Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Southern Ocean glacial conditions and their influence on deglacial events

Abstract

The Southern Ocean is an important regulator of global CO2 levels and likely had a key role in lowering atmospheric CO2 levels during the Last Glacial Maximum (LGM) and driving the subsequent increase during the following deglaciation. Nonetheless, debate continues surrounding the relative importance of Northern versus Southern Hemisphere forcing during deglacial events. In this Review, we compare modern Southern Ocean conditions with those in the LGM and deglacial period, identifying factors that were critical in initiating the glacial termination. During the LGM, North Atlantic sourced waters appear to have shoaled and were largely absent from the glacial Southern Ocean. Increased ocean stratification, shoaling of the chemical divide and increased nutrient utilization at the surface contributed to glacial carbon sequestration in deep waters. Warming at mid-latitudes of the Southern Hemisphere and the Southern Ocean began at ~21 ka, preceding deglaciation, indicating insolation changes could have driven early atmosphere–ocean warming that initiated the shifting of ocean fronts leading to the release of carbon sequestered in the LGM. Southern Ocean dynamics appear to have been substantial, or even the critical, factors initiating the termination of the LGM before deepening of North Atlantic sourced waters. Future research should focus on better resolving deglacial chemical and physical changes in Southern Ocean waters and their representation in numerical models.

Key points

  • The Southern Ocean is where the major deep-water masses of oceans rise to the surface, mingle, modify and re-form, making it the nexus of global ocean interactions. Air–sea exchange of CO2 in the Southern Ocean is a key control on atmospheric CO2 concentrations, the marine carbon cycle and climate.

  • During the Last Glacial Maximum (20–26 ka), North Atlantic sourced waters were largely absent from the glacial Southern Ocean. The likely cause of this is shoaling of North Atlantic Deep Waters to intermediate depths.

  • The northern glacial Southern Ocean had a shallower and more intense geochemical divide than modern-day Southern Ocean. Increased ocean stratification, shoaling of the chemical divide and increased nutrient utilization at the surface contributed to glacial carbon sequestration in deep waters.

  • Breakdown of the intensified geochemical divide and ventilation occurred early in the deglaciation, preceding the reintroduction of northern-sourced waters to the Southern Ocean.

  • Shifts in Southern Hemisphere winds, frontal movements and orbital forcing could have driven these changes in Southern Ocean dynamics, triggering the release of carbon sequestered during the Last Glacial Maximum and increasing atmospheric CO2 at the beginning of the deglaciation (~18-11 ka), affecting global climate.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Global Meridional Overturning Circulation.
Fig. 2: Southern Ocean overturning circulation.
Fig. 3: Vertical profiles of sedimentary δ13C in the Atlantic and Pacific.
Fig. 4: Surface front and deep geochemical divide variations from Glacial-to-Holocene conditions.
Fig. 5: Deglacial time series.

Similar content being viewed by others

References

  1. Toggweiler, J. R. Variation of atmospheric CO2 by ventilation of the ocean’s deepest water. Paleoceanography 14, 571–588 (1999).

    Article  Google Scholar 

  2. Toggweiler, J. R., Russell, J. L. & Carson, J. R. Mid-latitude westerlies, atmospheric CO2, and climate changes during the ice ages. Paleoceanography https://doi.org/10.1029/2005PA001154 (2006).

    Article  Google Scholar 

  3. Denton, G. H. et al. The last glacial termination. Science 328, 1652–1656 (2010).

    Article  Google Scholar 

  4. Boyle, E. A. Vertical ocean nutrient fractionation and glacial/interglacial CO2 cycles. Nature 331, 55–56 (1988).

    Article  Google Scholar 

  5. Joos, F., Sarmiento, J. L. & Siegenthaler, U. Estimates of the effect of Southern Ocean iron fertilization on atmospheric CO2 concentrations. Nature 349, 772–775 (1991).

    Article  Google Scholar 

  6. Sarmiento, J. L. & Orr, J. C. Three-dimensional simulations of the impact of Southern Ocean nutrient depletion on atmospheric CO2 and ocean chemistry. Limnol. Oceanogr. 36, 1928–1950 (1991).

    Article  Google Scholar 

  7. Denton, G. H. et al. The Zealandia switch: ice age climate shifts viewed from Southern Hemisphere moraines. Quat. Sci. Rev. 257, 106771 (2021).

    Article  Google Scholar 

  8. Talley, L. Closure of the global overturning circulation through the Indian, Pacific, and Southern Oceans: schematics and transports. Oceanography 26, 80–97 (2013).

    Article  Google Scholar 

  9. Gordon, A. L. South Atlantic thermocline ventilation. Deep Sea Res. 28, 1239–1264 (1981).

    Article  Google Scholar 

  10. Marshall, J. & Speer, K. Closure of the Meridional Overturning Circulation through Southern Ocean upwelling. Nat. Geosci. 5, 171–180 (2012).

    Article  Google Scholar 

  11. Takahashi, T. et al. Global sea–air CO2 flux based on climatological surface ocean p CO2, and seasonal biological and temperature effects. Deep Sea Res. Part II Topical Stud. Oceanogr. 49, 1601–1622 (2002).

    Article  Google Scholar 

  12. Gray, A. R. et al. Autonomous biogeochemical floats detect significant carbon dioxide outgassing in the high-latitude Southern Ocean. Geophys. Res. Lett. 45, 9049–9057 (2018).

    Article  Google Scholar 

  13. Studer, A. S. et al. Increased nutrient supply to the Southern Ocean during the Holocene and its implications for the pre-industrial atmospheric CO2 rise. Nat. Geosci. 11, 756–760 (2018).

    Article  Google Scholar 

  14. Martin, J. H., Gordon, R. M. & Fitzwater, S. E. Iron in Antarctic waters. Nature 345, 156–158 (1990).

    Article  Google Scholar 

  15. Kohfeld, K. E. & Chase, Z. Temporal evolution of mechanisms controlling ocean carbon uptake during the last glacial cycle. Earth Planet. Sci. Lett. 472, 206–215 (2017).

    Article  Google Scholar 

  16. Sigman, D. M., Hain, M. P. & Haug, G. H. The polar ocean and glacial cycles in atmospheric CO2 concentration. Nature 466, 47–55 (2010).

    Article  Google Scholar 

  17. Ferrari, R. et al. Antarctic sea ice control on ocean circulation in present and glacial climates. Proc. Natl Acad. Sci. USA 111, 8753–8758 (2014).

    Article  Google Scholar 

  18. Rae, J. W. B. et al. CO2 storage and release in the deep Southern Ocean on millennial to centennial timescales. Nature 562, 569–573 (2018).

    Article  Google Scholar 

  19. Sikes, E. L., Allen, K. A. & Lund, D. C. Enhanced δ13C and δ18O differences between the South Atlantic and South Pacific during the last glaciation: the deep gateway hypothesis. Paleoceanography 32, 1000–1017 (2017).

    Article  Google Scholar 

  20. Skinner, L. C., Fallon, S., Waelbroeck, C., Michel, E. & Barker, S. Ventilation of the Deep Southern Ocean and deglacial CO2 rise. Science 328, 1147–1151 (2010).

    Article  Google Scholar 

  21. Menviel, L. et al. Southern Hemisphere westerlies as a driver of the early deglacial atmospheric CO2 rise. Nat. Commun. 9, 2503 (2018).

    Article  Google Scholar 

  22. Marcott, S. A. et al. Centennial-scale changes in the global carbon cycle during the last deglaciation. Nature 514, 616–619 (2014).

    Article  Google Scholar 

  23. Shakun, J. D. et al. Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation. Nature 484, 49–54 (2012).

    Article  Google Scholar 

  24. Bauska, T. K. et al. Carbon isotopes characterize rapid changes in atmospheric carbon dioxide during the last deglaciation. Proc. Natl Acad. Sci. USA 113, 3465–3470 (2016).

    Article  Google Scholar 

  25. Sowers, T., Bender, M., Raynaud, D., Korotkevich, Y. S. & Orchardo, J. The δ18O of atmospheric O2 from air inclusions in the Vostok ice core: timing of CO2 and ice volume changes during the penultimate deglaciation. Paleoceanography 6, 679–696 (1991).

    Article  Google Scholar 

  26. Clementi, V. J. & Sikes, E. L. Southwest pacific vertical structure influences on oceanic carbon storage since the last glacial maximum. Paleoceanogr. Paleoclimatol. https://doi.org/10.1029/2018PA003501 (2019).

    Article  Google Scholar 

  27. Bereiter, B., Shackleton, S., Baggenstos, D., Kawamura, K. & Severinghaus, J. Mean global ocean temperatures during the last glacial transition. Nature 553, 39–44 (2018).

    Article  Google Scholar 

  28. Lai, Z., Xu, Y. & Zheng, P. Earth ice age dynamics: a bimodal forcing hypothesis. Front. Earth Sci. https://doi.org/10.3389/feart.2021.736895 (2021).

    Article  Google Scholar 

  29. Anderson, R. F. et al. Wind-driven upwelling in the Southern Ocean and the deglacial rise in atmospheric CO2. Science 323, 1441–1448 (2009).

    Article  Google Scholar 

  30. Broecker, W. S., Virgilio, A. & Peng, T.-H. Radiocarbon age of waters in the deep Atlantic revisited. Geophys. Res. Lett. 18, 1–3 (1991).

    Article  Google Scholar 

  31. Warren, B. A. Suppression of deep oxygen concentrations by Drake Passage. Deep Sea Res. 37, 1899–1907 (1990).

    Article  Google Scholar 

  32. Toggweiler, J. R. & Samuels, B. Effect of Drake Passage on the global thermohaline circulation. Deep Sea Res. I 42, 477–500 (1995).

    Article  Google Scholar 

  33. Gent, P. R. Effects of Southern Hemisphere wind changes on the meridional overturning circulation in ocean models. Annu. Rev. Mar. Sci. 8, 79–94 (2016).

    Article  Google Scholar 

  34. de Lavergne, C., Madec, G., Roquet, F., Holmes, R. M. & McDougall, T. J. Abyssal ocean overturning shaped by seafloor distribution. Nature 551, 181–186 (2017).

    Article  Google Scholar 

  35. Rintoul, S. R. The global influence of localized dynamics in the Southern Ocean. Nature 558, 209–218 (2018).

    Article  Google Scholar 

  36. Olbers, D., Borowski, D., Völker, C. & Wölff, J.-O. The dynamical balance, transport and circulation of the Antarctic Circumpolar Current. Antarct. Sci. 16, 439–470 (2004).

    Article  Google Scholar 

  37. Haumann, F. A., Gruber, N., Münnich, M., Frenger, I. & Kern, S. Sea-ice transport driving Southern Ocean salinity and its recent trends. Nature 537, 89–92 (2016).

    Article  Google Scholar 

  38. Sloyan, B. M. & Rintoul, S. R. Circulation, renewal, and modification of Antarctic mode and intermediate water. J. Phys. Oceanogr. 31, 1005–1030 (2001).

    Article  Google Scholar 

  39. McCartney, M. S. in A Voyage of Discovery Deep-Sea Research (Suppl.) Vol. 24 (suppl.) (ed. Angel, M. V.) 103–119 (Pergamon, 1977).

  40. Sallée, J.-B., Speer, K., Rintoul, S. & Wijffels, S. Southern Ocean thermocline ventilation. J. Phys. Oceanogr. 40, 509–529 (2010).

    Article  Google Scholar 

  41. Polzin, K. L. & Firing, E. Estimates of diapycnal mixing using LADCP and CTD data from I8S. Int. WOCE Newsl. 29, 39–42 (1997).

    Google Scholar 

  42. Orsi, A., Whitworth, T. & Nowlin, W. D. On the meridional extent and fronts of the Antarctic Circumpolar Current. Deep Sea Res. 42, 641–673 (1995).

    Article  Google Scholar 

  43. Belkin, I. M. & Gordon, A. L. Southern Ocean fronts from the Greenwich meridian to Tasmania. J. Geophys. Res. 101, 3675–3696 (1996).

    Article  Google Scholar 

  44. Koch-Larrouy, A., Morrow, R., Penduff, T. & Juza, M. Origin and mechanism of Subantarctic Mode Water formation and transformation in the Southern Indian Ocean. Ocean Dyn. 60, 563–583 (2010).

    Article  Google Scholar 

  45. Brady, R. X., Maltrud, M. E., Wolfram, P. J., Drake, H. F. & Lovenduski, N. S. The influence of ocean topography on the upwelling of carbon in the Southern Ocean. Geophys. Res. Lett. 48, e2021GL095088 (2021).

    Article  Google Scholar 

  46. Sallée, J. B., Speer, K. G. & Rintoul, S. R. Zonally asymmetric response of the Southern Ocean mixed layer depth to the Southern Annular Mode. Nat. Geosci. 3, 273–279 (2010).

    Article  Google Scholar 

  47. Barker, S., Cacho, I., Benway, H. & Tachikawa, K. Planktonic foraminiferal Mg/Ca as a proxy for past oceanic temperatures: a methodological overview and data compilation for the Last Glacial Maximum. Quat. Sci. Rev. 24, 821–834 (2005).

    Article  Google Scholar 

  48. Watson, A. J. et al. Rapid cross-density ocean mixing at mid-depths in the Drake Passage measured by tracer release. Nature 501, 408–411 (2013).

    Article  Google Scholar 

  49. Tamsitt, V. et al. Spiraling pathways of global deep waters to the surface of the Southern Ocean. Nat. Commun. 8, 172 (2017).

    Article  Google Scholar 

  50. Pedro, J. B. et al. Beyond the bipolar seesaw: toward a process understanding of interhemispheric coupling. Quat. Sci. Rev. 192, 27–46 (2018).

    Article  Google Scholar 

  51. McDougall, T. J. & Church, J. A. Pitfalls with the numerical representation of isopycnal diapycnal mixing. J. Phys. Oceanogr. 16, 196–199 (1986).

    Article  Google Scholar 

  52. Thompson, A. F. & Naveira Garabato, A. C. Equilibration of the Antarctic Circumpolar Current by standing meanders. J. Phys. Oceanogr. 44, 1811–1828 (2014).

    Article  Google Scholar 

  53. Kohfeld, K. E. et al. Southern Hemisphere Westerly wind changes during the Last Glacial Maximum: paleo-data synthesis. Quat. Sci. Rev. 68, 76–95 (2013).

    Article  Google Scholar 

  54. Martin, J. H., Fitzwater, S. E. & Gordon, R. M. Iron deficiency limits phytoplankton growth in Antarctic waters. Glob. Biogeochem. Cycles 4, 5–12 (1990).

    Article  Google Scholar 

  55. Sarmiento, J. L., Gruber, N., Brzezinski, M. A. & Dunne, J. P. High latitude controls on thermocline nutrients and low latitude biological productivity. Nature 427, 56–60 (2004).

    Article  Google Scholar 

  56. Moore, C. M. et al. Processes and patterns of oceanic nutrient limitation. Nat. Geosci. 6, 701–710 (2013).

    Article  Google Scholar 

  57. Martin, J. H. Glacial–interglacial CO2 change: the iron hypothesis. Paleoceanography 5, 1–13 (1990).

    Article  Google Scholar 

  58. Mitchell, B. G. & Holm-Hansen, O. Observations and modeling of the Antarctic phytoplankton in relation to mixing depth. Deep Sea Res. 38, 981–1007 (1991).

    Article  Google Scholar 

  59. Toggweiler, J. R. & Sarmiento, J. L. in The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present Vol. 32 (eds Sundquist, E. & Broecker, W. S.) 163–184 (AGU, 1985).

  60. Hanawa, K. & Talley, L. D. in Ocean Circulation and Climate (eds Seidler, G., Church, J. & Gould, J.) 373–386 (Academic Press, 2001).

  61. Williams, R. G., Roussenov, V. & Follows, M. J. Nutrient streams and their induction into the mixed layer. Global Biogeochem. Cycles https://doi.org/10.1029/2005GB002586 (2006).

    Article  Google Scholar 

  62. Mix, A. C., Bard, E. & Schneider, R. Environmental Processes of the Ice Age: Land, Oceans, Glaciers (EPILOG). Quat. Sci. Rev. 20, 627–657 (2001).

    Article  Google Scholar 

  63. Seltzer, A. M. et al. Widespread six degrees Celsius cooling on land during the Last Glacial Maximum. Nature 593, 228–232 (2021).

    Article  Google Scholar 

  64. Ruddiman, W. F. & McIntyre, A. The North Atlantic Ocean during the last deglaciation. Palaeogeogr. Palaeoclimatol. Palaeoecol. 35, 145–214 (1981).

    Article  Google Scholar 

  65. Sarnthein, M., Pflaumann, U. & Weinelt, M. Past extent of sea ice in the northern North Atlantic inferred from foraminiferal paleotemperature estimates. Paleoceanography https://doi.org/10.1029/2002PA000771 (2003).

    Article  Google Scholar 

  66. Duplessy, J.-C. et al. Deepwater source variations during the last climatic cycle and their impact on the global deepwater circulation. Paleoceanography 3, 343–360 (1988).

    Article  Google Scholar 

  67. Labeyrie, L. D. et al. Changes in the vertical structure of the North Atlantic Ocean between glacial and modern times. Quat. Sci. Rev. 11, 401–413 (1992).

    Article  Google Scholar 

  68. Menviel, L. C. et al. Enhanced mid-depth southward transport in the Northeast Atlantic at the last glacial maximum despite a weaker AMOC. Paleoceanogr. Paleoclimatol. 35, e2019PA003793 (2020).

    Article  Google Scholar 

  69. Rahmstorf, S. Ocean circulation and climate during the past 120,000 years. Nature 419, 207–214 (2002).

    Article  Google Scholar 

  70. Curry, W. B. & Oppo, D. Glacial water mass geometry and the distribution of δ13C of ΣCO2 in the Western Atlantic Ocean. Paleoceanography 20, PA1017 (2005).

    Article  Google Scholar 

  71. Lund, D. C., Tessin, A. C., Hoffman, J. L. & Schmittner, A. Southwest Atlantic watermass evolution during the last deglaciation. Paleoceanography 30, 477–494 (2015).

    Article  Google Scholar 

  72. McManus, J. F., Francois, R., Gherardi, J. M., Keigwin, L. D. & Leger, S. B. Collapse and rapid resumption of Atlantic Meridional Circulation linked to deglacial climate changes. Nature 428, 834–837 (2004).

    Article  Google Scholar 

  73. Gherardi, J.-M. et al. Glacial–interglacial circulation changes inferred from 231Pa/230Th sedimentary record in the North Atlantic region. Paleoceanography 24, PA2204 (2009).

    Article  Google Scholar 

  74. Böhm, E. et al. Strong and deep Atlantic Meridional Overturning Circulation during the last glacial cycle. Nature 517, 73–76 (2015).

    Article  Google Scholar 

  75. Gebbie, G. How much did Glacial North Atlantic Water shoal. Paleoceanography 29, 190–209 (2014).

    Article  Google Scholar 

  76. Boyle, E. A. & Keigwin, L. D. Comparison of Atlantic and Pacific paleochemical records for the last 215,000 years: changes in deep ocean circulation and chemical inventories. Earth Planet Sci. Lett. 76, 135–150 (1985).

    Article  Google Scholar 

  77. Boyle, E. A. & Keigwin, L. D. North Atlantic thermohaline circulation during the past 20,000 years linked to high-latitude surface temperature. Nature 330, 35–40 (1987).

    Article  Google Scholar 

  78. Marchitto, T. M. & Broecker, W. S. Deep water mass geometry in the glacial Atlantic Ocean: a review of constraints from the paleonutrient proxy Cd/Ca. Geochem. Geophys. Geosyst. https://doi.org/10.1029/2006GC001323 (2006).

    Article  Google Scholar 

  79. Charles, C. D., Lynch-Stieglitz, J., Ninnemann, U. S. & Fairbanks, R. G. Climate connections between the hemisphere revealed by deep sea sediment core/ice core correlations. Earth Planet. Sci. Lett. 142, 19–27 (1996).

    Article  Google Scholar 

  80. Oppo, D. W. & Fairbanks, R. G. Variability in the deep and intermediate water circulation of the Atlantic Ocean during the past 25,000 years: Northern Hemisphere modulation of the Southern Ocean. Earth Planet. Sci. Lett. 86, 1–15 (1987).

    Article  Google Scholar 

  81. Charles, C. D. & Fairbanks, R. G. Evidence from Southern Ocean sediments for the effect of North Atlantic deep-water flux on climate. Nature 355, 416–419 (1992).

    Article  Google Scholar 

  82. Ninnemann, U. S. & Charles, C. D. Changes in the mode of Southern Ocean circulation over the last glacial cycle revealed by foraminiferal stable isotopic variability. Earth Planet. Sci. Lett. 201, 383–396 (2002).

    Article  Google Scholar 

  83. Muglia, J. & Schmittner, A. Carbon isotope constraints on glacial Atlantic Meridional Overturning: strength vs depth. Quat. Sci. Rev. 257, 106844 (2021).

    Article  Google Scholar 

  84. Yu, J. et al. Last glacial atmospheric CO2 decline due to widespread Pacific deep-water expansion. Nat. Geosci. 13, 628–633 (2020).

    Article  Google Scholar 

  85. Noble, T. L., Piotrowskia, M. A. & McCave, I. N. Neodymium isotopic composition of intermediate and deep waters in the glacial southwest Pacific. Earth Planet. Sci. Lett. 384, 27–36 (2013).

    Article  Google Scholar 

  86. Williams, T. J. et al. Neodymium isotope evidence for coupled Southern Ocean circulation and Antarctic climate throughout the last 118,000 years. Quat. Sci. Rev. 260, 106915 (2021).

    Article  Google Scholar 

  87. Rutberg, R. L., Hemming, S. R. & Goldstein, S. L. Reduced North Atlantic Deep Water flux to the glacial Southern Ocean inferred from neodymium isotope ratios. Nature 405, 935–938 (2000).

    Article  Google Scholar 

  88. Piotrowski, A. M., Goldstein, S. L., Hemming, S. R. & Fairbanks, R. G. Temporal relationships of carbon cycling and ocean circulation at glacial boundaries. Science 307, 1933–1938 (2005).

    Article  Google Scholar 

  89. Roberts, N. L., Piotrowski, A. M., McManus, J. F. & Keigwin, L. D. Synchronous deglacial overturning and water mass source changes. Science 327, 75–78 (2010).

    Article  Google Scholar 

  90. Howe, J. N. et al. North Atlantic deep water production during the last glacial maximum. Nat. Commun. 7, 11765 (2016).

    Article  Google Scholar 

  91. Lippold, J. et al. Deep water provenience and dynamics of the (de)glacial Atlantic Meridional Overturning Circulation. Earth Planet. Sci. Lett. 445, 68–78 (2016).

    Article  Google Scholar 

  92. Williams, T. J. et al. Paleocirculation and ventilation history of Southern Ocean sourced deep water masses during the last 800,000 years. Paleoceanogr. Paleoclimatol. 34, 833–852 (2019).

    Google Scholar 

  93. Ng, H. C. et al. Coherent deglacial changes in western Atlantic Ocean circulation. Nat. Commun. 9, 2947 (2018).

    Article  Google Scholar 

  94. Zhao, N. et al. Glacial–interglacial Nd isotope variability of North Atlantic Deep Water modulated by North American ice sheet. Nat. Commun. 10, 5773 (2019).

    Article  Google Scholar 

  95. Hu, R. et al. Neodymium isotopic evidence for linked changes in Southeast Atlantic and Southwest Pacific circulation over the last 200 kyr. Earth Planet. Sci. Lett. 455, 106–114 (2016).

    Article  Google Scholar 

  96. Basak, C. et al. Breakup of last glacial deep stratification in the South Pacific. Science 359, 900–904 (2018).

    Article  Google Scholar 

  97. Wilson, D. J., Piotrowski, A. M., Galy, A. & Banakar, V. K. Interhemispheric controls on deep ocean circulation and carbon chemistry during the last two glacial cycles. Paleoceanogr. Paleoclimatol. 30, 621–641 (2015).

    Article  Google Scholar 

  98. Molina-Kescher, M. et al. Reduced admixture of North Atlantic Deep Water to the deep central South Pacific during the last two glacial periods. Paleoceanography 31, 651–668 (2016).

    Article  Google Scholar 

  99. Pöppelmeier, F. et al. Water mass gradients of the mid-depth Southwest Atlantic during the past 25,000 years. Earth Planet. Sci. Lett. 531, 115963 (2020).

    Article  Google Scholar 

  100. Pavia, F. J., Jones, C. S. & Hines, S. K. Geometry of the Meridional Overturning Circulation at the last glacial maximum. J. Clim. 35, 5465–5482 (2022).

    Article  Google Scholar 

  101. Hines, S. K. V. et al. Little change in ice age water mass structure from cape basin benthic neodymium and carbon isotopes. Paleoceanogr. Paleoclimatol. 36, e2021PA004281 (2021).

    Article  Google Scholar 

  102. Freeman, E., Skinner, L. C., Waelbroeck, C. & Hodell, D. Radiocarbon evidence for enhanced respired carbon storage in the Atlantic at the Last Glacial Maximum. Nat. Commun. 7, 11998 (2016).

    Article  Google Scholar 

  103. Ullermann, J. et al. Pacific–Atlantic circumpolar deep water coupling during the last 500 ka. Paleoceanogr. Paleoclimatol. 31, 639–650 (2016).

    Article  Google Scholar 

  104. Piotrowski, A. M. et al. Indian Ocean circulation and productivity during the last glacial cycle. Earth Planet. Sci. Lett. 285, 179–189 (2009).

    Article  Google Scholar 

  105. Piotrowski, A. et al. Reconstructing deglacial North and South Atlantic deep water sourcing using foraminiferal Nd isotopes. Earth Planet. Sci. Lett. 357, 289–297 (2012).

    Article  Google Scholar 

  106. McCave, I. N., Carter, L. & Hall, I. R. Glacial–interglacial changes in water mass structure and flow in the SW Pacific Ocean. Quat. Sci. Rev. 27, 1886–1908 (2008).

    Article  Google Scholar 

  107. Huang, H., Gutjahr, M., Eisenhauer, A. & Kuhn, G. No detectable Weddell Sea Antarctic Bottom Water export during the last and penultimate glacial maximum. Nat. Commun. 11, 424 (2020).

    Article  Google Scholar 

  108. Hodell, D. A., Venz, K. A., Charles, C. D. & Ninnemann, U. S. Pleistocene vertical carbon isotope and carbonate gradients in the South Atlantic sector of the Southern Ocean. Geochem. Geophys. Geosyst. 4, 1004 (2003).

    Article  Google Scholar 

  109. Sikes, E. L., Elmore, A. C., Cook, M. S., Allen, K. A. & Guilderson, T. P. Glacial water mass structure and rapid δ18O and δ13C changes during the last glacial termination in the Southwest Pacific. Earth Planet. Sci. Lett. 456, 87–97 (2016).

    Article  Google Scholar 

  110. Ronge, T. A. et al. Pushing the boundaries: glacial/interglacial variability of intermediate and deep waters in the southwest Pacific over the last 350,000 years. Paleoceanography 30, 23–38 (2015).

    Article  Google Scholar 

  111. Curry, W. B., Duplessy, J.-C., Labeyrie, L. D. & Shackleton, N. J. Changes in the distribution of δ13C of deep water ΣCO2 between the last glaciation and the Holocene. Paleoceanography 3, 317–341 (1988).

    Article  Google Scholar 

  112. Charles, C. D. et al. Millennial scale evolution of the Southern Ocean chemical divide. Quat. Sci. Rev. 29, 399–409 (2010).

    Article  Google Scholar 

  113. Allen, K. A., Sikes, E. L., Anderson, R. F. & Rosenthal, Y. Rapid loss of CO2 from the South Pacific Ocean during the last glacial termination. Paleoceanogr. Paleoclimatol. 35, 2019PA003766 (2020).

    Article  Google Scholar 

  114. Kallel, N., Labeyrie, L. D., Juillet-Leclerc, A. & Duplessy, J.-C. A deep hydrological front between intermediate and deep-water masses in the glacial Indian Ocean. Nature 333, 651–655 (1988).

    Article  Google Scholar 

  115. McCorkle, D. C., Heggie, D. T. & Veeh, H. H. Glacial and Holocene stable isotopic distributions in the southeastern Indian Ocean. Paleoceanography 13, 20–34 (1998).

    Article  Google Scholar 

  116. Lacerra, M., Lund, D., Yu, J. & Schmittner, A. Carbon storage in the mid-depth Atlantic during millennial-scale climate events: mid-depth Atlantic Carbon Storage. Paleoceanography https://doi.org/10.1002/2016PA003081 (2017).

    Article  Google Scholar 

  117. Hines, S. K. V., Southon, J. R. & Adkins, J. F. A high-resolution record of Southern Ocean intermediate water radiocarbon over the past 30,000 years. Earth Planet. Sci. Lett. 432, 46–58 (2015).

    Article  Google Scholar 

  118. Burke, A. & Robinson, L. F. The Southern Oceans role in carbon exchange during the Last Deglaciation A. Science 335, 557–561 (2012).

    Article  Google Scholar 

  119. Sikes, E. L., Samson, C. R., Guilderson, T. P. & Howard, W. R. Old radiocarbon ages in the southwest Pacific Ocean during the last glacial period and deglaciation. Nature 405, 555–559 (2000).

    Article  Google Scholar 

  120. Sikes, E. L., Cook, M. S. & Guilderson, T. P. Reduced deep ocean ventilation in the Southern Pacific Ocean during the last glaciation persisted into the deglaciation. Earth Planet. Sci. Lett. 438, 130–138 (2016).

    Article  Google Scholar 

  121. Ronge, T. A. et al. Radiocarbon constraints on the extent and evolution of the South Pacific glacial carbon pool. Nat. Commun. https://doi.org/10.1038/ncomms11487 (2016).

    Article  Google Scholar 

  122. Dai, Y., Yu, J. & Rafter, P. Deglacial ventilation changes in the Deep Southwest Pacific. Paleoceanogr. Paleoclimatol. https://doi.org/10.1029/2020PA004172 (2021).

    Article  Google Scholar 

  123. Meissner, K. J., Schmittner, A., Weaver, A. J. & Adkins, J. F. Ventilation of the North Atlantic Ocean during the Last Glacial Maximum: a comparison between simulated and observed radiocarbon ages. Paleoceanography 18, 1023 (2003).

    Article  Google Scholar 

  124. Menviel, L. et al. Poorly ventilated deep ocean at the Last Glacial Maximum inferred from carbon isotopes: a data‐model comparison study. Paleoceanography 32, 2–17 (2017).

    Article  Google Scholar 

  125. Skinner, L. et al. Reduced ventilation and enhanced magnitude of the deep Pacific carbon pool during the last glacial period. Earth Planet. Sci. Lett. 411, 45–52 (2015).

    Article  Google Scholar 

  126. Skinner, L. C. et al. Radiocarbon constraints on the glacial ocean circulation and its impact on atmospheric CO2. Nat. Commun. 8, 16010 (2017).

    Article  Google Scholar 

  127. Robinson, L. F. et al. Radiocarbon variability in the western North Atlantic during the last deglaciation. Science 310, 1469–1473 (2005).

    Article  Google Scholar 

  128. Adkins, J. F., Cheng, H., Boyle, E. A., Druffel, E. R. M. & Edwards, R. L. Deep-sea coral evidence for rapid change in ventilation of the deep North Atlantic 15,400 years ago. Science 280, 725–728 (1998).

    Article  Google Scholar 

  129. Broecker, W. S. Glacial to interglacial changes in ocean chemistry. Prog. Oceanogr. 11, 151–197 (1982).

    Article  Google Scholar 

  130. Martínez Fontaine, C. et al. Ventilation of the deep ocean carbon reservoir during the last deglaciation: results from the Southeast Pacific. Paleoceanogr. Paleoclimatol. 34, 2080–2097 (2019).

    Article  Google Scholar 

  131. Keigwin, L. D. & Lehman, S. J. Radiocarbon evidence for a possible abyssal front near 3.1 km in the glacial equatorial Pacific Ocean. Earth Planet. Sci. Lett. 425, 93–104 (2015).

    Article  Google Scholar 

  132. de la Fuente, M., Skinner, L., Calvo, E., Pelejero, C. & Cacho, I. Increased reservoir ages and poorly ventilated deep waters inferred in the glacial Eastern Equatorial Pacific. Nat. Commun. 6, 7420 (2015).

    Article  Google Scholar 

  133. Umling, N. E. & Thunell, R. C. Synchronous deglacial thermocline and deep-water ventilation in the eastern equatorial Pacific. Nat. Commun. 8, 14203 (2017).

    Article  Google Scholar 

  134. Ronge, T. A. et al. Radiocarbon evidence for the contribution of the Southern Indian Ocean to the evolution of atmospheric CO2 over the last 32,000 years. Paleoceanogr. Paleoclimatol. 35, e2019PA003733 (2020).

    Article  Google Scholar 

  135. Gottschalk, J. et al. Glacial heterogeneity in Southern Ocean carbon storage abated by fast South Indian deglacial carbon release. Nat. Commun. 11, 6192 (2020).

    Article  Google Scholar 

  136. Bharti, N. et al. Evidence of poorly ventilated deep Central Indian Ocean during the last glaciation. Earth Planet. Sci. Lett. 582, 117438 (2022).

    Article  Google Scholar 

  137. Ronge, T. A. et al. Radiocarbon evidence for the contribution of the Southern Indian Ocean to the evolution of atmospheric CO2 over the last 32,000 years. Paleoceanogr. Paleoclimatol. 35, e2019PA003733 (2019).

    Google Scholar 

  138. Rose, K. R. et al. Upper-ocean-to-atmosphere radiocarbon offsets imply fast deglacial carbon dioxide release. Nature 466, 1093–1097 (2010).

    Article  Google Scholar 

  139. Sortor, R. N. & Lund, D. C. No evidence for a deglacial intermediate water delta C-14 anomaly in the SW Atlantic. Earth Planet. Sci. Lett. 310, 65–72 (2011).

    Article  Google Scholar 

  140. Siani, G. et al. Carbon isotope records reveal precise timing of enhanced Southern Ocean upwelling during the last deglaciation. Nat. Commun. 4, 2758 27 (2013).

    Article  Google Scholar 

  141. Chen, T. et al. Synchronous centennial abrupt events in the ocean and atmosphere during the last deglaciation. Science 349, 1537–1541 (2015).

    Article  Google Scholar 

  142. Chen, T. et al. Persistently well-ventilated intermediate-depth ocean through the last deglaciation. Nat. Geosci. 13, 733–738 (2020).

    Article  Google Scholar 

  143. Adkins, J. F. The role of deep ocean circulation in setting glacial climates. Paleoceanography 28, 1–23 (2013).

    Article  Google Scholar 

  144. Boyle, E. A. The role of vertical chemical fractionation in controlling late Quaternary atmospheric carbon dioxide. J. Geophys. Res. 93, 15701–15714 (1988).

    Article  Google Scholar 

  145. Skinner, L. C. Glacial–interglacial atmospheric CO2 change: a possible ‘standing volume’ effect on deep-ocean carbon sequestration. Clim. Past 5, 537–550 (2009).

    Article  Google Scholar 

  146. Hain, M. P., Sigman, D. M. & Haug, G. H. Carbon dioxide effects of Antarctic stratification, North Atlantic Intermediate Water formation, and Subantarctic nutrient drawdown during the last ice age: diagnosis and synthesis in a geochemical box model. Glob. Biogeochem. Cycles 24, GB4023 (2010).

    Article  Google Scholar 

  147. Anderson, R. F. et al. Biological response to millennial variability of dust and nutrient supply in the Subantarctic South Atlantic Ocean. Phil. Trans. R. Soc. A 372, 20130054 (2014).

    Article  Google Scholar 

  148. Kohfeld, K. E. Role of marine biology in glacial–interglacial CO2 cycles. Science 308, 74–78 (2005).

    Article  Google Scholar 

  149. Martinez-Garcia, A. et al. Iron fertilization of the Subantarctic Ocean during the last ice age. Science 343, 1347–1350 (2014).

    Article  Google Scholar 

  150. Chase, Z., Anderson, R. F. & Fleisher, M. Q. Evidence from authigenic uranium for increased productivity of the glacial Subantarctic Ocean. Paleoceanography 16, 468–478 (2001).

    Article  Google Scholar 

  151. Kumar, N. et al. Increased biological productivity and export production in the glacial Southern Ocean. Nature 378, 675–680 (1995).

    Article  Google Scholar 

  152. Francois, R. et al. Contribution of Southern Ocean surface-water stratification to low atmospheric CO2 concentrations during the last glacial period. Nature 389, 929–935 (1997).

    Article  Google Scholar 

  153. Jaccard, S. L., Galbraith, E. D., Martínez-García, A. & Anderson, R. F. Covariation of deep Southern Ocean oxygenation and atmospheric CO2 through the last ice age. Nature 530, 207–210 (2016).

    Article  Google Scholar 

  154. Mortlock, R. A. et al. Evidence for lower productivity in the Antarctic Ocean during the last glaciation. Nature 351, 220–223 (1991).

    Article  Google Scholar 

  155. Charles, C. D., Froelich, P. N., Zibello, M. A., Mortlock, R. A. & Morley, J. J. Biogenic opal in Southern Ocean sediments over the last 450,000 years: implications for surface water chemistry and circulation. Paleoceanography 6, 697–728 (1991).

    Article  Google Scholar 

  156. Chase, Z., Anderson, R. F., Fleisher, M. Q. & Kubik, P. W. Accumulation of biogenic and lithogenic material in the Pacific sector of the Southern Ocean during the past 40,000 years. Deep Sea Res. II 50, 799–832 (2003).

    Article  Google Scholar 

  157. Kumar, N., Gwiazda, R., Anderson, R. F. & Froelich, P. N. 231Pa/230Th ratios in sediments as a proxy for past changes in Southern Ocean productivity. Nature 362, 45–48 (1993).

    Article  Google Scholar 

  158. Sigman, D. M. et al. The Southern Ocean during the ice ages: a review of the Antarctic surface isolation hypothesis, with comparison to the North Pacific. Quat. Sci. Rev. 254, 106732 (2021).

    Article  Google Scholar 

  159. Ai, X. E. et al. Southern Ocean upwelling, Earth’s obliquity, and glacial–interglacial atmospheric CO2 change. Science 370, 1348–1352 (2020).

    Article  Google Scholar 

  160. Robinson, R. S. & Sigman, D. M. Nitrogen isotopic evidence for a poleward decrease in surface nitrate within the ice age Antarctic. Quat. Sci. Rev. 27, 1076–1090 (2008).

    Article  Google Scholar 

  161. Studer, A. S. et al. Antarctic Zone nutrient conditions during the last two glacial cycles. Paleoceanography 30, 845–862 (2015).

    Article  Google Scholar 

  162. Saini, H. et al. Southern Ocean ecosystem response to last glacial maximum boundary conditions. Paleoceanogr. Paleoclimatol. 36, e2020PA004075 (2021).

    Article  Google Scholar 

  163. Jaccard, S. L. & Galbraith, E. D. Direct ventilation of the North Pacific did not reach the deep ocean during the last deglaciation. Geophys. Res. Lett. 40, 199–203 (2013).

    Article  Google Scholar 

  164. Yamamoto, A., Abe-Ouchi, A., Ohgaito, R., Ito, A. & Oka, A. Glacial CO2 decrease and deep-water deoxygenation by iron fertilization from glaciogenic dust. Clim. Past 15, 981–996 (2019).

    Article  Google Scholar 

  165. Muglia, J., Skinner, L. C. & Schmittner, A. Weak overturning circulation and high Southern Ocean nutrient utilization maximized glacial ocean carbon. Earth Planet. Sci. Lett. 496, 47–56 (2018).

    Article  Google Scholar 

  166. Cliff, E., Khatiwala, S. & Schmittner, A. Glacial deep ocean deoxygenation driven by biologically mediated air–sea disequilibrium. Nat. Geosci. 14, 43–50 (2021).

    Article  Google Scholar 

  167. Anderson, R. F. et al. Deep‐sea oxygen depletion and ocean carbon sequestration during the last ice age. Glob. Biogeochem. Cycles 33, 301–317 (2019).

    Article  Google Scholar 

  168. Rodrigo-Gámiz, M., Rampen, S. W., Schouten, S. & Sinninghe Damsté, J. S. The impact of oxic degradation on long chain alkyl diol distributions in Arabian Sea surface sediments. Org. Geochem. 100, 1–9 (2016).

    Article  Google Scholar 

  169. Hoogakker, B. A. A., Elderfield, H., Schmiedl, G., McCave, I. N. & Rickaby, R. E. M. Glacial–interglacial changes in bottom-water oxygen content on the Portuguese margin. Nat. Geosci. 8, 40–43 (2014).

    Article  Google Scholar 

  170. McCorkle, D. C. & Emerson, S. R. The relationship between pore water carbon isotopic composition and bottom water oxygen concentration. Geochim. Cosmochim. Acta 52, 1169–1178 (1988).

    Article  Google Scholar 

  171. Hoogakker, B. A. A. et al. Glacial expansion of oxygen-depleted seawater in the eastern tropical Pacific. Nature 562, 410–413 (2018).

    Article  Google Scholar 

  172. Jacobel, A. W. et al. Deep Pacific storage of respired carbon during the last ice age: perspectives from bottom water oxygen reconstructions. Quat. Sci. Rev. 230, 106065 (2020).

    Article  Google Scholar 

  173. Jaccard, S. L. et al. Subarctic Pacific evidence for a glacial deepening of the oceanic respired carbon pool. Earth Planet. Sci. Lett. 277, 156–165 (2009).

    Article  Google Scholar 

  174. Sarnthein, M., Schneider, B. & Grootes, P. M. Peak glacial 14C ventilation ages suggest major draw-down of carbon into the abyssal ocean. Clim. Past 9, 2595–2614 (2013).

    Article  Google Scholar 

  175. Schmittner, A. & Somes, C. J. Complementary constraints from carbon (13C) and nitrogen (15N) isotopes on the glacial ocean’s soft‐tissue biological pump. Paleoceanography 31, 669–693 (2016).

    Article  Google Scholar 

  176. Bradtmiller, L. I., Anderson, R. F., Sachs, J. P. & Fleisher, M. Q. A deeper respired carbon pool in the glacial equatorial Pacific Ocean. Earth Planet. Sci. Lett. 299, 417–425 (2010).

    Article  Google Scholar 

  177. Jaccard, S. L. & Galbraith, E. D. Large climate-driven changes of oceanic oxygen concentrations during the last deglaciation. Nat. Geosci. 5, 151–156 (2011).

    Article  Google Scholar 

  178. Keeling, R. F. & Stephens, B. B. Antarctic sea ice and the control of Pleistocene climate instability. Paleoceanography 16, 112–131 (2001).

    Article  Google Scholar 

  179. Sarmiento, J. L. & Toggweiler, J. R. A new model for the role of the oceans in determining atmospheric pCO2. Nature 308, 621–624 (1984).

    Article  Google Scholar 

  180. Sikes, E. L. et al. Southern Ocean seasonal temperature and Subtropical Front movement on the South Tasman Rise in the late Quaternary. Paleoceanography 24, PA2201 (2009).

    Article  Google Scholar 

  181. Moros, M. et al. Hydrographic shifts south of Australia over the last deglaciation and possible interhemispheric linkages. Quat. Res. 102, 130–141 (2021).

    Article  Google Scholar 

  182. Peeters, F. J. C. et al. Vigorous exchange between the Indian and Atlantic oceans at the end of the past five glacial periods. Nature 430, 661–665 (2004).

    Article  Google Scholar 

  183. Ferry, A. J. et al. First records of winter sea ice concentration in the southwest Pacific sector of the Southern Ocean. Paleoceanography 30, 1525–1539 (2015).

    Article  Google Scholar 

  184. WAIS, D. P. M. et al. Onset of deglacial warming in West Antarctica driven by local orbital forcing. Nature 500, 440–444 (2013).

    Article  Google Scholar 

  185. Gersonde, R., Crosta, X., Abelmann, A. & Armand, L. Sea-surface temperature and sea ice distribution of the Southern Ocean at the EPILOG Last Glacial Maximum — a circum-Antarctic view based on siliceous microfossil records. Quat. Sci. Rev. 24, 869–896 (2005).

    Article  Google Scholar 

  186. Benz, V., Esper, O., Gersonde, R., Lamy, F. & Tiedemann, R. Last Glacial Maximum sea surface temperature and sea-ice extent in the Pacific sector of the Southern Ocean. Quat. Sci. Rev. 146, 216–237 (2016).

    Article  Google Scholar 

  187. Green, R. A. et al. Evaluating seasonal sea-ice cover over the Southern Ocean at the Last Glacial Maximum. Clim. Past 18, 845–862 (2022).

    Article  Google Scholar 

  188. Prend, C. J. et al. Indo-Pacific sector dominates southern ocean carbon outgassing. Glob. Biogeochem. Cycles 36, e2021GB007226 (2022).

    Article  Google Scholar 

  189. Russell, J. L., Dixon, K. W., Gnanadesikan, A., Stouffer, R. J. & Toggweiler, J. R. Southern Ocean Westerlies in a warming world: propping open the door to the deep ocean. J. Clim. 19, 6382–6390 (2006).

    Article  Google Scholar 

  190. CLIMAP. Seasonal Reconstructions of the Earth’s Surface at the Last Glacial Maximum (ed. Cline, R.) (Geological Society of America, 1981).

  191. Trend-Staid, M. & Prell, W. L. Sea surface temperature at the Last Glacial Maximum: a reconstruction using the modern analog technique. Paleoceanography https://doi.org/10.1029/2000PA000506 (2002).

    Article  Google Scholar 

  192. Sikes, E. L., Howard, W. R., Neil, H. L. & Volkman, J. K. Glacial–interglacial sea surface temperature changes across the subtropical front east of New Zealand based on alkenone unsaturation ratios and foraminiferal assemblages. Paleoceanography https://doi.org/10.1029/2001PA000640 (2002).

    Article  Google Scholar 

  193. Pahnke, K. & Sachs, J. P. Sea surface temperatures of southern midlatitudes 0–160 kyr B.P. Paleoceanography 21, PA2003 (2006).

    Article  Google Scholar 

  194. Moy, A. D. et al. Varied contribution of the Southern Ocean to deglacial atmospheric CO2 rise. Nat. Geosci. 12, 1006–1011 (2019).

    Article  Google Scholar 

  195. Ikehara, M. et al. Alkenone sea surface temperature in the Southern Ocean for the last two deglaciations. Geophys. Res. Lett. 24, 679–682 (1997).

    Article  Google Scholar 

  196. Sikes, E. L., Schiraldi, B. & Williams, A. Seasonal and latitudinal response of New Zealand sea surface temperature to warming climate since the last glaciation: comparing alkenones to Mg/Ca foraminiferal reconstructions. Paleoceanogr. Paleoclimatol. https://doi.org/10.1029/2019PA003649 (2019).

    Article  Google Scholar 

  197. Sikes, E. L., Nodder, S. D., O’Leary, T. & Volkman, J. K. Alkenone temperature records and biomarker flux at the subtropical front on the Chatham Rise, SW Pacific Ocean. Deep Sea Res. I 52, 721–748 (2005).

    Article  Google Scholar 

  198. Bostock, H. C., Hayward, B. W., Neil, H. L., Sabaa, A. T. & Scott, G. H. Changes in the position of the Subtropical Front south of New Zealand since the last glacial period. Paleoceanography 30, 824–844 (2015).

    Article  Google Scholar 

  199. Bard, E. & Rickaby, R. E. M. Migration of the subtropical front as a modulator of glacial climate. Nature 460, 380–384 (2009).

    Article  Google Scholar 

  200. Howard, W. R. & Prell, W. L. Late Quaternary surface circulation of the Southern Indian Ocean and its relationship to orbital variations. Paleoceanography 7, 79–118 (1992).

    Article  Google Scholar 

  201. Civel-Mazens, M. et al. Antarctic Polar Front migrations in the Kerguelen Plateau region, Southern Ocean, over the past 360 kyrs. Glob. Planet. Change 202, 103526 (2021).

    Article  Google Scholar 

  202. De Deckker, P., Moros, M., Perner, K. & Jansen, E. Influence of the tropics and southern westerlies on glacial interhemispheric asymmetry. Nat. Geosci. 5, 266–269 (2012).

    Article  Google Scholar 

  203. Lamy, F., Kaiser, J., Ninnemann, U., Hebbeln, D., Arz, H. W. & Stoner, J. Antarctic timing of surface water changes off Chile and Patagonian ice sheet response. Science 304, 1959–1962 (2004).

    Article  Google Scholar 

  204. Wells, P. E. & Connell, R. Movement of hydrological fronts and widespread erosional events in the southwestern Tasman Sea during the Late Quaternary. Austr. J. Earth Sci. 44, 105–112 (1997).

    Article  Google Scholar 

  205. Lynch-Stieglitz, J., Fairbanks, R. G. & Charles, C. D. Glacial–interglacial history of Antarctic Intermediate Water: relative strengths of Antarctic versus Indian Ocean sources. Paleoceanography 9, 7–29 (1994).

    Article  Google Scholar 

  206. Allison, L. C., Johnson, H. L., Marshall, D. P. & Munday, D. R. Where do winds drive the Antarctic Circumpolar Current? Geophys. Res. Lett. https://doi.org/10.1029/2010GL043355 (2010).

    Article  Google Scholar 

  207. Wang, J., Mazloff, M. R. & Gille, S. T. The effect of the Kerguelen Plateau on the ocean circulation. J. Phys. Oceanogr. 46, 3385–3396 (2016).

    Article  Google Scholar 

  208. Sikes, E. L., Medeiros, P. M., Augustinas, P., Wilmshurst, J. & Freeman, K. Seasonal variations in aridity and temperature characterize changing climate during the last deglaciation in New Zealand. Quat. Sci. Rev. 74, 246–256 (2013).

    Article  Google Scholar 

  209. Newnham, R. M. et al. Does the bipolar seesaw extend to the terrestrial southern mid-latitudes? Quat. Sci. Rev. 36, 214–222 (2012).

    Article  Google Scholar 

  210. Turney, C. S. M. et al. Climatic variability in the southwest Pacific during the Last Termination (20–10 kyr BP). Quat. Sci. Rev. 25, 886–903 (2006).

    Article  Google Scholar 

  211. McGlone, M. S., Turney, C. S. M., Wilmshurst, M. J., Renwick, J. & Pahnke, K. Divergent trends in land and ocean temperature in the Southern Ocean over the past 18,000 years. Nat. Geosci. 3, 622–626 (2010).

    Article  Google Scholar 

  212. d’Orgeville, M., Sijp, W. P., England, M. H. & Meissner, K. J. On the control of glacial–interglacial atmospheric CO2 variations by the Southern Hemisphere westerlies. Geophys. Res. Lett. https://doi.org/10.1029/2010GL045261 (2010).

    Article  Google Scholar 

  213. Huiskamp, W. N., Meissner, K. J. & d’Orgeville, M. Competition between ocean carbon pumps in simulations with varying Southern Hemisphere westerly wind forcing. Clim. Dyn. 46, 3463–3480 (2016).

    Article  Google Scholar 

  214. Gottschalk, J. et al. Mechanisms of millennial-scale atmospheric CO2 change in numerical model simulations. Quat. Sci. Rev. 220, 30–74 (2019).

    Article  Google Scholar 

  215. Marzocchi, A. & Jansen, M. F. Global cooling linked to increased glacial carbon storage via changes in Antarctic sea ice. Nat. Geosci. 12, 1001–1005 (2019).

    Article  Google Scholar 

  216. Beadling, R. L. et al. Representation of Southern Ocean properties across coupled model Intercomparison Project Generations: CMIP3 to CMIP6. J. Clim. 33, 6555–6581 (2020).

    Article  Google Scholar 

  217. Bronselaer, B. et al. Importance of wind and meltwater for observed chemical and physical changes in the Southern Ocean. Nat. Geosci. 13, 35–42 (2020).

    Article  Google Scholar 

  218. Sigman, D. M. & Boyle, E. A. Glacial/interglacial variations in atmospheric carbon dioxide. Nature 407, 859–869 (2000).

    Article  Google Scholar 

  219. Fairbanks, R. G. A 17,000-year glacio-eustatic sea level record: influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation. Nature 342, 637–642 (1989).

    Article  Google Scholar 

  220. Rasmussen, S. O. et al. A stratigraphic framework for abrupt climatic changes during the Last Glacial period based on three synchronized Greenland ice-core records: refining and extending the INTIMATE event stratigraphy. Quat. Sci. Rev. 106, 14–28 (2014).

    Article  Google Scholar 

  221. Brook, E. J., Harder, S., Severinghaus, J., Steig, E. J. & Sucher, C. M. On the origin and timing of rapid changes in atmospheric methane during the last glacial period. Glob. Biogeochem. Cycles 14, 559–572 (2000).

    Article  Google Scholar 

  222. Wang, Y. J. et al. A high-resolution absolute-dated Late Pleistocene Monsoon Record from Hulu Cave, China. Science 294, 2345–2348 (2001).

    Article  Google Scholar 

  223. Reimer, P. J. et al. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55, 1869–1887 (2013).

    Article  Google Scholar 

  224. Alloway, B. V. et al. Towards a climate event stratigraphy for New Zealand over the past 30,000 years (NZ-INTIMATE project). J. Quat. Sci. 22, 9–35 (2007).

    Article  Google Scholar 

  225. Stocker, T. F. & Johnsen, S. J. A minimum thermodynamic model for the bipolar seesaw. Paleoceanography https://doi.org/10.1029/2003PA000920 (2003).

    Article  Google Scholar 

  226. Landais, A. et al. A review of the bipolar see–saw from synchronized and high resolution ice core water stable isotope records from Greenland and East Antarctica. Quat. Sci. Rev. 114, 18–32 (2015).

    Article  Google Scholar 

  227. Broecker, W. S. Paleocean circulation during the last deglaciation: a biopolar seesaw? Paleoceanography 13, 119–121 (1998).

    Article  Google Scholar 

  228. Denton, G. H., Toucanne, S., Putnam, A. E., Barrell, D. J. A. & Russell, J. L. Heinrich summers. Quat. Sci. Rev. 295, 107750 (2022).

    Article  Google Scholar 

  229. Monnin, E. et al. Atmospheric CO2 concentrations over the Last Glacial Termination. Science 291, 112–114 (2001).

    Article  Google Scholar 

  230. Denton, G., Alley, R., Comer, G. & Broecker, W. The role of seasonality in abrupt climate change. Quat. Sci. Rev. 24, 1159–1182 (2005).

    Article  Google Scholar 

  231. He, C. et al. Abrupt Heinrich Stadial 1 cooling missing in Greenland oxygen isotopes. Sci. Adv. 7, eabh1007 (2021).

    Article  Google Scholar 

  232. Sowers, T. & Bender, M. Climate records covering the last deglaciation. Science 269, 210–213 (1995).

    Article  Google Scholar 

  233. Huybers, P. & Denton, G. Antarctic temperature at orbital timescales controlled by local summer duration. Nat. Geosci. 1, 787–792 (2008).

    Article  Google Scholar 

  234. Stott, L., Timmermann, A. & Thunell, R. Southern hemisphere and deep-sea warming led deglacial atmospheric CO2 rise and tropical warming. Science 318, 435–438 (2007).

    Article  Google Scholar 

  235. Samson, C. R., Sikes, E. L. & Howard, W. R. Deglacial paleoceanographic history of the Bay of Plenty, New Zealand. Paleoceanography https://doi.org/10.1029/2004PA001088 (2005).

    Article  Google Scholar 

  236. Kumar, V., Tiwari, M., Prakash, P., Mohan, R. & Thamban, M. SST changes in the Indian sector of the Southern Ocean and their teleconnection with the Indian monsoon during the last glacial period. Paleoceanogr. Paleoclimatol. 36, e2020PA004139 (2021).

    Article  Google Scholar 

  237. Shukla, S. K., Crosta, X. & Ikehara, M. Sea surface temperatures in the Indian sub-Antarctic Southern Ocean for the Last Four Interglacial Periods. Geophys. Res. Lett. 48, e2020GL090994 (2021).

    Article  Google Scholar 

  238. Parrenin, F. et al. Synchronous change of atmospheric CO2 and Antarctic temperature during the last deglacial warming. Science 339, 1060–1063 (2013).

    Article  Google Scholar 

  239. Chowdhry Beeman, J. et al. Antarctic temperature and CO2: near-synchrony yet variable phasing during the last deglaciation. Clim. Past 15, 913–926 (2019).

    Article  Google Scholar 

  240. Lamy, F. et al. Precession modulation of the South Pacific westerly wind belt over the past million years. Proc. Natl Acad. Sci. USA 116, 23455–23460 (2019).

    Article  Google Scholar 

  241. Menviel, L. C., Skinner, L. C., Tarasov, L. & Tzedakis, P. C. An ice–climate oscillatory framework for Dansgaard–Oeschger cycles. Nat. Rev. Earth Environ. 1, 677–693 (2020).

    Article  Google Scholar 

  242. Knorr, G. & Lohmann, G. Southern Ocean origin for the resumption of Atlantic thermocline circulation during deglaciation. Nature 424, 532–536 (2003).

    Article  Google Scholar 

  243. Buizert, C. et al. Abrupt ice-age shifts in southern westerly winds and Antarctic climate forced from the north. Nature 563, 681–685 (2018).

    Article  Google Scholar 

  244. Schiraldi, B., Sikes, E. L., Elmore, A. C., Cook, M. S. & Rose, K. A. Southwest Pacific subtropics responded to last deglacial warming with changes in shallow water sources. Paleoceanography https://doi.org/10.1002/2013PA002584 (2014).

    Article  Google Scholar 

  245. Basak, C., Pahnke, K., Frank, M., Lamy, F. & Gersonde, R. Neodymium isotopic characterization of Ross Sea Bottom Water and its advection through the southern South Pacific. Earth Planet. Sci. Lett. 419, 211–221 (2015).

    Article  Google Scholar 

  246. Pöppelmeier, F. et al. Stable Atlantic deep water mass sourcing on glacial–interglacial timescales. Geophys. Res. Lett. 48, e2021GL092722 (2021).

    Article  Google Scholar 

  247. Du, J., Haley, B. A., Mix, A. C., Walczak, M. H. & Praetorius, S. K. Flushing of the deep Pacific Ocean and the deglacial rise of atmospheric CO2 concentrations. Nat. Geosci. 11, 749–755 (2018).

    Article  Google Scholar 

  248. Elderfield, H. et al. A record of bottom water temperature and seawater δ18O for the Southern Ocean over the past 440 kyr based on Mg/Ca of benthic foraminiferal Uvigerina spp. Quat. Sci. Rev. 29, 160–169 (2010).

    Article  Google Scholar 

  249. Elderfield, H. et al. Evolution of ocean temperature and ice volume through the mid-Pleistocene climate transition. Science 337, 704–709 (2012).

    Article  Google Scholar 

  250. Zhao, N., Marchal, O., Keigwin, L., Amrhein, D. & Gebbie, G. A synthesis of deglacial deep-sea radiocarbon records and their (In)consistency with modern ocean ventilation. Paleoceanogr. Paleoclimatol. 33, 128–151 (2018).

    Article  Google Scholar 

  251. Mangini, A. et al. Deep sea corals off Brazil verify a poorly ventilated Southern Pacific Ocean during H2, H1 and the Younger Dryas. Earth Planet. Sci. Lett. 293, 269–276 (2010).

    Article  Google Scholar 

  252. Marchitto, T., Lehman, S. J., Ortiz, J. D., Flückiger, J. & vanGeen, A. Marine radiocarbon evidence for the mechanism of deglacial atmospheric CO2 rise. Science 316, 1456–1459 (2007).

    Article  Google Scholar 

  253. Thornalley, D. J. R., Barker, S., Broecker, W. S., Elderfield, H. & McCave, I. N. The deglacial evolution of North Atlantic deep convection. Science 331, 202–205 (2011).

    Article  Google Scholar 

  254. van Geen, A., Fairbanks, R. G., Dartnell, P., McGann, M. & Gardner, J. V. Ventilation changes in the northeast Pacific during the last deglaciation. Paleoceanography 11, 519–528 (1996).

    Article  Google Scholar 

  255. Bryan, S. P., Marchitto, T. M. & Lehman, S. J. The release of 14C-depleted carbon from the deep ocean during the last deglaciation: evidence from the Arabian Sea. Earth Planet. Sci. Lett. 298, 244–254 (2010).

    Article  Google Scholar 

  256. Stott, L. No signs of Southern Ocean CO2. Nat. Geosci. 3, 153–154 (2010).

    Article  Google Scholar 

  257. Martínez-Botí, M. A. et al. Boron isotope evidence for oceanic carbon dioxide leakage during the last deglaciation. Nature 518, 219–222 (2015).

    Article  Google Scholar 

  258. Kubota, K., Yokoyama, Y., Ishikawa, T., Obrochta, S. & Suzuki, A. Larger CO2 source at the equatorial Pacific during the last deglaciation. Sci. Rep. https://doi.org/10.1038/srep05261 (2015).

    Article  Google Scholar 

  259. Kubota, K. et al. Equatorial Pacific seawater pCO2 variability since the last glacial period. Sci. Rep. 9, 13814 (2019).

    Article  Google Scholar 

  260. Li, T. et al. Rapid shifts in circulation and biogeochemistry of the Southern Ocean during deglacial carbon cycle events. Sci. Adv. 6, eabb3807 (2020).

    Article  Google Scholar 

  261. Galbraith, E. D., Kienast, M., Pedersen, T. F. & Calvert, S. E. Glacial–interglacial modulation of the marine nitrogen cycle by high-latitude O2 supply to the global thermocline. Paleoceanography https://doi.org/10.1029/2003PA001000 (2004).

    Article  Google Scholar 

  262. Robinson, R. S., Martinez, P., Pena, L. D. & Cacho, I. Nitrogen isotopic evidence for deglacial changes in nutrient supply in the eastern equatorial Pacific. Paleoceanography https://doi.org/10.1029/2008PA001702 (2009).

    Article  Google Scholar 

  263. Robinson, R. S., Brunelle, B. G. & Sigman, D. M. Revisiting nutrient utilization in the glacial Antarctic: evidence from a new method for diatom-bound N isotopic analysis. Paleoceanography 19, PA3001 (2004).

    Article  Google Scholar 

  264. Lamy, F. et al. Increased dust deposition in the Pacific Southern Ocean during glacial periods. Science 343, 403–407 (2014).

    Article  Google Scholar 

  265. Thöle, L. M. et al. Glacial–interglacial dust and export production records from the Southern Indian Ocean. Earth Planet. Sci. Lett. 525, 115716 (2019).

    Article  Google Scholar 

  266. Le Quéré, C. et al. Global Carbon Budget 2018. Earth Syst. Sci. Data 10, 2141–2194 (2018).

    Article  Google Scholar 

  267. Broecker, W. S. Ocean chemistry during glacial time. Geochim. Cosmochim. Acta 46, 1689–1705 (1982).

    Article  Google Scholar 

  268. Repschläger, J. et al. Active North Atlantic deepwater formation during Heinrich Stadial 1. Quat. Sci. Rev. 270, 107145 (2021).

    Article  Google Scholar 

  269. Guilderson, T. P., Allen, K., Landers, J. P., Ettwein, V. J. & Cook, M. S. Can we better constrain the timing of GNAIW/UNADW variability in the western equatorial atlantic and its relationship to climate change during the last deglaciation? Paleoceanogr. Paleoclimatol. 36, e2020PA004187 (2021).

    Article  Google Scholar 

  270. Schmittner, A. et al. Calibration of the carbon isotope composition (δ13C) of benthic foraminifera. Paleoceanography 32, 512–530 (2017).

    Article  Google Scholar 

  271. Lumpkin, R. & Speer, K. Global ocean meridional overturning. J. Phys. Oceanogr. 37, 2550–2562 (2007).

    Article  Google Scholar 

  272. Heinrich, H. Origin and consequences of cyclic ice rafting in the Northeast Atlantic Ocean during the past 130,000 years. Quat. Res. 29, 142–152 (1988).

    Article  Google Scholar 

  273. Dansgaard, W. et al. Evidence for general instability of past climate from a 250-kyr ice-core record. Nature 364, 218–220 (1993).

    Article  Google Scholar 

  274. Barker, S. et al. Interhemispheric Atlantic seesaw response during the last deglaciation. Nature 457, 1097–1102 (2009).

    Article  Google Scholar 

  275. Hodell, D. A. et al. Anatomy of Heinrich Layer 1 and its role in the last deglaciation. Paleoceanography 32, 284–303 (2017).

    Article  Google Scholar 

  276. McManus, J., Berelson, W. M., Klinkhammer, G. P., Hammond, D. E. & Holm, C. Authigenic uranium: relationship to oxygen penetration depth and organic carbon rain. Geochim. Cosmochim. Acta 69, 95–108 (2005).

    Article  Google Scholar 

  277. Wang, Y. J. et al. A high-resolution absolute-dated Late Pleistocene monsoon record from Hulu Cave China. Science 294, 2345–2348 (2001).

    Article  Google Scholar 

  278. Broecker, W. & Barker, S. A 190‰ drop in atmosphere’s Δ14C during the ‘Mystery Interval’ (17.5 to 14.5 kyr). Earth Planet. Sci. Lett. 256, 90–97 (2007).

    Article  Google Scholar 

  279. Reimer, P. J. et al. The IntCal20 Northern Hemisphere Radiocarbon Age Calibration Curve (0–55 cal kBP) Radiocarbon 62, 725–757 (2020).

    Article  Google Scholar 

  280. Menviel, L., England, M. H., Meissner, K. J., Mouchet, A. & Yu, J. Atlantic–Pacific seesaw and its role in outgassing CO2 during Heinrich events. Paleoceanogr. Paleoclimatol. 29, 58–70 (2014).

    Article  Google Scholar 

  281. Hajdas, I., Lowe, D. J., Newnham, R. M. & Bonani, B. Timing of the late-glacial climate reversal in the Southern Hemisphere using high-resolution radiocarbon chronology for Kaipo bog, New Zealand. Quat. Res. 65, 340–345 (2006).

    Article  Google Scholar 

  282. North Greenland Ice Core Project members. High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature 431, 147–151 (2004).

    Article  Google Scholar 

  283. WAIS Divide Project Members. Onset of deglacial warming in West Antarctica driven by local orbital forcing. Nature 500, 440–444 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank L. Menviel and K. Meissner for their comments and suggestions on earlier drafts that substantially improved the manuscript. The authors also thank their Rutgers co-workers E. Hunter and R. Glaubke for drafting several figures. T.J.W. was supported by the Australian Research Council Special Research Initiative, Australian Centre for Excellence in Antarctic Science (Project Number SR200100008).

Author information

Authors and Affiliations

Authors

Contributions

E.L.S., N.E.U., R.S.R. and K.A.A. researched data for the article. E.L.S. wrote the article. All authors contributed substantially to discussion of the content and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Elisabeth L. Sikes.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Earth & Environment thanks D. Sigman, T. Guilderson, X. Ai, T. Chen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sikes, E.L., Umling, N.E., Allen, K.A. et al. Southern Ocean glacial conditions and their influence on deglacial events. Nat Rev Earth Environ 4, 454–470 (2023). https://doi.org/10.1038/s43017-023-00436-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43017-023-00436-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing