cycle of Iron 1–18 (Springer, 1988).

  56. Wang, X. et al. Reduced iron-containing clay minerals as antibacterial agents. Environ. Sci. Technol. 51, 7639–7647 (2017).

    Article  Google Scholar 

  57. Eastwood, D. C. et al. The plant cell wall-decomposing machinery underlies the functional diversity of forest fungi. Science 333, 762–765 (2011).

    Article  Google Scholar 

  58. Gu, B. H., Schmitt, J., Chen, Z., Liang, L. Y. & Mccarthy, J. F. Adsorption and desorption of different organic-matter fractions on iron-oxide. Geochim. Cosmochim. Acta 59, 219–229 (1995).

    Article  Google Scholar 

  59. Riedel, T., Zak, D., Biester, H. & Dittmar, T. Iron traps terrestrially derived dissolved organic matter at redox interfaces. Proc. Natl Acad. Sci. USA 110, 10101–10105 (2013).

    Article  Google Scholar 

  60. Waggoner, D. C., Chen, H., Willoughby, A. S. & Hatcher, P. G. Formation of black carbon-like and alicyclic aliphatic compounds by hydroxyl radical initiated degradation of lignin. Org. Geochem. 82, 69–76 (2015).

    Article  Google Scholar 

  61. Chen, H. et al. Production of black carbon-like and aliphatic molecules from terrestrial dissolved organic matter in the presence of sunlight and iron. Environ. Sci. Technol. Lett. 1, 399–404 (2014).

    Article  Google Scholar 

  62. Paerl, R. W., Claudio, I. M., Shields, M. R., Bianchi, T. S. & Osburn, C. L. Dityrosine formation via reactive oxygen consumption yields increasingly recalcitrant humic-like fluorescent organic matter in the ocean. Limnol. Oceanogr. Lett. 5, 337–345 (2020).

    Article  Google Scholar 

  63. Ma, H. et al. Secondary mineral formation and carbon dynamics during FeS oxidation in the presence of dissolved organic matter. Environ. Sci. Technol. 56, 14120–14132 (2022).

    Article  Google Scholar 

  64. Yu, C. et al. Mechanistic insight into humic acid-enhanced hydroxyl radical production from Fe(II)-bearing clay mineral oxygenation. Environ. Sci. Technol. 55, 13366–13375 (2021).

    Google Scholar 

  65. Yu, G. & Kuzyakov, Y. Fenton chemistry and reactive oxygen species in soil: abiotic mechanisms of biotic processes, controls and consequences for carbon and nutrient cycling. Earth Sci. Rev. 214, 103525 (2021).

    Article  Google Scholar 

  66. Wang, Y., Wang, H., He, J. S. & Feng, X. Iron-mediated soil carbon response to water-table decline in an alpine wetland. Nat. Commun. 8, 15972 (2017).

    Article  Google Scholar 

  67. Sinsabaugh, R. L. Phenol oxidase, peroxidase and organic matter dynamics of soil. Soil Biol. Biochem. 42, 391–404 (2010).

    Article  Google Scholar 

  68. Burns, R. G. et al. Soil enzymes in a changing environment: current knowledge and future directions. Soil Biol. Biochem. 58, 216–234 (2013).

    Article  Google Scholar 

  69. Freeman, C., Ostle, N. & Kang, H. An enzymic ‘latch’ on a global carbon store. Nature 409, 149 (2001).

    Article  Google Scholar 

  70. ten Have, R. & Teunissen, P. J. Oxidative mechanisms involved in lignin degradation by white-rot fungi. Chem. Rev. 101, 3397–3413 (2001).

    Article  Google Scholar 

  71. Merino, C., Kuzyakov, Y., Godoy, K., Cornejo, P. & Matus, F. Synergy effect of peroxidase enzymes and Fenton reactions greatly increase the anaerobic oxidation of soil organic matter. Sci. Rep. 10, 11289 (2020).

    Article  Google Scholar 

  72. Merino, C. et al. Contribution of the Fenton reaction and ligninolytic enzymes to soil organic matter mineralisation under anoxic conditions. Sci. Total Environ. 760, 143397 (2021).

    Article  Google Scholar 

  73. Li, Y. H. et al. High molecular weight fractions of dissolved organic matter (DOM) determined the adsorption and electron transfer capacity of DOM on iron minerals. Chem. Geol. 604, 120907 (2022).

    Article  Google Scholar 

  74. Zhao, Y. P., Xiang, W., Huang, C. L., Liu, Y. & Tan, Y. Production of hydroxyl radicals following water-level drawdown in peatlands: a new induction mechanism for enhancing laccase activity in carbon cycling. Soil Biol. Biochem. 156, 108241 (2021).

    Article  Google Scholar 

  75. Tonon, F. & Odier, E. Influence of veratryl alcohol and hydrogen peroxide on ligninase activity and ligninase production by Phanerochaete chrysosporium. Appl. Environ. Microbiol. 54, 466–472 (1988).

    Article  Google Scholar 

  76. Sheng, Y. et al. Inhibition of extracellular enzyme activity by reactive oxygen species upon oxygenation of reduced iron-bearing minerals. Environ. Sci. Technol. 57, 3425–3433 (2023).

    Article  Google Scholar 

  77. Sinsabaugh, R. L. et al. Stoichiometry of soil enzyme activity at global scale. Ecol. Lett. 11, 1252–1264 (2008).

    Article  Google Scholar 

  78. Allison, S. D. & Vitousek, P. M. Responses of extracellular enzymes to simple and complex nutrient inputs. Soil Biol. Biochem. 37, 937–944 (2005).

    Article  Google Scholar 

  79. Van Bodegom, P. M., Broekman, R., Van Dijk, J., Bakker, C. & Aerts, R. Ferrous iron stimulates phenol oxidase activity and organic matter decomposition in waterlogged wetlands. Biogeochemistry 76, 69–83 (2005).

    Article  Google Scholar 

  80. Guillen, F., Gomez-Toribio, V., Martinez, M. J. & Martinez, A. T. Production of hydroxyl radical by the synergistic action of fungal laccase and aryl alcohol oxidase. Arch. Biochem. Biophys. 383, 142–147 (2000).

    Article  Google Scholar 

  81. Perna, V. et al. Laccase-catalyzed oxidation of lignin induces production of H2O2. ACS Sustain. Chem. Eng. 8, 831–841 (2019).

    Article  Google Scholar 

  82. Wei, D. et al. Laccase and its role in production of extracellular reactive oxygen species during wood decay by the brown rot basidiomycete Postia placenta. Appl. Environ. Microbiol. 76, 2091–2097 (2010).

    Article  Google Scholar 

  83. Egli, C. M. & Janssen, E. M. Proteomics approach to trace site-specific damage in aquatic extracellular enzymes during photoinactivation. Environ. Sci. Technol. 52, 7671–7679 (2018).

    Article  Google Scholar 

  84. Egli, C. M., Stravs, M. A. & Janssen, E. M. L. Inactivation and site-specific oxidation of aquatic extracellular bacterial leucine aminopeptidase by singlet oxygen. Environ. Sci. Technol. 54, 14403–14412 (2020).

    Article  Google Scholar 

  85. Wang, C., Blagodatskaya, E., Dippold, M. A. & Dorodnikov, M. Keep oxygen in check: contrasting effects of short-term aeration on hydrolytic versus oxidative enzymes in paddy soils. Soil. Biol. Biochem. 169, 108690 (2022).

    Article  Google Scholar 

  86. Lammirato, C., Miltner, A., Wick, L. Y. & Kästner, M. Hydrolysis of cellobiose by β-glucosidase in the presence of soil minerals — interactions at solid–liquid interfaces and effects on enzyme activity levels. Soil Biol. Biochem. 42, 2203–2210 (2010).

    Article  Google Scholar 

  87. Yang, Z. et al. Temperature sensitivity of mineral–enzyme interactions on the hydrolysis of cellobiose and indican by beta-glucosidase. Sci. Total Environ. 686, 1194–1201 (2019).

    Article  Google Scholar 

  88. Sheng, Y., Dong, H., Coffin, E., Myrold, D. & Kleber, M. The important role of enzyme adsorbing capacity of soil minerals in regulating β-glucosidase activity. Geophys. Res. Lett. 49, e2021GL097556 (2022).

    Article  Google Scholar 

  89. Schimel, J., Becerra, C. A. & Blankinship, J. Estimating decay dynamics for enzyme activities in soils from different ecosystems. Soil Biol. Biochem. 114, 5–11 (2017).

    Article  Google Scholar 

  90. van Erk, M. R. et al. Reactive oxygen species affect the potential for mineralization processes in permeable intertidal flats. Nat. Commun. 14, 938 (2023).

    Article  Google Scholar 

  91. Rasouly, A. & Nudler, E. Reactive oxygen species as the long arm of bactericidal antibiotics. Proc. Natl Acad. Sci. USA 116, 9696–9698 (2019).

    Article  Google Scholar 

  92. Vatansever, F. et al. Antimicrobial strategies centered around reactive oxygen species — bactericidal antibiotics, photodynamic therapy, and beyond. FEMS Microbiol. Rev. 37, 955–989 (2013).

    Article  Google Scholar 

  93. Chen, R., Liu, H., Zhang, P., Ma, J. & Jin, M. Co-response of Fe-reducing/oxidizing bacteria and Fe species to the dynamic redox cycles of natural sediment. Sci. Total Environ. 815, 152953 (2022).

    Article  Google Scholar 

  94. Sekar, R. & DiChristina, T. J. Microbially driven Fenton reaction for degradation of the widespread environmental contaminant 1,4-dioxane. Environ. Sci. Technol. 48, 12858–12867 (2014).

    Article  Google Scholar 

  95. Imlay, J. A. The molecular mechanisms and physiological consequences of oxidative stress: lessons from a model bacterium. Nat. Rev. Microbiol. 11, 443–454 (2013).

    Article  Google Scholar 

  96. Huang, W. & Hall, S. J. Elevated moisture stimulates carbon loss from mineral soils by releasing protected organic matter. Nat. Commun. 8, 1774 (2017).

    Article  Google Scholar 

  97. Patzner, M. S. et al. Iron mineral dissolution releases iron and associated organic carbon during permafrost thaw. Nat. Commun. 11, 6329 (2020).

    Article  Google Scholar 

  98. Dalla Vecchia, E., Suvorova, E., Maillard, J. & Bernier‐Latmani, R. Fe (III) reduction during pyruvate fermentation by Desulfotomaculum reducens strain MI‐1. Geobiology 12, 48–61 (2014).

    Article  Google Scholar 

  99. Dong, Y., Sanford, R. A., Chang, Y.-J., McInerney, M. J. & Fouke, B. W. Hematite reduction buffers acid generation and enhances nutrient uptake by a fermentative iron reducing bacterium, Orenia metallireducens strain Z6. Environ. Sci. Technol. 51, 232–242 (2017).

    Article  Google Scholar 

  100. List, C., Hosseini, Z., Lederballe Meibom, K., Hatzimanikatis, V. & Bernier‐Latmani, R. Impact of iron reduction on the metabolism of Clostridium acetobutylicum. Environ. Microbiol. 21, 3548–3563 (2019).

    Article  Google Scholar 

  101. Yu, C., Xie, S., Song, Z., Xia, S. & Åström, M. E. Biogeochemical cycling of iron (hydr-) oxides and its impact on organic carbon turnover in coastal wetlands: a global synthesis and perspective. Earth Sci. Rev. 218, 103658 (2021).

    Article  Google Scholar 

  102. Peiffer, S. et al. A biogeochemical–hydrological framework for the role of redox-active compounds in aquatic systems. Nat. Geosci. 14, 264–272 (2021).

    Article  Google Scholar 

  103. Zeng, Q. et al. Bio-reduction of ferrihydrite–montmorillonite–organic matter complexes: effect of montmorillonite and fate of organic matter. Geochim. Cosmochim. Acta 276, 327–344 (2020).

    Article  Google Scholar 

  104. Angst, G., Mueller, K. E., Nierop, K. G. & Simpson, M. J. Plant- or microbial-derived? A review on the molecular composition of stabilized soil organic matter. Soil Biol. Biochem. 156, 108189 (2021).

    Article  Google Scholar 

  105. Wang, B. R., An, S. S., Liang, C., Liu, Y. & Kuzyakov, Y. Microbial necromass as the source of soil organic carbon in global ecosystems. Soil Biol. Biochem. 162, 108422 (2021).

    Article  Google Scholar 

  106. Kästner, M., Miltner, A., Thiele-Bruhn, S. & Liang, C. Microbial necromass in soils — linking microbes to soil processes and carbon turnover. Front. Environ. Sci. 9, 756378 (2021).

    Article  Google Scholar 

  107. Liang, C., Schimel, J. P. & Jastrow, J. D. The importance of anabolism in microbial control over soil carbon storage. Nat. Microbiol. 2, 17105 (2017).

    Article  Google Scholar 

  108. Lomstein, B. A., Langerhuus, A. T., D’Hondt, S., Jorgensen, B. B. & Spivack, A. J. Endospore abundance, microbial growth and necromass turnover in deep sub-seafloor sediment. Nature 484, 101–104 (2012).

    Article  Google Scholar 

  109. Pacton, M., Fiet, N. & Gorin, G. E. Bacterial activity and preservation of sedimentary organic matter: the role of exopolymeric stances. Geomicrobiol. J. 24, 571–581 (2007).

    Article  Google Scholar 

  110. Cotrufo, M. F., Wallenstein, M. D., Boot, C. M., Denef, K. & Paul, E. The microbial efficiency‐matrix stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter? Glob. Change Biol. 19, 988–995 (2013).

    Article  Google Scholar 

  111. Qu, J. et al. A data-driven approach for understanding the structure dependence of redox activity in humic substances. Environ. Res. 219, 115142 (2023).

    Article  Google Scholar 

  112. Sander, M., Hofstetter, T. B. & Gorski, C. A. Electrochemical analyses of redox-active iron minerals: a review of nonmediated and mediated approaches. Environ. Sci. Technol. 49, 5862–5878 (2015).

    Article  Google Scholar 

  113. Gorski, C. A. et al. Redox properties of structural Fe in clay minerals. 1. Electrochemical quantification of electron-donating and -accepting capacities of smectites. Environ. Sci. Technol. 46, 9360–9368 (2012).

    Article  Google Scholar 

  114. Lovley, D. R., Coates, J. D., BluntHarris, E. L., Phillips, E. J. P. & Woodward, J. C. Humic substances as electron acceptors for microbial respiration. Nature 382, 445–448 (1996).

    Article  Google Scholar 

  115. Roden, E. E. et al. Extracellular electron transfer through microbial reduction of solid-phase humic substances. Nat. Geosci. 3, 417–421 (2010).

    Article  Google Scholar 

  116. Zheng, X. J. et al. Comparing electron donating/accepting capacities (EDC/EAC) between crop residue-derived dissolved black carbon and standard humic substances. Sci. Total Environ. 673, 29–35 (2019).

    Article  Google Scholar 

  117. Bauer, I. & Kappler, A. Rates and extent of reduction of Fe(III) compounds and O2 by humic substances. Environ. Sci. Technol. 43, 4902–4908 (2009).

    Article  Google Scholar 

  118. Sundman, A., Byrne, J. M., Bauer, I., Menguy, N. & Kappler, A. Interactions between magnetite and humic substances: redox reactions and dissolution processes. Geochem. Trans. 18, 6 (2017).

    Article  Google Scholar 

  119. Sheng, Y. Z. et al. Lignin-enhanced reduction of structural Fe(III) in nontronite: dual roles of lignin as electron shuttle and donor. Geochim. Cosmochim. Acta 307, 1–21 (2021).

    Article  Google Scholar 

  120. Zuo, H. et al. Reduction of structural Fe(III) in nontronite by humic substances in the absence and presence of Shewanella putrefaciens and accompanying secondary mineralization. Am. Miner. 106, 1957–1970 (2021).

    Article  Google Scholar 

  121. Liu, Y. et al. Coupled reduction of structural Fe (III) in nontronite and oxidation of petroleum hydrocarbons. Geochim. Cosmochim. Acta 344, 103–121 (2023).

    Article  Google Scholar 

  122. Chen, J., Gu, B., Royer, R. A. & Burgos, W. D. The roles of natural organic matter in chemical and microbial reduction of ferric iron. Sci. Total Environ. 307, 167–178 (2003).

    Article  Google Scholar 

  123. Garg, S., Jiang, C. & Waite, T. D. Mechanistic insights into iron redox transformations in the presence of natural organic matter: impact of pH and light. Geochim. Cosmochim. Acta 165, 14–34 (2015).

    Article  Google Scholar 

  124. Coates, J. D., Cole, K. A., Chakraborty, R., O'Connor, S. M. & Achenbach, L. A. Diversity and ubiquity of bacteria capable of utilizing humic substances as electron donors for anaerobic respiration. Appl. Environ. Microbiol. 68, 2445–2452 (2002).

    Article  Google Scholar 

  125. Stern, N. et al. Dual role of humic substances as electron donor and shuttle for dissimilatory iron reduction. Environ. Sci. Technol. 52, 5691–5699 (2018).

    Article  Google Scholar 

  126. Han, R. et al. Multiple effects of humic components on microbially mediated iron redox processes and production of hydroxyl radicals. Environ. Sci. Technol. 56, 16419–16427 (2022).

    Article  Google Scholar 

  127. Zuo, H. et al. Role of clay-associated humic substances in catalyzing bioreduction of structural Fe(III) in nontronite by Shewanella putrefaciens CN32. Sci. Total Environ. 741, 140213 (2020).

    Article  Google Scholar 

  128. Zhou, N., Luther, G. W. & Chan, C. S. Ligand effects on biotic and abiotic Fe(II) oxidation by the microaerophile Sideroxydans lithotrophicus. Environ. Sci. Technol. 55, 9362–9371 (2021).

    Article  Google Scholar 

  129. Jiang, J. & Kappler, A. Kinetics of microbial and chemical reduction of humic substances: implications for electron shuttling. Environ. Sci. Technol. 42, 3563–3569 (2008).

    Article  Google Scholar 

  130. Scott, D. T., McKnight, D. M., Blunt-Harris, E. L., Kolesar, S. E. & Lovley, D. R. Quinone moieties act as electron acceptors in the reduction of humic substances by humics-reducing microorganisms. Environ. Sci. Technol. 32, 2984–2989 (1998).

    Article  Google Scholar 

  131. Wolf, M., Kappler, A., Jiang, J. & Meckenstock, R. U. Effects of humic substances and quinones at low concentrations on ferrihydrite reduction by Geobacter metallireducens. Environ. Sci. Technol. 43, 5679–5685 (2009).

    Article  Google Scholar 

  132. Poggenburg, C., Mikutta, R., Schippers, A., Dohrmann, R. & Guggenberger, G. Impact of natural organic matter coatings on the microbial reduction of iron oxides. Geochim. Cosmochim. Acta 224, 223–248 (2018).

    Article  Google Scholar 

  133. Weber, K. A., Urrutia, M. M., Churchill, P. F., Kukkadapu, R. K. & Roden, E. E. Anaerobic redox cycling of iron by freshwater sediment microorganisms. Environ. Microbiol. 8, 100–113 (2006).

    Article  Google Scholar 

  134. Shi, L. et al. Extracellular electron transfer mechanisms between microorganisms and minerals. Nat. Rev. Microbiol. 14, 651–662 (2016).

    Article  Google Scholar 

  135. Cai, C. et al. A methanotrophic archaeon couples anaerobic oxidation of methane to Fe(III) reduction. ISME J. 12, 1929–1939 (2018).

    Article  Google Scholar 

  136. Bai, Y. et al. AQDS and redox-active NOM enables microbial Fe(III)-mineral reduction at cm-scales. Environ. Sci. Technol. 54, 4131–4139 (2020).

    Article  Google Scholar 

  137. Kappler, A. et al. Biochar as an electron shuttle between bacteria and Fe(III) minerals. Environ. Sci. Technol. Lett. 1, 339–344 (2014).

    Article  Google Scholar 

  138. Yu, W., Chu, C. & Chen, B. Enhanced microbial ferrihydrite reduction by pyrogenic carbon: impact of graphitic structures. Environ. Sci. Technol. 56, 239–250 (2022).

    Article  Google Scholar 

  139. Dong, H., Coffin, E. S., Sheng, Y., Duley, M. L. & Khalifa, Y. M. Microbial reduction of Fe(III) in nontronite: role of biochar as a redox mediator. Geochim. Cosmochim. Acta 345, 102–116 (2023).

    Article  Google Scholar 

  140. Zhang, J. et al. Microbial reduction of Fe(III) in illite–smectite minerals by methanogen Methanosarcina mazei. Chem. Geol. 292, 35–44 (2012).

    Article  Google Scholar 

  141. Bai, Y., Subdiaga, E., Haderlein, S. B., Knicker, H. & Kappler, A. High-pH and anoxic conditions during soil organic matter extraction increases its electron-exchange capacity and ability to stimulate microbial Fe(III) reduction by electron shuttling. Biogeosciences 17, 683–698 (2020).

    Article  Google Scholar 

  142. Zhang, J., Dong, H., Liu, D. & Agrawal, A. Microbial reduction of Fe(III) in smectite minerals by thermophilic methanogen Methanothermobacter thermautotrophicus. Geochim. Cosmochim. Acta 106, 203–215 (2013).

    Article  Google Scholar 

  143. Luan, F., Gorski, C. A. & Burgos, W. D. Thermodynamic controls on the microbial reduction of iron-bearing nontronite and uranium. Environ. Sci. Technol. 48, 2750–2758 (2014).

    Article  Google Scholar 

  144. Bravo, C. et al. Kinetics of electron transfer reactions by humic substances: implications for their biogeochemical roles and determination of their electron donating capacity. Chemosphere 286, 131755 (2022).

    Article  Google Scholar 

  145. Daugherty, E. E., Gilbert, B., Nico, P. S. & Borch, T. Complexation and redox buffering of iron(II) by dissolved organic matter. Environ. Sci. Technol. 51, 11096–11104 (2017).

    Article  Google Scholar 

  146. Sun, T. et al. Rapid electron transfer by the carbon matrix in natural pyrogenic carbon. Nat. Commun. 8, 14873 (2017).

    Article  Google Scholar 

  147. Li, S., Kappler, A., Haderlein, S. B. & Zhu, Y. G. Powering biological nitrogen removal from the environment by geobatteries. Trends Biotechnol. 40, 377–380 (2022).

    Article  Google Scholar 

  148. Yang, Z. et al. A coupled function of biochar as geobattery and geoconductor leads to stimulation of microbial Fe (III) reduction and methanogenesis in a paddy soil enrichment culture. Soil. Biol. Biochem. 163, 108446 (2021).

    Article  Google Scholar 

  149. Lovley, D. R. Syntrophy goes electric: direct interspecies electron transfer. Annu. Rev. Microbiol. 71, 643–664 (2017).

    Article  Google Scholar 

  150. Nielsen, L. P., Risgaard-Petersen, N., Fossing, H., Christensen, P. B. & Sayama, M. Electric currents couple spatially separated biogeochemical processes in marine sediment. Nature 463, 1071–1074 (2010).

    Article  Google Scholar 

  151. Lv, J. et al. Molecular-scale investigation with ESI-FT-ICR-MS on fractionation of dissolved organic matter induced by adsorption on iron oxyhydroxides. Environ. Sci. Technol. 50, 2328–2336 (2016).

    Article  Google Scholar 

  152. Chen, Y. et al. Combined effects of humic substances and clay minerals on U(VI) bioreduction. Geochim. Cosmochim. Acta 338, 181–198 (2022).

    Article  Google Scholar 

  153. Amstaetter, K., Borch, T. & Kappler, A. Influence of humic acid imposed changes of ferrihydrite aggregation on microbial Fe(III) reduction. Geochim. Cosmochim. Acta 85, 326–341 (2012).

    Article  Google Scholar 

  154. Fritzsche, A. et al. Organic matter from redoximorphic soils accelerates and sustains microbial Fe(III) reduction. Environ. Sci. Technol. 55, 10821–10831 (2021).

    Article  Google Scholar 

  155. Neumann, A., Olson, T. L. & Scherer, M. M. Spectroscopic evidence for Fe(II)–Fe(III) electron transfer at clay mineral edge and basal sites. Environ. Sci. Technol. 47, 6969–6977 (2013).

    Article  Google Scholar 

  156. Latta, D. E., Neumann, A., Premaratne, W. A. P. J. & Scherer, M. M. Fe(II)–Fe(III) electron transfer in a clay mineral with low Fe content. ACS Earth Space Chem. 1, 197–208 (2017).

    Article  Google Scholar 

  157. Zhang, L., Dong, H. L., Kukkadapu, R. K., Jin, Q. S. & Kovarik, L. Electron transfer between sorbed Fe(II) and structural Fe(III) in smectites and its effect on nitrate-dependent iron oxidation by Pseudogulbenkiania sp. strain 2002. Geochim. Cosmochim. Acta 265, 132–147 (2019).

    Article  Google Scholar 

  158. Alexandrov, V. & Rosso, K. M. Insights into the mechanism of Fe(II) adsorption and oxidation at Fe-clay mineral surfaces from first-principles calculations. J. Phys. Chem. C 117, 22880–22886 (2013).

    Article  Google Scholar 

  159. Zhang, G. X., Kim, J. W., Dong, H. L. & Sommer, A. J. Microbial effects in promoting the smectite to illite reaction: role of organic matter intercalated in the interlayer. Am. Mineral. 92, 1401–1410 (2007).

    Article  Google Scholar 

  160. Wang, M. C. & Huang, P. M. Humic macromolecule interlayering in nontronite through interaction with phenol monomers. Nature 323, 529–531 (1986).

    Article  Google Scholar 

  161. Arroyo, L. J., Li, H., Teppen, B. J., Johnston, C. T. & Boyd, S. A. Oxidation of 1-naphthol coupled to reduction of structural Fe3+ in smectite. Clays Clay Min. 53, 587–596 (2005).

    Article  Google Scholar 

  162. Morrison, K. D., Bristow, T. F. & Kennedy, M. J. The reduction of structural iron in ferruginous smectite via the amino acid cysteine: implications for an electron shuttling compound. Geochim. Cosmochim. Acta 106, 152–163 (2013).

    Article  Google Scholar 

  163. Eusterhues, K. et al. Characterization of ferrihydrite-soil organic matter coprecipitates by X-ray diffraction and Mossbauer spectroscopy. Environ. Sci. Technol. 42, 7891–7897 (2008).

    Article  Google Scholar 

  164. Mikutta, R., Lorenz, D., Guggenberger, G., Haumaier, L. & Freund, A. Properties and reactivity of Fe–organic matter associations formed by coprecipitation versus adsorption: clues from arsenate batch adsorption. Geochim. Cosmochim. Acta 144, 258–276 (2014).

    Article  Google Scholar 

  165. Mikutta, C. & Kretzschmar, R. Synthetic coprecipitates of exopolysaccharides and ferrihydrite. Part II: siderophore-promoted dissolution. Geochim. Cosmochim. Acta 72, 1128–1142 (2008).

    Article  Google Scholar 

  166. Shimizu, M. et al. Dissimilatory reduction and transformation of ferrihydrite-humic acid coprecipitates. Environ. Sci. Technol. 47, 13375–13384 (2013).

    Article  Google Scholar 

  167. Hua, J., Sun, J., Chen, M., Liu, C. & Wu, F. Aqueous Fe (II)-catalyzed iron oxide recrystallization: Fe redox cycling and atom exchange, mineralogical recrystallization and contributing factor. Rev. Environ. Sci. Bio. 22, 55–78 (2023).

    Article  Google Scholar 

  168. Eusterhues, K., Neidhardt, J., Hadrich, A., Kusel, K. & Totsche, K. U. Biodegradation of ferrihydrite-associated organic matter. Biogeochemistry 119, 45–50 (2014).

    Article  Google Scholar 

  169. Zhao, Y. et al. The role and fate of organic carbon during aging of ferrihydrite. Geochim. Cosmochim. Acta 335, 339–355 (2022).

    Article  Google Scholar 

  170. Chen, C., Kukkadapu, R. & Sparks, D. L. Influence of coprecipitated organic matter on Fe2+(aq)-catalyzed transformation of ferrihydrite: implications for carbon dynamics. Environ. Sci. Technol. 49, 10927–10936 (2015).

    Article  Google Scholar 

  171. ThomasArrigo, L. K., Kaegi, R. & Kretzschmar, R. Ferrihydrite growth and transformation in the presence of ferrous iron and model organic ligands. Environ. Sci. Technol. 53, 13636–13647 (2019).

    Article  Google Scholar 

  172. Hu, S. et al. Kinetics of As (V) and carbon sequestration during Fe (II)-induced transformation of ferrihydrite-As (V)-fulvic acid coprecipitates. Geochim. Cosmochim. Acta 272, 160–176 (2020).

    Article  Google Scholar 

  173. Sharma, P., Ofner, J. & Kappler, A. Formation of binary and ternary colloids and dissolved complexes of organic matter, Fe and As. Environ. Sci. Technol. 44, 4479–4485 (2010).

    Article  Google Scholar 

  174. Taillefert, M., Bono, A. B. & Luther, G. W. Reactivity of freshly formed Fe(III) in synthetic solutions and (pore)waters: voltammetric evidence of an aging process. Environ. Sci. Technol. 34, 2169–2177 (2000).

    Article  Google Scholar 

  175. Lovley, D. R., Woodward, J. C. & Chapelle, F. H. Stimulated anoxic biodegradation of aromatic hydrocarbons using Fe(III) ligands. Nature 370, 128–131 (1994).

    Article  Google Scholar 

  176. Urrutia, M. M., Roden, E. E. & Zachara, J. M. Influence of aqueous and solid-phase Fe(II) complexants on microbial reduction of crystalline iron(III) oxides. Environ. Sci. Technol. 33, 4022–4028 (1999).

    Article  Google Scholar 

  177. Peng, C., Bryce, C., Sundman, A. & Kappler, A. Cryptic cycling of complexes containing Fe(III) and organic matter by phototrophic Fe(II)-oxidizing bacteria. Appl. Environ. Microbiol. 85, e02826–02818 (2019).

    Article  Google Scholar 

  178. Peiffer, S. & Stubert, I. The oxidation of pyrite at pH 7 in the presence of reducing and nonreducing Fe(III)-chelators. Geochim. Cosmochim. Acta 63, 3171–3182 (1999).

    Article  Google Scholar 

  179. Hadrich, A. et al. Microbial Fe(II) oxidation by Sideroxydans lithotrophicus ES-1 in the presence of Schloppnerbrunnen fen-derived humic acids. FEMS Microbiol. Ecol. 95, fiz034 (2019).

    Article  Google Scholar 

  180. Bosch, J. & Meckenstock, R. U. Rates and potential mechanism of anaerobic nitrate-dependent microbial pyrite oxidation. Biochem. Soc. Trans. 40, 1280–1283 (2012).

    Article  Google Scholar 

  181. Zhao, S. et al. Promotion of microbial oxidation of structural Fe(II) in nontronite by oxalate and NTA. Environ. Sci. Technol. 54, 13026–13035 (2020).

    Article  Google Scholar 

  182. Zeng, Q., Dong, H. & Wang, X. Effect of ligands on the production of oxidants from oxygenation of reduced Fe-bearing clay mineral nontronite. Geochim. Cosmochim. Acta 251, 136–156 (2019).

    Article  Google Scholar 

  183. Dong, H. et al. Mineral transformations associated with the microbial reduction of magnetite. Chem. Geol. 169, 299–318 (2000).

    Article  Google Scholar 

  184. Dong, H. et al. Microbial reduction of structural Fe(III) in illite and goethite. Environ. Sci. Technol. 37, 1268–1276 (2003).

    Article  Google Scholar 

  185. Melton, E. D., Swanner, E. D., Behrens, S., Schmidt, C. & Kappler, A. The interplay of microbially mediated and abiotic reactions in the biogeochemical Fe cycle. Nat. Rev. Microbiol. 12, 797–808 (2014).

    Article  Google Scholar 

  186. Kappler, A. & Bryce, C. Cryptic biogeochemical cycles: unravelling hidden redox reactions. Environ. Microbiol. 19, 842–846 (2017).

    Article  Google Scholar 

  187. Ratasuk, N. & Nanny, M. A. Characterization and quantification of reversible redox sites in humic substances. Environ. Sci. Technol. 41, 7844–7850 (2007).

    Article  Google Scholar 

  188. Grünewald, G., Kaiser, K., Jahn, R. & Guggenberger, G. Organic matter stabilization in young calcareous soils as revealed by density fractionation and analysis of lignin-derived constituents. Org. Geochem. 37, 1573–1589 (2006).

    Article  Google Scholar 

  189. McAdams, B. C., Hudson, J., Arnold, W. A. & Chin, Y. P. Effects of aquatic dissolved organic matter redox state on adsorption to goethite. Aquat. Sci. 85, 19 (2023).

    Article  Google Scholar 

  190. Williams, A. G. B. & Scherer, M. M. Spectroscopic evidence for Fe(II)–Fe(III) electron transfer at the iron oxide–water interface. Environ. Sci. Technol. 38, 4782–4790 (2004).

    Article  Google Scholar 

  191. Masiello, C., Chadwick, O., Southon, J., Torn, M. & Harden, J. Weathering controls on mechanisms of carbon storage in grassland soils. Glob. Biogeochem. Cycles https://doi.org/10.1029/2004GB002219 (2004).

    Article  Google Scholar 

  192. Boye, K. et al. Thermodynamically controlled preservation of organic carbon in floodplains. Nat. Geosci. 10, 415–419 (2017).

    Article  Google Scholar 

  193. Li, Y. et al. Oxygen availability regulates the quality of soil dissolved organic matter by mediating microbial metabolism and iron oxidation. Glob. Change Biol. 28, 7410–7427 (2022).

    Article  Google Scholar 

  194. Pronk, G. J. et al. Interaction of minerals, organic matter, and microorganisms during biogeochemical interface formation as shown by a series of artificial soil experiments. Biol. Fert. Soils 53, 9–22 (2017).

    Article  Google Scholar 

  195. Wang, Y. et al. Evaluating wetland soil carbon stability related to iron transformation during redox oscillations. Geoderma 428, 116222 (2022).

    Article  Google Scholar 

  196. Kogel-Knabner, I. & Rumpel, C. Advances in molecular approaches for understanding soil organic matter composition, origin, and turnover: a historical overview. Adv. Agron. 149, 1–48 (2018).

    Article  Google Scholar 

  197. Lv, J., Huang, Z., Luo, L., Zhang, S. & Wang, Y. Advances in molecular and microscale characterization of soil organic matter: current limitations and future prospects. Environ. Sci. Technol. 56, 12793–12810 (2022).

    Article  Google Scholar 

  198. Zhang, X. et al. Application of Fourier transform ion cyclotron resonance mass spectrometry to characterize natural organic matter. Chemosphere 260, 127458 (2020).

    Article  Google Scholar 

  199. Kim, J., Dong, H., Seabaugh, J., Newell, S. W. & Eberl, D. D. Role of microbes in the smectite-to-illite reaction. Science 303, 830–832 (2004).

    Article  Google Scholar 

  200. Wu, L. M., Zhou, C. H., Keeling, J., Tong, D. S. & Yu, W. H. Towards an understanding of the role of clay minerals in crude oil formation, migration and accumulation. Earth Sci. Rev. 115, 373–386 (2012).

    Article  Google Scholar 

  201. Koven, C. et al. The effect of vertically resolved soil biogeochemistry and alternate soil C and N models on C dynamics of CLM4. Biogeosciences 10, 7109–7131 (2013).

    Article  Google Scholar 

  202. Dong, H., Jaisi, D. P., Kim, J. & Zhang, G. Microbe–clay mineral interactions. Am. Mineral. 94, 1505–1519 (2009).

    Article  Google Scholar 

  203. Napieralski, S. A. et al. Microbial chemolithotrophy mediates oxidative weathering of granitic bedrock. Proc. Natl Acad. Sci. USA 116, 26394–26401 (2019).

    Article  Google Scholar 

  204. Colombo, C., Palumbo, G., He, J.-Z., Pinton, R. & Cesco, S. Review on iron availability in soil: interaction of Fe minerals, plants, and microbes. J. Soils Sediment. 14, 538–548 (2013).

    Article  Google Scholar 

  205. Li, Y. & Gong, X. Effects of dissolved organic matter on the bioavailability of heavy metals during microbial dissimilatory iron reduction: a review. Rev. Environ. Contam. Toxicol. 257, 69–92 (2021).

    Google Scholar 

  206. Kendall, B., Dahl, T. W. & Anbar, A. D. The stable isotope geochemistry of molybdenum. Rev. Mineral. Geochem. 82, 683–732 (2017).

    Article  Google Scholar 

  207. Moynier, F., Vance, D., Fujii, T. & Savage, P. The isotope geochemistry of zinc and copper. Rev. Mineral. Geochem. 82, 543–600 (2017).

    Article  Google Scholar 

  208. Liu, W., Wang, Y., Li, J., Qian, K. & Xie, X. Indices of the dual roles of OM as electron donor and complexing compound involved in As and Fe mobilization in aquifer systems of the Datong Basin. Environ. Pollut. 262, 114305 (2020).

    Article  Google Scholar 

  209. Robinson, T. C., Latta, D. E., Leddy, J. & Scherer, M. M. Redox potentials of magnetite suspensions under reducing conditions. Environ. Sci. Technol. 56, 17454–17461 (2022).

    Article  Google Scholar 

  210. Xin, D., Xian, M. & Chiu, P. C. New methods for assessing electron storage capacity and redox reversibility of biochar. Chemosphere 215, 827–834 (2019).

    Article  Google Scholar 

  211. Pham, D. M., Kasai, T., Yamaura, M. & Katayama, A. Humin: no longer inactive natural organic matter. Chemosphere 269, 128697 (2021).

    Article  Google Scholar 

  212. Muraleedharan, M. N. et al. Effect of lignin fractions isolated from different biomass sources on cellulose oxidation by fungal lytic polysaccharide monooxygenases. Biotechnol. Biofuels 11, 296 (2018).

    Article  Google Scholar 

  213. Wenk, J., Graf, C., Aeschbacher, M., Sander, M. & Canonica, S. Effect of solution pH on the dual role of dissolved organic matter in sensitized pollutant photooxidation. Environ. Sci. Technol. 55, 15110–15122 (2021).

    Article  Google Scholar 

  214. O’Loughlin, E. J. Effects of electron transfer mediators on the bioreduction of lepidocrocite (gamma-FeOOH) by Shewanella putrefaciens CN32. Environ. Sci. Technol. 42, 6876–6882 (2008).

    Article  Google Scholar 

  215. Anderson, R. F. Energetics of the one-electron reduction steps of riboflavin, FMN and FAD to their fully reduced forms. Biochim. Biophys. Acta 722, 158–162 (1983).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (42192500 and 42192503). The authors are grateful to D. Guo for improving the quality of all figures and to D. Hu for helping with reference formatting. A.K. acknowledges infrastructural support by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy, Cluster of Excellence EXC2124, project ID 390838134.

Author information

Authors and Affiliations

Authors

Contributions

H.D. developed the concept and wrote the first draft. All authors contributed to editing and discussion.

Corresponding author

Correspondence to Hailiang Dong.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Earth & Environment thanks Dongmei Zhou, Karrie Weber and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

α-Glucosidase

A carbohydrate-hydrolase that releases α-glucose.

β-Glucosidase

An enzyme that catalyses the hydrolysis reaction of cellobiose.

Autotrophic

Ability of microorganisms to produce biomass from inorganic carbon (CO2) using energy from sunlight or inorganic chemical reactions.

Fenton-like reaction

Reduction of O2 to H2O2 and subsequent reaction with Fe(II).

Heterotrophic

Ability of microorganisms to produce biomass from organic carbon.

Hydrolases

Enzymes that break down a chemical compound by reaction with water.

Microbial decomposers

A microbial community that decomposes organic matter.

Microbial necromass

Dead biomass, including all microbial products and constituting an important fraction of soil organic matter.

Mineral–OM associations

(MOAs). Mineral–organic matter association via physical and chemical interactions.

Mixotrophic

Ability of microorganisms to be either autotrophic or heterotrophic depending on the availability of carbon substrate and environmental conditions.

Oxidases

Enzymes that catalyse chemical reactions involving donation of a hydrogen atom and reduction of oxygen to form water or hydrogen peroxide.

Peroxidases

Enzymes that catalyse the oxidation of a substrate by peroxide.

Phototrophic

A special type of autotrophic lifestyle, using sunlight as a source of energy to synthesize organic compounds out of inorganic carbon (CO2).

Reactive oxygen species

(ROS). Highly reactive chemical species, owing to the presence of unpaired electrons, formed from reaction with molecular O2.

Redox potential

The thermodynamic driving force of a chemical species to be either reduced by accepting electrons or oxidized by donating electrons.

Substrate

Organic compounds that specifically bind to enzymes to support microbial growth.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, H., Zeng, Q., Sheng, Y. et al. Coupled iron cycling and organic matter transformation across redox interfaces. Nat Rev Earth Environ 4, 659–673 (2023). https://doi.org/10.1038/s43017-023-00470-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43017-023-00470-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing