Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Evapotranspiration on a greening Earth

Abstract

Evapotranspiration (ET) — the distribution and partitioning of which is strongly mediated by vegetation — is central to the water, energy and carbon cycles. In this Review, we examine the spatiotemporal patterns of ET changes and their linkages with vegetation. A multi-decadal and accelerating rise in global ET is apparent since the 1980s. Diagnostic data sets indicate increases of 0.66 ± 0.38 mm year−2 (mean ± one standard deviation) over 1982–2011 and 1.19 ± 0.31 mm year−2 over 2001–2020. These changes are largely related to vegetation greening (increasing leaf area index (LAI)), hence large ET increases occur in northern high latitudes where greening predominates; increased precipitation and enhanced atmospheric evaporative demand have secondary roles. The impacts of specific drivers of vegetation change on ET, such as CO2 fertilization, land use change and nitrogen deposition, are uncertain and difficult to quantify at the global scale but have strong impacts at local and/or regional scales. Owing to projected increases in LAI, global ET is expected to continue rising with future anthropogenic warming, although ET sensitivity to greening is lower than in the present climate. Enhanced model validation with respect to long-term trends and ET partitioning, improved mechanistic understanding of key processes and greater data-model fusion techniques are essential for improved understanding of ET characteristics.

Key points

  • Plant transpiration (Ec) dominates global evapotranspiration (ET). The ratio of transpiration over ET does not increase monotonically with the leaf area index (LAI), partly due to concurrent increases in interception loss.

  • Vegetation greening has primarily and increasingly promoted a multi-decadal increase in global ET since the 1980s.

  • Extended growing seasons have altered the seasonal cycle of ET, with changes in spring and autumn ET in northern mid to high latitudes closely correlated with changes in vegetation phenology.

  • The effect of CO2 fertilization on ET is limited at the global scale but shows a clear contrast between wet (negative impact) and dry (positive impact) regions for the past few decades.

  • Global ET is projected to continue increasing under future climate change. However, whether the CO2 fertilization effect on vegetation water use is accounted for underlies the different projections of future ET trends and the consequent hydrological impacts.

  • Global ET increase contributes to increased land precipitation and decreased near-surface air temperature.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Spatial pattern of mean annual evapotranspiration and its components.
Fig. 2: Trends in global evapotranspiration.
Fig. 3: Changes in the seasonality of evapotranspiration and the linkage with changes in vegetation phenology.
Fig. 4: Projected changes in global evapotranspiration.
Fig. 5: Trends in evapotranspiration induced by CO2 fertilization, land use change and nitrogen deposition.
Fig. 6: Evapotranspiration impacts on climate.

Similar content being viewed by others

Data availability

Data sets used in this Review are all publicly available and are summarized in the Supplementary Material.

References

  1. Katul, G. G., Oren, R., Manzoni, S., Higgins, C. & Parlange, M. B. Evapotranspiration: a process driving mass transport and energy exchange in the soil–plant–atmosphere–climate system. Rev. Geophys. 50, 2011RG000366 (2012).

    Article  Google Scholar 

  2. Fisher, J. B. et al. The future of evapotranspiration: global requirements for ecosystem functioning, carbon and climate feedbacks, agricultural management, and water resources. Water Resour. Res. 53, 2618–2626 (2017).

    Article  Google Scholar 

  3. Oki, T. & Kanae, S. Global hydrological cycles and world water resources. Science 313, 1068–1072 (2006).

    Article  Google Scholar 

  4. Trenberth, K. E., Fasullo, J. T. & Kiehl, J. Earth’s global energy budget. Bull. Am. Meteorol. Soc. 90, 311–324 (2009).

    Article  Google Scholar 

  5. Roderick, M. L., Sun, F., Lim, W. H. & Farquhar, G. D. A general framework for understanding the response of the water cycle to global warming over land and ocean. Hydrol. Earth Syst. Sci. 18, 1575–1589 (2014).

    Article  Google Scholar 

  6. Wild, M. et al. The energy balance over land and oceans: an assessment based on direct observations and CMIP5 climate models. Clim. Dyn. 44, 3393–3429 (2015).

    Article  Google Scholar 

  7. Law, B. E. et al. Environmental controls over carbon dioxide and water vapor exchange of terrestrial vegetation. Agric. For. Meteorol. 113, 97–120 (2002).

    Article  Google Scholar 

  8. Wong, S. C., Cowan, I. R. & Farquhar, G. D. Stomatal conductance correlates with photosynthetic capacity. Nature 282, 424–426 (1979).

    Article  Google Scholar 

  9. Hetherington, A. M. & Woodward, F. I. The role of stomata in sensing and driving environmental change. Nature 424, 901–908 (2003).

    Article  Google Scholar 

  10. Zhu, Z. et al. Greening of the Earth and its drivers. Nat. Clim. Change 6, 791–795 (2016).

    Article  Google Scholar 

  11. Piao, S. et al. Characteristics, drivers and feedbacks of global greening. Nat. Rev. Earth Environ. 1, 14–27 (2020).

    Article  Google Scholar 

  12. Donohue, R. J., Roderick, M. L., McVicar, T. R. & Yang, Y. A simple hypothesis of how leaf and canopy-level transpiration and assimilation respond to elevated CO2 reveals distinct response patterns between disturbed and undisturbed vegetation. J. Geophys. Res. Biogeosci. 122, 168–184 (2017).

    Article  Google Scholar 

  13. Pan, S. et al. Evaluation of global terrestrial evapotranspiration using state-of-the-art approaches in remote sensing, machine learning and land surface modeling. Hydrol. Earth Syst. Sci. 24, 1485–1509 (2020).

    Article  Google Scholar 

  14. Chen, C. et al. China and India lead in greening of the world through land-use management. Nat. Sustain. 2, 122–129 (2019).

    Article  Google Scholar 

  15. Sterling, S. M., Ducharne, A. & Polcher, J. The impact of global land-cover change on the terrestrial water cycle. Nat. Clim. Change 3, 385–390 (2013).

    Article  Google Scholar 

  16. Miralles, D. G. et al. The WACMOS-ET project—Part 2: evaluation of global terrestrial evaporation data sets. Hydrol. Earth Syst. Sci. 20, 823–842 (2016).

    Article  Google Scholar 

  17. Wang, Z., Zhan, C., Ning, L. & Guo, H. Evaluation of global terrestrial evapotranspiration in CMIP6 models. Theor. Appl. Climatol. 143, 521–531 (2021).

    Article  Google Scholar 

  18. Mueller, B. et al. Evaluation of global observations-based evapotranspiration datasets and IPCC AR4 simulations. Geophys. Res. Lett. 38, 2010GL046230 (2011).

    Article  Google Scholar 

  19. Vicente-Serrano, S. M. et al. The uncertain role of rising atmospheric CO2 on global plant transpiration. Earth Sci. Rev. 230, 104055 (2022).

    Article  Google Scholar 

  20. Zeng, Z., Peng, L. & Piao, S. Response of terrestrial evapotranspiration to Earth’s greening. Curr. Opin. Environ. Sustain. 33, 9–25 (2018).

    Article  Google Scholar 

  21. Milly, P. C. D. & Dunne, K. A. Potential evapotranspiration and continental drying. Nat. Clim. Change 6, 946 (2016).

    Article  Google Scholar 

  22. Yang, Y. et al. Comparing Palmer Drought Severity Index drought assessments using the traditional offline approach with direct climate model outputs. Hydrol. Earth Syst. Sci. 24, 2921–2930 (2020).

    Article  Google Scholar 

  23. Zhang, C., Yang, Y., Yang, D. & Wu, X. Multidimensional assessment of global dryland changes under future warming in climate projections. J. Hydrol. 592, 125618 (2021).

    Article  Google Scholar 

  24. Pascolini-Campbell, M., Lee, C., Stavros, N. & Fisher, J. B. ECOSTRESS reveals pre-fire vegetation controls on burn severity for southern California wildfires of 2020. Glob. Ecol. Biogeogr. 31, 1976–1989 (2022).

    Article  Google Scholar 

  25. Allen, R. G., Pereira, L. S., Raes, D. & Smith, M. Crop evapotranspiration—guidelines for computing crop water requirements—FAO Irrigation and drainage paper 56. FAO 300, D05109 (1998).

    Google Scholar 

  26. Khan, A. et al. Estimating biomass and yield using METRIC evapotranspiration and simple growth algorithms. Agron. J. 111, 536–544 (2019).

    Article  Google Scholar 

  27. Fisher, J. B., Tu, K. P. & Baldocchi, D. D. Global estimates of the land–atmosphere water flux based on monthly AVHRR and ISLSCP-II data, validated at 16 FLUXNET sites. Remote. Sens. Environ. 112, 901–919 (2008).

    Article  Google Scholar 

  28. Jung, M. et al. Global patterns of land–atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations. J. Geophys. Res. Biogeosci. 116, 2010JG001566 (2011).

    Article  Google Scholar 

  29. Koppa, A., Rains, D., Hulsman, P., Poyatos, R. & Miralles, D. G. A deep learning-based hybrid model of global terrestrial evaporation. Nat. Commun. 13, 1912 (2022).

    Article  Google Scholar 

  30. Yang, Y. in Encyclopedia of Soils in the Environment (eds Oliver Margaret, A. & Goss Michael, J.) (Elsevier, 2023).

  31. Harris, I., Osborn, T. J., Jones, P. & Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 7, 109 (2020).

    Article  Google Scholar 

  32. Hinkelman, L. M. The global radiative energy budget in MERRA and MERRA-2: evaluation with respect to CERES EBAF data. J. Clim. 32, 1973–1994 (2019).

    Article  Google Scholar 

  33. Budyko, M. I. Climate and Life (Academic, 1974).

  34. Brutsaert, W., Cheng, L. & Zhang, L. Spatial distribution of global landscape evaporation in the early twenty-first century by means of a generalized complementary approach. J. Hydrometeorol. 21, 287–298 (2020).

    Article  Google Scholar 

  35. Semenov, V. & Bengtsson, L. Secular trends in daily precipitation characteristics: greenhouse gas simulation with a coupled AOGCM. Clim. Dyn. 19, 123–140 (2002).

    Article  Google Scholar 

  36. Jia, A., Liang, S., Jiang, B., Zhang, X. & Wang, G. Comprehensive assessment of global surface net radiation products and uncertainty analysis. J. Geophys. Res. Atmos. 123, 1970–1989 (2018).

    Article  Google Scholar 

  37. Fisher, J. B., Badgley, G. & Blyth, E. Global nutrient limitation in terrestrial vegetation. Glob. Biogeochem. Cy. 26, 2011GB004252 (2012).

    Article  Google Scholar 

  38. Yang, Y., Donohue, R. J., McVicar, T. R. & Roderick, M. L. An analytical model for relating global terrestrial carbon assimilation with climate and surface conditions using a rate limitation framework. Geophys. Res. Lett. 42, 9825–9835 (2015).

    Article  Google Scholar 

  39. Woodward, F. I. Climate and Plant Distribution (Cambridge Univ. Press, 1987).

  40. Zhang, S., Yang, Y., McVicar, T. R. & Yang, D. An analytical solution for the impact of vegetation changes on hydrological partitioning within the Budyko framework. Water Resour. Res. 54, 519–537 (2018).

    Article  Google Scholar 

  41. Zhang, Y. et al. Multi-decadal trends in global terrestrial evapotranspiration and its components. Sci. Rep. 6, 19124 (2016).

    Article  Google Scholar 

  42. Li, D., Pan, M., Cong, Z., Zhang, L. & Wood, E. Vegetation control on water and energy balance within the Budyko framework. Water Resour. Res. 49, 969–976 (2013).

    Article  Google Scholar 

  43. Ge, Z.-M., Zhou, X., Kellomäki, S., Peltola, H. & Wang, K.-Y. Climate, canopy conductance and leaf area development controls on evapotranspiration in a boreal coniferous forest over a 10-year period: a united model assessment. Ecol. Modell. 222, 1626–1638 (2011).

    Article  Google Scholar 

  44. Liu, Y., Zhang, Y., Shan, N., Zhang, Z. & Wei, Z. Global assessment of partitioning transpiration from evapotranspiration based on satellite solar-induced chlorophyll fluorescence data. J. Hydrol. 612, 128044 (2022).

    Article  Google Scholar 

  45. Talsma, C. J. et al. Sensitivity of evapotranspiration components in remote sensing-based models. Remote. Sens. 10, 1601 (2018).

    Article  Google Scholar 

  46. Lian, X. et al. Partitioning global land evapotranspiration using CMIP5 models constrained by observations. Nat. Clim. Change 8, 640–646 (2018).

    Article  Google Scholar 

  47. Jasechko, S. et al. Terrestrial water fluxes dominated by transpiration. Nature 496, 347–350 (2013).

    Article  Google Scholar 

  48. Wei, Z. et al. Revisiting the contribution of transpiration to global terrestrial evapotranspiration. Geophys. Res. Lett. 44, 2792–2801 (2017).

    Article  Google Scholar 

  49. Schlesinger, W. H. & Jasechko, S. Transpiration in the global water cycle. Agric. For. Meteorol. 189-190, 115–117 (2014).

    Article  Google Scholar 

  50. Good, S. P., Noone, D. & Bowen, G. Hydrologic connectivity constrains partitioning of global terrestrial water fluxes. Science 349, 175–177 (2015).

    Article  Google Scholar 

  51. Coenders-Gerrits, A. M. J. et al. Uncertainties in transpiration estimates. Nature 506, E1–E2 (2014).

    Article  Google Scholar 

  52. Zhou, S., Yu, B., Zhang, Y., Huang, Y. & Wang, G. Partitioning evapotranspiration based on the concept of underlying water use efficiency. Water Resour. Res. 52, 1160–1175 (2016).

    Article  Google Scholar 

  53. Li, X. et al. A simple and objective method to partition evapotranspiration into transpiration and evaporation at eddy-covariance sites. Agric. For. Meteorol. 265, 171–182 (2019).

    Article  Google Scholar 

  54. Wang, L., Good, S. P. & Caylor, K. K. Global synthesis of vegetation control on evapotranspiration partitioning. Geophys. Res. Lett. 41, 6753–6757 (2014).

    Article  Google Scholar 

  55. Mianabadi, A., Coenders-Gerrits, M., Shirazi, P., Ghahraman, B. & Alizadeh, A. A global Budyko model to partition evaporation into interception and transpiration. Hydrol. Earth Syst. Sci. 23, 4983–5000 (2019).

    Article  Google Scholar 

  56. Choudhury, B. J. & DiGirolamo, N. E. A biophysical process-based estimate of global land surface evaporation using satellite and ancillary data I. Model description and comparison with observations. J. Hydrol. 205, 164–185 (1998).

    Article  Google Scholar 

  57. Zhang, Y. et al. Coupled estimation of 500 m and 8-day resolution global evapotranspiration and gross primary production in 2002–2017. Remote. Sens. Environ. 222, 165–182 (2019).

    Article  Google Scholar 

  58. Good, S. P., Moore, G. W. & Miralles, D. G. A mesic maximum in biological water use demarcates biome sensitivity to aridity shifts. Nat. Ecol. Evol. 1, 1883–1888 (2017).

    Article  Google Scholar 

  59. Wang-Erlandsson, L., van der Ent, R. J., Gordon, L. J. & Savenije, H. H. G. Contrasting roles of interception and transpiration in the hydrological cycle—part 1: temporal characteristics over land. Earth Syst. Dynam. 5, 441–469 (2014).

    Article  Google Scholar 

  60. Feng, T., Su, T., Zhi, R., Tu, G. & Ji, F. Assessment of actual evapotranspiration variability over global land derived from seven reanalysis datasets. Int. J. Climatol. 39, 2919–2932 (2019).

    Article  Google Scholar 

  61. Ma, N., Szilagyi, J. & Zhang, Y. Calibration-free complementary relationship estimates terrestrial evapotranspiration globally. Water Resour. Res. 57, e2021WR029691 (2021).

    Article  Google Scholar 

  62. Yan, H. et al. Diagnostic analysis of interannual variation of global land evapotranspiration over 1982–2011: assessing the impact of ENSO. J. Geophys. Res. Atmos. 118, 8969–8983 (2013).

    Article  Google Scholar 

  63. Wang, R. et al. Recent increase in the observation-derived land evapotranspiration due to global warming. Environ. Res. Lett. 17, 024020 (2022).

    Article  Google Scholar 

  64. Zhang, K. et al. Vegetation greening and climate change promote multidecadal rises of global land evapotranspiration. Sci. Rep. 5, 15956 (2015).

    Article  Google Scholar 

  65. Jung, M. et al. Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature 467, 951–954 (2010).

    Article  Google Scholar 

  66. Martens, B. et al. GLEAM v3: satellite-based land evaporation and root-zone soil moisture. Geosci. Model. Dev. 10, 1903–1925 (2017).

    Article  Google Scholar 

  67. Li, C. et al. CAMELE: collocation-analyzed multi-source ensembled land evapotranspiration data. Earth Syst. Sci. Data Discuss. https://doi.org/10.5194/essd-2021-456 (2022).

    Article  Google Scholar 

  68. Forzieri, G. et al. Increased control of vegetation on global terrestrial energy fluxes. Nat. Clim. Change 10, 356–362 (2020).

    Article  Google Scholar 

  69. Miralles, D. G. et al. El Niño–La Niña cycle and recent trends in continental evaporation. Nat. Clim. Change 4, 122–126 (2014).

    Article  Google Scholar 

  70. Park, H. et al. Quantitative separation of precipitation and permafrost waters used for evapotranspiration in a boreal forest: a numerical study using tracer model. J. Geophys. Res. Biogeosci. 126, e2021JG006645 (2021).

    Article  Google Scholar 

  71. Hasper, T. B. et al. Water use by Swedish boreal forests in a changing climate. Funct. Ecol. 30, 690–699 (2016).

    Article  Google Scholar 

  72. Loeb, N. G. et al. Evaluating twenty-year trends in earth’s energy flows from observations and reanalyses. J. Geophys. Res. Atmos. 127, e2022JD036686 (2022).

    Article  Google Scholar 

  73. Jia, A., Jiang, B., Liang, S., Zhang, X. & Ma, H. Validation and spatiotemporal analysis of CERES surface net radiation product. Remote. Sens. 8, 90 (2016).

    Article  Google Scholar 

  74. Yin, Z.-Y., Wang, H. & Liu, X. A comparative study on precipitation climatology and interannual variability in the lower midlatitude East Asia and Central Asia. J. Clim. 27, 7830–7848 (2014).

    Article  Google Scholar 

  75. Hoang, N. T. & Kanemoto, K. Mapping the deforestation footprint of nations reveals growing threat to tropical forests. Nat. Ecol. Evol. 5, 845–853 (2021).

    Article  Google Scholar 

  76. Chen, A., Guan, H. & Batelaan, O. Seesaw terrestrial wetting and drying between eastern and western Australia. Earths Future 9, e2020EF001893 (2021).

    Article  Google Scholar 

  77. Wu, J. et al. The reliability of global remote sensing evapotranspiration products over Amazon. Remote. Sens. 12, 2211 (2020).

    Article  Google Scholar 

  78. Ruhoff, A. et al. Global evapotranspiration datasets assessment using water balance in South America. Remote. Sens. 14, 2526 (2022).

    Article  Google Scholar 

  79. Sörensson, A. A. & Ruscica, R. C. Intercomparison and uncertainty assessment of nine evapotranspiration estimates over South America. Water Resour. Res. 54, 2891–2908 (2018).

    Article  Google Scholar 

  80. Samanta, A. et al. Amazon forests did not green-up during the 2005 drought. Geophys. Res. Lett. 37, 2009GL042154 (2010).

    Article  Google Scholar 

  81. Ziervogel, G., Bharwani, S. & Downing, T. E. Adapting to climate variability: pumpkins, people and policy. Nat. Resour. Forum 30, 294–305 (2006).

    Article  Google Scholar 

  82. Finlayson, B. L., and T. A. McMahon in Fluvial Geomorphology of Australia (ed. Warner, R. F.) 17–40 (Academic, 1988).

  83. Maidment, R. I., Allan, R. P. & Black, E. Recent observed and simulated changes in precipitation over Africa. Geophys. Res. Lett. 42, 8155–8164 (2015).

    Article  Google Scholar 

  84. Abram, N. J. et al. Connections of climate change and variability to large and extreme forest fires in southeast Australia. Commun. Earth Environ. 2, 8 (2021).

    Article  Google Scholar 

  85. Yang, Y. et al. Lags in hydrologic recovery following an extreme drought: assessing the roles of climate and catchment characteristics. Water Resour. Res. 53, 4821–4837 (2017).

    Article  Google Scholar 

  86. van Dijk, A. I. J. M. et al. The millennium drought in southeast Australia (2001–2009): natural and human causes and implications for water resources, ecosystems, economy, and society. Water Resour. Res. 49, 1040–1057 (2013).

    Article  Google Scholar 

  87. Boschat, G. et al. Large scale and sub-regional connections in the lead up to summer heat wave and extreme rainfall events in eastern Australia. Clim. Dyn. 44, 1823–1840 (2015).

    Article  Google Scholar 

  88. Beck, H. E. et al. MSWEP V2 Global 3-hourly 0.1° precipitation: methodology and quantitative assessment. Bull. Am. Meteorol. Soc. 100, 473–500 (2019).

    Article  Google Scholar 

  89. Obrist, D. et al. Quantifying the effects of phenology on ecosystem evapotranspiration in planted grassland mesocosms using EcoCELL technology. Agric. For. Meteorol. 118, 173–183 (2003).

    Article  Google Scholar 

  90. Young, A. M. et al. Disentangling the relative drivers of seasonal evapotranspiration across a continental-scale aridity gradient. J. Geophys. Res. Biogeosci. 127, e2022JG006916 (2022).

    Article  Google Scholar 

  91. Wever, L. A., Flanagan, L. B. & Carlson, P. J. Seasonal and interannual variation in evapotranspiration, energy balance and surface conductance in a northern temperate grassland. Agric. For. Meteorol. 112, 31–49 (2002).

    Article  Google Scholar 

  92. Nicholls, E. M. & Carey, S. K. Evapotranspiration and energy partitioning across a forest–shrub vegetation gradient in a subarctic, alpine catchment. J. Hydrol. 602, 126790 (2021).

    Article  Google Scholar 

  93. Park, T. et al. Changes in growing season duration and productivity of northern vegetation inferred from long-term remote sensing data. Environ. Res. Lett. 11, 084001 (2016).

    Article  Google Scholar 

  94. Gaertner, B. A. et al. Climate, forest growing season, and evapotranspiration changes in the central Appalachian Mountains, USA. Sci. Total Environ. 650, 1371–1381 (2019).

    Article  Google Scholar 

  95. Hwang, T. et al. Nonstationary hydrologic behavior in forested watersheds is mediated by climate-induced changes in growing season length and subsequent vegetation growth. Water Resour. Res. 54, 5359–5375 (2018).

    Article  Google Scholar 

  96. White, M. A., Running, S. W. & Thornton, P. E. The impact of growing-season length variability on carbon assimilation and evapotranspiration over 88 years in the eastern US deciduous forest. Int. J. Biometeorol. 42, 139–145 (1999).

    Article  Google Scholar 

  97. Lian, X. et al. Summer soil drying exacerbated by earlier spring greening of northern vegetation. Sci. Adv. 6, aax0255 (2020).

    Article  Google Scholar 

  98. Kim, J. H. et al. Warming-induced earlier greenup leads to reduced stream discharge in a temperate mixed forest catchment. J. Geophys. Res. Biogeosci. 123, 1960–1975 (2018).

    Article  Google Scholar 

  99. Gonsamo, A., Chen, J. M. & Ooi, Y. W. Peak season plant activity shift towards spring is reflected by increasing carbon uptake by extratropical ecosystems. Glob. Change Biol. 24, 2117–2128 (2018).

    Article  Google Scholar 

  100. Cook, B. I., Smerdon, J. E., Seager, R. & Coats, S. Global warming and 21st century drying. Clim. Dyn. 43, 2607–2627 (2014).

    Article  Google Scholar 

  101. Huang, Y. et al. Hydrological projections in the upper reaches of the Yangtze River Basin from 2020 to 2050. Sci. Rep. 11, 9720 (2021).

    Article  Google Scholar 

  102. Warszawski, L. et al. The Inter-Sectoral Impact Model Intercomparison Project (ISI–MIP): project framework. Proc. Natl Acad. Sci. USA 111, 3228–3232 (2014).

    Article  Google Scholar 

  103. Yang, Y., Roderick, M. L., Zhang, S., McVicar, T. R. & Donohue, R. J. Hydrologic implications of vegetation response to elevated CO2 in climate projections. Nat. Clim. Change 9, 44–48 (2019).

    Article  Google Scholar 

  104. Roderick, M. L., Greve, P. & Farquhar, G. D. On the assessment of aridity with changes in atmospheric CO2. Water Resour. Res. 51, 5450–5463 (2015).

    Article  Google Scholar 

  105. Dai, A. Increasing drought under global warming in observations and models. Nat. Clim. Change 3, 52–58 (2012).

    Article  Google Scholar 

  106. Zhang, C. et al. Vegetation response to elevated CO2 slows down the eastward movement of the 100th meridian. Geophys. Res. Lett. 47, 2020gl089681 (2020).

    Article  Google Scholar 

  107. Scheff, J., Coats, S. & Laguë, M. M. Why do the global warming responses of land-surface models and climatic dryness metrics disagree? Earths Future 10, e2022EF002814 (2022).

    Article  Google Scholar 

  108. Held, I. M. & Soden, B. J. Robust responses of the hydrological cycle to global warming. J. Clim. 19, 5686–5699 (2006).

    Article  Google Scholar 

  109. Huntington, T. G. Evidence for intensification of the global water cycle: review and synthesis. J. Hydrol. 319, 83–95 (2006).

    Article  Google Scholar 

  110. Lu, J. et al. Projected land evaporation and its response to vegetation greening over China under multiple scenarios in the CMIP6 models. J. Geophys. Res. Biogeosci. 126, e2021JG006327 (2021).

    Article  Google Scholar 

  111. Zeng, Z. et al. Responses of land evapotranspiration to Earth’s greening in CMIP5 Earth system models. Environ. Res. Lett. 11, 104006 (2016).

    Article  Google Scholar 

  112. Lee, J.-Y. et al. in Climate Change 2021: The Physical Science Basis (eds Kumar, K et al.) 553–672 (IPCC, Cambridge, 2021).

  113. Piao, S. et al. Changes in climate and land use have a larger direct impact than rising CO2 on global river runoff trends. Proc. Natl Acad. Sci. USA 104, 15242–15247 (2007).

    Article  Google Scholar 

  114. Gedney, N. et al. Detection of a direct carbon dioxide effect in continental river runoff records. Nature 439, 835–838 (2006).

    Article  Google Scholar 

  115. Yang, Y. et al. Low and contrasting impacts of vegetation CO2 fertilization on global terrestrial runoff over 1982–2010: accounting for aboveground and belowground vegetation–CO2 effects. Hydrol. Earth Syst. Sci. 25, 3411–3427 (2021).

    Article  Google Scholar 

  116. Yang, Y., Donohue, R. J., McVicar, T. R., Roderick, M. L. & Beck, H. E. Long-term CO2 fertilization increases vegetation productivity and has little effect on hydrological partitioning in tropical rainforests. J. Geophys. Res. Biogeosci. 121, 2125–2140 (2016).

    Article  Google Scholar 

  117. G D Farquhar, A. & Sharkey, T. D. Stomatal conductance and photosynthesis. Annu. Rev. Plant Physiol. 33, 317–345 (1982).

    Article  Google Scholar 

  118. Norby, R. J. & Zak, D. R. Ecological lessons from free-air CO2 enrichment (FACE) experiments. Annu. Rev. Ecol. Evol. Syst. 42, 181–203 (2011).

    Article  Google Scholar 

  119. Walker, A. P. et al. Integrating the evidence for a terrestrial carbon sink caused by increasing atmospheric CO2. New Phytol. 229, 2413–2445 (2021).

    Article  Google Scholar 

  120. Donohue, R. J., Roderick, M. L., McVicar, T. R. & Farquhar, G. D. Impact of CO2 fertilization on maximum foliage cover across the globe’s warm, arid environments. Geophys. Res. Lett. 40, 3031–3035 (2013).

    Article  Google Scholar 

  121. Ukkola, A. M. et al. Reduced streamflow in water-stressed climates consistent with CO2 effects on vegetation. Nat. Clim. Change 6, 75–78 (2016).

    Article  Google Scholar 

  122. Nie, M., Lu, M., Bell, J., Raut, S. & Pendall, E. Altered root traits due to elevated CO2: a meta-analysis. Glob. Ecol. Biogeogr. 22, 1095–1105 (2013).

    Article  Google Scholar 

  123. Iversen, C. M. Digging deeper: fine-root responses to rising atmospheric CO2 concentration in forested ecosystems. New Phytol. 186, 346–357 (2010).

    Article  Google Scholar 

  124. Uddin, S. et al. Elevated [CO2] mitigates the effect of surface drought by stimulating root growth to access sub-soil water. PLoS ONE 13, e0198928 (2018).

    Article  Google Scholar 

  125. Ainsworth, E. A. & Long, S. P. What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol. 165, 351–372 (2005).

    Article  Google Scholar 

  126. Ainsworth, A. E. & Rogers, A. The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions. Plant Cell Environ. 30, 258–270 (2007).

    Article  Google Scholar 

  127. Meidner, H. & Mansfield, T. A. Physiology of Stomata (McGraw-Hill, 1968).

  128. Mastrotheodoros, T. et al. Linking plant functional trait plasticity and the large increase in forest water use efficiency. J. Geophys. Res. Biogeosci. 122, 2393–2408 (2017).

    Article  Google Scholar 

  129. Tricker, P. J. et al. Stomatal conductance and not stomatal density determines the long-term reduction in leaf transpiration of poplar in elevated CO2. Oecologia 143, 652–660 (2005).

    Article  Google Scholar 

  130. Körner, C. When meta-analysis fails: a case about stomata. Glob. Change Biol. 23, 2533–2534 (2017).

    Article  Google Scholar 

  131. Cowling, S. A. & Field, C. B. Environmental control of leaf area production: implications for vegetation and land-surface modeling. Global Biogeochem. Cycles https://doi.org/10.1029/2002GB001915 (2003).

    Article  Google Scholar 

  132. Körner, C. & Arnone, J. A. Responses to elevated carbon dioxide in artificial tropical ecosystems. Science 257, 1672–1675 (1992).

    Article  Google Scholar 

  133. Lloyd, J. & Farquhar, G. D. The CO2 dependence of photosynthesis, plant growth responses to elevated atmospheric CO2 concentrations and their interaction with soil nutrient status. I. General principles and forest ecosystems. Funct. Ecol. 10, 4–32 (1996).

    Article  Google Scholar 

  134. Norby, R. J. et al. Forest response to elevated CO2 is conserved across a broad range of productivity. Proc. Natl Acad. Sci. USA 102, 18052–18056 (2005).

    Article  Google Scholar 

  135. Mao, J. et al. Disentangling climatic and anthropogenic controls on global terrestrial evapotranspiration trends. Environ. Res. Lett. 10, 094008 (2015).

    Article  Google Scholar 

  136. Fatichi, S. et al. Partitioning direct and indirect effects reveals the response of water-limited ecosystems to elevated CO2. Proc. Natl Acad. Sci. USA 113, 12757–12762 (2016).

    Article  Google Scholar 

  137. Liu, J. et al. Response of global land evapotranspiration to climate change, elevated CO2, and land use change. Agric. For. Meteorol. 311, 108663 (2021).

    Article  Google Scholar 

  138. Brown, A. E., Zhang, L., McMahon, T. A., Western, A. W. & Vertessy, R. A. A review of paired catchment studies for determining changes in water yield resulting from alterations in vegetation. J. Hydrol. 310, 28–61 (2005).

    Article  Google Scholar 

  139. Boisier, J. P., de Noblet-Ducoudré, N. & Ciais, P. Historical land-use-induced evapotranspiration changes estimated from present-day observations and reconstructed land-cover maps. Hydrol. Earth Syst. Sci. 18, 3571–3590 (2014).

    Article  Google Scholar 

  140. Jin, Z. et al. Separating vegetation greening and climate change controls on evapotranspiration trend over the Loess Plateau. Sci. Rep. 7, 8191 (2017).

    Article  Google Scholar 

  141. Feng, X. et al. Revegetation in China’s Loess Plateau is approaching sustainable water resource limits. Nat. Clim. Change 6, 1019–1022 (2016).

    Article  Google Scholar 

  142. Teuling, A. J. et al. Climate change, reforestation/afforestation, and urbanization impacts on evapotranspiration and streamflow in Europe. Hydrol. Earth Syst. Sci. 23, 3631–3652 (2019).

    Article  Google Scholar 

  143. Bosch, J. M. & Hewlett, J. D. A review of catchment experiments to determine the effect of vegetation changes on water yield and evapotranspiration. J. Hydrol. 55, 3–23 (1982).

    Article  Google Scholar 

  144. Zhang, B., Tian, L., Yang, Y. & He, X. Revegetation does not decrease water yield in the Loess Plateau of China. Geophys. Res. Lett. 49, e2022GL098025 (2022).

    Article  Google Scholar 

  145. Buechel, M., Slater, L. & Dadson, S. Hydrological impact of widespread afforestation in Great Britain using a large ensemble of modelled scenarios. Commun. Earth Environ. 3, 6 (2022).

    Article  Google Scholar 

  146. Bala, G. et al. Combined climate and carbon-cycle effects of large-scale deforestation. Proc. Natl Acad. Sci. USA 104, 6550–6555 (2007).

    Article  Google Scholar 

  147. Curtis, P. G., Slay, C. M., Harris, N. L., Tyukavina, A. & Hansen, M. C. Classifying drivers of global forest loss. Science 361, 1108–1111 (2018).

    Article  Google Scholar 

  148. Zhang, M. et al. A global review on hydrological responses to forest change across multiple spatial scales: importance of scale, climate, forest type and hydrological regime. J. Hydrol. 546, 44–59 (2017).

    Article  Google Scholar 

  149. Luo, Y., Yang, Y., Yang, D. & Zhang, S. Quantifying the impact of vegetation changes on global terrestrial runoff using the Budyko framework. J. Hydrol. 590, 125389 (2020).

    Article  Google Scholar 

  150. Scanlon, B. R., Jolly, I., Sophocleous, M. & Zhang, L. Global impacts of conversions from natural to agricultural ecosystems on water resources: quantity versus quality. Water Resour. Res. 43, 2006WR005486 (2007).

    Article  Google Scholar 

  151. Lane, P. N. J., Best, A. E., Hickel, K. & Zhang, L. The response of flow duration curves to afforestation. J. Hydrol. 310, 253–265 (2005).

    Article  Google Scholar 

  152. Cornish, P. M. & Vertessy, R. A. Forest age-induced changes in evapotranspiration and water yield in a eucalypt forest. J. Hydrol. 242, 43–63 (2001).

    Article  Google Scholar 

  153. 2022 FAOSTAT Land use dataset (FAO, 2022); https://www.fao.org/faostat/en/#data/RLFAO.

  154. Javadian, M., Behrangi, A., Smith, W. K. & Fisher, J. B. Global trends in evapotranspiration dominated by increases across large cropland regions. Remote. Sens. 12, 1221 (2020).

    Article  Google Scholar 

  155. McDermid, S. et al. Irrigation in the Earth system. Nat. Rev. Earth Environ. https://doi.org/10.1038/s43017-023-00438-5 (2023).

    Article  Google Scholar 

  156. Gordon, L. J. et al. Human modification of global water vapor flows from the land surface. Proc. Natl Acad. Sci. USA 102, 7612–7617 (2005).

    Article  Google Scholar 

  157. Döll, P. & Siebert, S. Global modeling of irrigation water requirements. Water Resour. Res. 38, 8-1–8-10 (2002).

    Article  Google Scholar 

  158. Siebert, S. et al. Groundwater use for irrigation—a global inventory. Hydrol. Earth Syst. Sci. 14, 1863–1880 (2010).

    Article  Google Scholar 

  159. Goldammer, J. G. & Mutch, R. W. Global Forest Fire Assessment 1990–2000 (Food and Agriculture Organization of the United Nations, Forestry Department, 2001).

  160. Nolan, R. H., Lane, P. N. J., Benyon, R. G., Bradstock, R. A. & Mitchell, P. J. Trends in evapotranspiration and streamflow following wildfire in resprouting eucalypt forests. J. Hydrol. 524, 614–624 (2015).

    Article  Google Scholar 

  161. Poulos, H. M., Barton, A. M., Koch, G. W., Kolb, T. E. & Thode, A. E. Wildfire severity and vegetation recovery drive post-fire evapotranspiration in a southwestern pine-oak forest, Arizona, USA. Remote. Sens. Ecol. Conserv. 7, 579–591 (2021).

    Article  Google Scholar 

  162. Collar, N. M., Saxe, S., Rust, A. J. & Hogue, T. S. A CONUS-scale study of wildfire and evapotranspiration: spatial and temporal response and controlling factors. J. Hydrol. 603, 127162 (2021).

    Article  Google Scholar 

  163. Roche, J. W., Ma, Q., Rungee, J. & Bales, R. C. Evapotranspiration mapping for forest management in California’s Sierra Nevada. Front. For. Glob. Change 3, 00069 (2020).

    Article  Google Scholar 

  164. Brookhouse, M. T., Farquhar, G. D. & Roderick, M. L. The impact of bushfires on water yield from south-east Australia’s ash forests. Water Resour. Res. 49, 4493–4505 (2013).

    Article  Google Scholar 

  165. Kuczera, G. Prediction of water yield reductions following a bushfire in ash-mixed species eucalypt forest. J. Hydrol. 94, 215–236 (1987).

    Article  Google Scholar 

  166. Corlett, R. T. Impacts of warming on tropical lowland rainforests. Trends Ecol. Evol. 26, 606–613 (2011).

    Article  Google Scholar 

  167. Keenan, T. F. & Riley, W. J. Greening of the land surface in the world’s cold regions consistent with recent warming. Nat. Clim. Change 8, 825–828 (2018).

    Article  Google Scholar 

  168. Anyamba, A. & Tucker, C. J. Analysis of Sahelian vegetation dynamics using NOAA-AVHRR NDVI data from 1981–2003. J. Arid Environ. 63, 596–614 (2005).

    Article  Google Scholar 

  169. Zaehle, S. et al. Evaluation of 11 terrestrial carbon–nitrogen cycle models against observations from two temperate free-air CO2 enrichment studies. New Phytol. 202, 803–822 (2014).

    Article  Google Scholar 

  170. Shukla, J. & Mintz, Y. Influence of land-surface evapotranspiration on the earth’s climate. Science 215, 1498–1501 (1982).

    Article  Google Scholar 

  171. Bonan, G. B. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320, 1444–1449 (2008).

    Article  Google Scholar 

  172. Spracklen, D. V., Baker, J. C. A., Garcia-Carreras, L. & Marsham, J. H. The effects of tropical vegetation on rainfall. Annu. Rev. Environ. Res. 43, 193–218 (2018).

    Article  Google Scholar 

  173. van der Ent, R. J., Savenije, H. H. G., Schaefli, B. & Steele-Dunne, S. C. Origin and fate of atmospheric moisture over continents. Water Resour. Res. 46, 2010WR009127 (2010).

    Google Scholar 

  174. Meier, R. et al. Empirical estimate of forestation-induced precipitation changes in Europe. Nat. Geosci. 14, 473–478 (2021).

    Article  Google Scholar 

  175. Yosef, G. et al. Large-scale semi-arid afforestation can enhance precipitation and carbon sequestration potential. Sci. Rep. 8, 996 (2018).

    Article  Google Scholar 

  176. Hoek van Dijke, A. J. et al. Shifts in regional water availability due to global tree restoration. Nat. Geosci. 15, 363–368 (2022).

    Article  Google Scholar 

  177. Duku, C. & Hein, L. The impact of deforestation on rainfall in Africa: a data-driven assessment. Environ. Res. Lett. 16, 064044 (2021).

    Article  Google Scholar 

  178. Paul, S. et al. Weakening of Indian summer monsoon rainfall due to changes in land use land cover. Sci. Rep. 6, 32177 (2016).

    Article  Google Scholar 

  179. Lawrence, D. & Vandecar, K. Effects of tropical deforestation on climate and agriculture. Nat. Clim. Change 5, 27–36 (2015).

    Article  Google Scholar 

  180. Cui, J. et al. Global water availability boosted by vegetation-driven changes in atmospheric moisture transport. Nat. Geosci. 15, 982–988 (2022).

    Article  Google Scholar 

  181. Gimeno, L. et al. The residence time of water vapour in the atmosphere. Nat. Rev. Earth Environ. 2, 558–569 (2021).

    Article  Google Scholar 

  182. van der Ent, R. J. & Savenije, H. H. G. Length and time scales of atmospheric moisture recycling. Atmos. Chem. Phys. 11, 1853–1863 (2011).

    Article  Google Scholar 

  183. Tuinenburg, O. A., Theeuwen, J. J. E. & Staal, A. High-resolution global atmospheric moisture connections from evaporation to precipitation. Earth Syst. Sci. Data 12, 3177–3188 (2020).

    Article  Google Scholar 

  184. Seneviratne, S. I. et al. Investigating soil moisture–climate interactions in a changing climate: a review. Earth Sci. Rev. 99, 125–161 (2010).

    Article  Google Scholar 

  185. Jeong, S.-J., Ho, C.-H., Kim, K.-Y. & Jeong, J.-H. Reduction of spring warming over East Asia associated with vegetation feedback. Geophys. Res. Lett. 36, 2009GL039114 (2009).

    Article  Google Scholar 

  186. Shen, M. et al. Evaporative cooling over the Tibetan Plateau induced by vegetation growth. Proc. Natl Acad. Sci. USA 112, 9299–9304 (2015).

    Article  Google Scholar 

  187. Paschalis, A., Chakraborty, T., Fatichi, S., Meili, N. & Manoli, G. Urban forests as main regulator of the evaporative cooling effect in cities. AGU Adv. 2, e2020AV000303 (2021).

    Article  Google Scholar 

  188. Bell, J. P., Tompkins, A. M., Bouka-Biona, C. & Sanda, I. S. A process-based investigation into the impact of the Congo basin deforestation on surface climate. J. Geophys. Res. Atmos. 120, 5721–5739 (2015).

    Article  Google Scholar 

  189. Zeng, Z. et al. Deforestation-induced warming over tropical mountain regions regulated by elevation. Nat. Geosci. 14, 23–29 (2021).

    Article  Google Scholar 

  190. Devaraju, N., de Noblet-Ducoudré, N., Quesada, B. & Bala, G. Quantifying the relative importance of direct and indirect biophysical effects of deforestation on surface temperature and teleconnections. J. Clim. 31, 3811–3829 (2018).

    Article  Google Scholar 

  191. Green, J. K. et al. Regionally strong feedbacks between the atmosphere and terrestrial biosphere. Nat. Geosci. 10, 410–414 (2017).

    Article  Google Scholar 

  192. Zeng, Z. et al. Climate mitigation from vegetation biophysical feedbacks during the past three decades. Nat. Clim. Change 7, 432–436 (2017).

    Article  Google Scholar 

  193. Zeng, Z. et al. Impact of earth greening on the terrestrial water cycle. J. Clim. 31, 2633–2650 (2018).

    Article  Google Scholar 

  194. Michel, D. et al. The WACMOS-ET project—Part 1: tower-scale evaluation of four remote-sensing-based evapotranspiration algorithms. Hydrol. Earth Syst. Sci. 20, 803–822 (2016).

    Article  Google Scholar 

  195. Badgley, G., Fisher, J. B., Jiménez, C., Tu, K. P. & Vinukollu, R. On uncertainty in global terrestrial evapotranspiration estimates from choice of input forcing datasets. J. Hydrometeorol. 16, 1449–1455 (2015).

    Article  Google Scholar 

  196. Polhamus, A., Fisher, J. B. & Tu, K. P. What controls the error structure in evapotranspiration models? Agric. For. Meteorol. 169, 12–24 (2013).

    Article  Google Scholar 

  197. Raftery, A. E., Gneiting, T., Balabdaoui, F. & Polakowski, M. Using Bayesian model averaging to calibrate forecast ensembles. Mon. Weather Rev. 133, 1155–1174 (2005).

    Article  Google Scholar 

  198. Renzullo, L. J. et al. Multi-sensor model-data fusion for estimation of hydrologic and energy flux parameters. Remote. Sens. Environ. 112, 1306–1319 (2008).

    Article  Google Scholar 

  199. Baldocchi, D. et al. FLUXNET: a new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bull. Am. Meteorol. Soc. 82, 2415–2434 (2001).

    Article  Google Scholar 

  200. Wilson, K. et al. Energy balance closure at FLUXNET sites. Agric. For. Meteorol. 113, 223–243 (2002).

    Article  Google Scholar 

  201. Ma, N., Szilagyi, J. & Jozsa, J. Benchmarking large-scale evapotranspiration estimates: a perspective from a calibration-free complementary relationship approach and FLUXCOM. J. Hydrol. 590, 125221 (2020).

    Article  Google Scholar 

  202. Poyatos, R. et al. Global transpiration data from sap flow measurements: the SAPFLUXNET database. Earth Syst. Sci. Data 13, 2607–2649 (2021).

    Article  Google Scholar 

  203. Du, E. et al. Global patterns of terrestrial nitrogen and phosphorus limitation. Nat. Geosci. 13, 221–226 (2020).

    Article  Google Scholar 

  204. Mu, Q., Zhao, M. & Running, S. W. Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote. Sens. Environ. 115, 1781–1800 (2011).

    Article  Google Scholar 

  205. Zhu, Z. et al. Global data sets of vegetation leaf area index (LAI)3g and fraction of photosynthetically active radiation (FPAR)3g derived from global inventory modeling and mapping studies (GIMMS) normalized difference vegetation index (NDVI3g) for the period 1981 to 2011. Remote. Sens. 5, 927–948 (2013).

    Article  Google Scholar 

  206. MOD15A2H - MODIS/Terra Leaf Area Index/FPAR 8-Day L4 Global 500m SIN Grid V006 (NASA, 2015); https://ladsweb.modaps.eosdis.nasa.gov/missions-and-measurements/products/MOD15A2H.

  207. Yang, Y. T. & Roderick, M. L. Radiation, surface temperature and evaporation over wet surfaces. Q. J. R. Meteorol. Soc. 145, 1118–1129 (2019).

    Article  Google Scholar 

  208. Wang, X. et al. No trends in spring and autumn phenology during the global warming hiatus. Nat. Commun. 10, 2389 (2019).

    Article  Google Scholar 

  209. Huntzinger, D. N. et al. The North American carbon program multi-scale synthesis and terrestrial model intercomparison project—Part 1: overview and experimental design. Geosci. Model. Dev. 6, 2121–2133 (2013).

    Article  Google Scholar 

  210. Miralles, D. G., Brutsaert, W., Dolman, A. J. & Gash, J. H. On the use of the term “evapotranspiration”. Water Resour. Res. 56, e2020WR028055 (2020).

    Article  Google Scholar 

  211. Monteith, J. Evaporation and environment. Symp. Soc. Exp. Biol. 19, 205–224 (1965).

    Google Scholar 

  212. Shuttleworth, W. J. in Handbook of Hydrology Ch. 4 (ed. Maidment, D. R.) 1424 (McGraw-Hill Education, 1993).

  213. Jarvis, P. G., Monteith, J. L. & Weatherley, P. E. The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field. Philos. Trans. R. Soc. Lond. B Biol. Sci. 273, 593–610 (1976).

    Article  Google Scholar 

  214. Leuning, R. A critical appraisal of a combined stomatal–photosynthesis model for C3 plants. Plant Cell Environ. 18, 339–355 (1995).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Nature Science Foundation of China (Grant No. 41890821, 42071029, 42041004), the Chinese Academy of Sciences Xibuzhiguang Project (Grant No. xbzg-zdsys-202103) and the Department of Science and Technology of Yunnan Province (Grant No. 202203AA080010). Y.Q.Z. acknowledges support from the National Key R&D Program of China (Grant No. 2022YFC3002804), the CAS Pioneer Talents Program and the Second Tibetan Plateau Scientific Expedition and Research (2019QZKK0208). S.F. acknowledges the support of the Ministry of Education — Tier 2 project ID MOE-000379-00. D.G.M. acknowledges support from the European Research Council (ERC) under grant agreement 101088405 (HEAT).

Author information

Authors and Affiliations

Authors

Contributions

Y.Y initiated writing of the Review and organized the writing process. Y.Y. and D.Y wrote the first draft of the manuscript. All authors made substantial contributions to the discussion of the content and reviewed and edited the manuscript.

Corresponding authors

Correspondence to Yuting Yang or Dawen Yang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Earth & Environment thanks Stephen Good, who co-reviewed with Marja Haagsma; and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Roderick, M.L., Guo, H. et al. Evapotranspiration on a greening Earth. Nat Rev Earth Environ 4, 626–641 (2023). https://doi.org/10.1038/s43017-023-00464-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43017-023-00464-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing