Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Global cooling linked to increased glacial carbon storage via changes in Antarctic sea ice

Abstract

Palaeo-oceanographic reconstructions indicate that the distribution of global ocean water masses has undergone major glacial–interglacial rearrangements over the past ~2.5 million years. Given that the ocean is the largest carbon reservoir, such circulation changes were probably key in driving the variations in atmospheric CO2 concentrations observed in the ice-core record. However, we still lack a mechanistic understanding of the ocean’s role in regulating CO2 on these timescales. Here, we show that glacial ocean–sea ice numerical simulations with a single-basin general circulation model, forced solely by atmospheric cooling, can predict ocean circulation patterns associated with increased atmospheric carbon sequestration in the deep ocean. Under such conditions, Antarctic bottom water becomes more isolated from the sea surface as a result of two connected factors: reduced air–sea gas exchange under sea ice around Antarctica and weaker mixing with North Atlantic Deep Water due to a shallower interface between southern- and northern-sourced water masses. These physical changes alone are sufficient to explain ~40 ppm atmospheric CO2 drawdown—about half of the glacial–interglacial variation. Our results highlight that atmospheric cooling could have directly caused the reorganization of deep ocean water masses and, thus, glacial CO2 drawdown. This provides an important step towards a consistent picture of glacial climates.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Changes in ocean circulation and sea ice cover between the PI and LGM.
Fig. 2: Deep ocean carbon storage and atmospheric CO2 concentrations in the PI and LGM reference simulations.

Similar content being viewed by others

Data availability

The input files used to run the MITgcm simulations that support the findings of this study are available from the corresponding author upon request. The model output data for all simulations can be obtained from https://github.com/alicemarzocchi/MITgcmOutput.

Code availability

The MITgcm code is freely available for download at https://doi.org/10.5281/zenodo.1409237. Computer code used to process the model output and generate figures is available from the corresponding author on request.

References

  1. Sigman, D. M. & Boyle, E. A. Glacial/interglacial variations in atmospheric carbon dioxide. Nature 407, 859–869 (2000).

    Article  Google Scholar 

  2. Brovkin, V., Ganopolski, A., Archer, D. & Rahmstorf, S. Lowering of glacial atmospheric CO2 in response to changes in oceanic circulation and marine biogeochemistry. Paleoceanography 22, PA4202 (2007).

    Article  Google Scholar 

  3. Marshall, J. & Speer, K. Closure of the meridional overturning circulation through Southern Ocean upwelling. Nat. Geosci. 5, 171–180 (2012).

    Article  Google Scholar 

  4. Marchitto, T. M., Oppo, D. W. & Curry, W. B. Paired benthic foraminiferal Cd/Ca and Zn/Ca evidence for a greatly increased presence of Southern Ocean Water in the glacial North Atlantic. Paleoceanography 17, 10–11 (2002).

    Article  Google Scholar 

  5. Curry, W. B. & Oppo, D. W. Glacial water mass geometry and the distribution of δ13C of ∑CO2 in the western Atlantic Ocean. Paleoceanography 20, PA1017 (2005).

    Article  Google Scholar 

  6. Lippold, J. et al. Strength and geometry of the glacial Atlantic meridional overturning circulation. Nat. Geosci. 5, 813–816 (2012).

    Article  Google Scholar 

  7. Adkins, J. F., McIntyre, K. & Schrag, D. P. The salinity, temperature, and δ18O of the glacial deep ocean. Science 298, 1769–1773 (2002).

    Article  Google Scholar 

  8. Insua, T. L., Spivack, A. J., Graham, D., D’Hondt, S. & Moran, K. Reconstruction of Pacific Ocean bottom water salinity during the last glacial maximum. Geophys. Res. Lett. 41, 2914–2920 (2014).

    Article  Google Scholar 

  9. Wunsch, C. Pore fluids and the LGM ocean salinity reconsidered. Quat. Sci. Rev. 135, 154–170 (2016).

    Article  Google Scholar 

  10. Otto-Bliesner, B. L. et al. Last glacial maximum ocean thermohaline circulation: PMIP2 model intercomparisons and data constraints. Geophys. Res. Lett. 34, L12706 (2007).

    Article  Google Scholar 

  11. Muglia, J. & Schmittner, A. Glacial Atlantic overturning increased by wind stress in climate models. Geophys. Res. Lett. 42, 9862–9868 (2015).

    Article  Google Scholar 

  12. Marzocchi, A. & Jansen, M. F. Connecting Antarctic sea ice to deep-ocean circulation in modern and glacial climate simulations. Geophys. Res. Lett. 44, 6286–6295 (2017).

    Article  Google Scholar 

  13. Stephens, B. B. & Keeling, R. F. The influence of Antarctic sea ice on glacial–interglacial CO2 variations. Nature 404, 171–174 (2000).

    Article  Google Scholar 

  14. Shin, S.-I. et al. A simulation of the last glacial maximum climate using the NCAR-CCSM. Clim. Dyn. 20, 127–151 (2003).

    Article  Google Scholar 

  15. Bouttes, N., Paillard, D. & Roche, D. M. Impact of brine-induced stratification on the glacial carbon cycle. Clim. Past 6, 575–589 (2010).

    Article  Google Scholar 

  16. Watson, A. J. & Naveira Garabato, A. C. The role of Southern Ocean mixing and upwelling in glacial–interglacial atmospheric CO2 change. Tellus B Chem. Phys. Meteorol. 58, 73–87 (2006).

    Article  Google Scholar 

  17. Ferrari, R. et al. Antarctic sea ice control on ocean circulation in present and glacial climates. Proc. Natl Acad. Sci. USA 111, 8753–8758 (2014).

    Article  Google Scholar 

  18. Jansen, M. F. Glacial ocean circulation and stratification explained by reduced atmospheric temperature. Proc. Natl Acad. Sci. USA 114, 45–50 (2017).

    Article  Google Scholar 

  19. Sun, S., Eisenman, I. & Stewart, A. L. The influence of Southern Ocean surface buoyancy forcing on glacial–interglacial changes in the global deep ocean stratification. Geophys. Res. Lett. 43, 8124–8132 (2016).

    Article  Google Scholar 

  20. Galbraith, E. & de Lavergne, C. Response of a comprehensive climate model to a broad range of external forcings: relevance for deep ocean ventilation and the development of late Cenozoic ice ages. Clim. Dyn. 52, 653–679 (2019).

    Article  Google Scholar 

  21. Nadeau, L.-P., Ferrari, R. & Jansen, M. F. Antarctic sea ice control on the depth of North Atlantic Deep Water. J. Clim. 32, 2537–2551 (2019).

    Article  Google Scholar 

  22. Jansen, M. F. & Nadeau, L.-P. The effect of southern ocean surface buoyancy loss on the deep-ocean circulation and stratification. J. Phys. Oceanogr. 46, 3455–3470 (2016).

    Article  Google Scholar 

  23. Sarmiento, J. L. & Toggweiler, J. A new model for the role of the oceans in determining atmospheric pCO2. Nature 308, 621–624 (1984).

    Article  Google Scholar 

  24. Archer, D. E. et al. Atmospheric pCO2 sensitivity to the biological pump in the ocean. Glob. Biogeochem. Cycles 14, 1219–1230 (2000).

    Article  Google Scholar 

  25. Ito, T. & Follows, M. J. Preformed phosphate, soft tissue pump and atmospheric CO2. J. Mar. Res. 63, 813–839 (2005).

    Article  Google Scholar 

  26. Kohfeld, K. E. & Ridgwell, A. Glacial–interglacial variability in atmospheric CO2. Surf. Ocean Low Atmosphere Process. 187, 251–286 (2009).

    Article  Google Scholar 

  27. Watson, A. J., Vallis, G. K. & Nikurashin, M. Southern Ocean buoyancy forcing of ocean ventilation and glacial atmospheric CO2. Nat. Geosci. 8, 861–864 (2015).

    Article  Google Scholar 

  28. Ganopolski, A. & Brovkin, V. Simulation of climate, ice sheets and CO2 evolution during the last four glacial cycles with an Earth system model of intermediate complexity. Climate 13, 1695–1716 (2017).

    Google Scholar 

  29. Ferreira, D., Marshall, J., Ito, T. & McGee, D. Linking glacial–interglacial states to multiple equilibria of climate. Geophys. Res. Lett. 45, 9160–9170 (2018).

    Article  Google Scholar 

  30. Gersonde, R., Crosta, X., Abelmann, A. & Armand, L. Sea-surface temperature and sea ice distribution of the southern ocean at the EPILOG last glacial maximum—a circum-Antarctic view based on siliceous microfossil records. Quat. Sci. Rev. 24, 869–896 (2005).

    Article  Google Scholar 

  31. Lund, D., Adkins, J. & Ferrari, R. Abyssal atlantic circulation during the Last Glacial Maximum: constraining the ratio between transport and vertical mixing. Paleoceanography 26, PA1213 (2011).

    Article  Google Scholar 

  32. Dutkiewicz, S., Follows, M. J. & Parekh, P. Interactions of the iron and phosphorus cycles: a three-dimensional model study. Glob. Biogeochem. Cycles 19, GB1021 (2005).

    Article  Google Scholar 

  33. Parekh, P., Follows, M. J., Dutkiewicz, S. & Ito, T. Physical and biological regulation of the soft tissue carbon pump. Paleoceanogr. Paleoclimatol. 21, PA3001 (2006).

    Google Scholar 

  34. Petit, J.-R. et al. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399, 429–436 (1999).

    Article  Google Scholar 

  35. Goodwin, P., Follows, M. J. & Williams, R. G. Analytical relationships between atmospheric carbon dioxide, carbon emissions and ocean processes. Glob. Biogeochem. Cycles 22, GB3030 (2008).

    Article  Google Scholar 

  36. Lauderdale, J. M., Garabato, A. C. N., Oliver, K. I., Follows, M. J. & Williams, R. G. Wind-driven changes in Southern Ocean residual circulation, ocean carbon reservoirs and atmospheric CO2. Clim. Dyn. 41, 2145–2164 (2013).

    Article  Google Scholar 

  37. Munday, D., Johnson, H. & Marshall, D. Impacts and effects of mesoscale ocean eddies on ocean carbon storage and atmospheric pCO2. Glob. Biogeochem. Cycles 28, 877–896 (2014).

    Article  Google Scholar 

  38. Follows, M. J., Ito, T. & Marotzke, J. The wind-driven, subtropical gyres and the solubility pump of CO2. Glob. Biogeochem. Cycles 16, 1113 (2002).

    Article  Google Scholar 

  39. Toggweiler, J., Gnanadesikan, A., Carson, S., Murnane, R. & Sarmiento, J. Representation of the carbon cycle in box models and GCMs: 1. Solubility pump. Glob. Biogeochem. Cycles 17, 1026 (2003).

    Google Scholar 

  40. Foster, T. D. An analysis of the cabbeling instability in sea water. J. Phys. Oceanogr. 2, 294–301 (1972).

    Article  Google Scholar 

  41. Khatiwala, S., Schmittner, A. & Muglia, J. Air–sea disequilibrium enhances ocean carbon storage during glacial periods. Sci. Adv. 5, eaaw4981 (2019).

    Article  Google Scholar 

  42. Green, J. et al. Tidal mixing and the meridional overturning circulation from the Last Glacial Maximum. Geophys. Res. Lett. 36, L15603 (2009).

    Article  Google Scholar 

  43. Schmittner, A., Green, J. & Wilmes, S.-B. Glacial ocean overturning intensified by tidal mixing in a global circulation model. Geophys. Res. Lett. 42, 4014–4022 (2015).

    Article  Google Scholar 

  44. Wunsch, C. & Ferrari, R. Vertical mixing, energy and the general circulation of the oceans. Annu. Rev. Fluid Mech. 36, 281–314 (2004).

    Article  Google Scholar 

  45. Marinov, I. et al. Impact of oceanic circulation on biological carbon storage in the ocean and atmospheric pCO2. Glob. Biogeochem. Cycles 22, GB3007 (2008).

    Article  Google Scholar 

  46. Mix, A. C. Influence of productivity variations on long-term atmospheric CO2. Nature 337, 541–544 (1989).

    Article  Google Scholar 

  47. Kohfeld, K. E., Le Quéré, C., Harrison, S. P. & Anderson, R. F. Role of marine biology in glacial–interglacial CO2 cycles. Science 308, 74–78 (2005).

    Article  Google Scholar 

  48. Martnez-Garca, A. et al. Iron fertilization of the subantarctic ocean during the last ice age. Science 343, 1347–1350 (2014).

    Article  Google Scholar 

  49. Ödalen, M., Nycander, J., Oliver, K. I., Brodeau, L. & Ridgwell, A. The influence of the ocean circulation state on ocean carbon storage and CO2 drawdown potential in an Earth system model. Biogeosciences 15, 1367–1393 (2018).

    Article  Google Scholar 

  50. Marshall, J., Hill, C., Perelman, L. & Adcroft, A. Hydrostatic, quasi-hydrostatic and nonhydrostatic ocean modeling. J. Geophys. Res. Oceans 102, 5733–5752 (1997).

    Article  Google Scholar 

  51. Nikurashin, M. & Ferrari, R. Overturning circulation driven by breaking internal waves in the deep ocean. Geophys. Res. Lett. 40, 3133–3137 (2013).

    Article  Google Scholar 

  52. Gent, P. R. & McWilliams, J. C. Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr. 20, 150–155 (1990).

    Article  Google Scholar 

  53. Redi, M. Oceanic isopycnal mixing by coordinate rotation. J. Phys. Oceanogr. 12, 1154–1158 (1982).

    Article  Google Scholar 

  54. Visbeck, M., Marshall, J., Haine, T. & Spall, M. Specification of eddy transfer coefficients in coarse-resolution ocean circulation models. J. Phys. Oceanogr. 27, 381–402 (1997).

    Article  Google Scholar 

  55. Losch, M., Menemenlis, D., Campin, J.-M., Heimbach, P. & Hill, C. On the formulation of sea-ice models. Part 1: Effects of different solver implementations and parameterizations. Ocean Model. 33, 129–144 (2010).

    Article  Google Scholar 

  56. Follows, M. J., Ito, T. & Dutkiewicz, S. On the solution of the carbonate chemistry system in ocean biogeochemistry models. Ocean Model. 12, 290–301 (2006).

    Article  Google Scholar 

  57. Wanninkhof, R. Relationship between wind speed and gas exchange over the ocean. J. Geophys. Res. Oceans 97, 7373–7382 (1992).

    Article  Google Scholar 

  58. Krakauer, N. Y., Randerson, J. T., Primeau, F. W., Gruber, N. & Menemenlis, D. Carbon isotope evidence for the latitudinal distribution and wind speed dependence of the air–sea gas transfer velocity. Tellus B Chem. Phys. Meteorol. 58, 390–417 (2006).

    Article  Google Scholar 

  59. Wanninkhof, R. Relationship between wind speed and gas exchange over the ocean revisited. Limnol. Oceanogr. Methods 12, 351–362 (2014).

    Article  Google Scholar 

  60. Ito, T. & Follows, M. J. Air–sea disequilibrium of carbon dioxide enhances the biological carbon sequestration in the southern ocean. Glob. Biogeochem. Cycles 27, 1129–1138 (2013).

    Article  Google Scholar 

  61. Williams, R. G. & Follows, M. J. Ocean Dynamics and the Carbon Cycle: Principles and Mechanisms (Cambridge Univ. Press, 2011).

Download references

Acknowledgements

This work was funded by the National Science Foundation under awards nos. OCE-1536454 and OCE-1846821, and computational resources were provided by the Research Computing Center at the University of Chicago. A.M. received funding from NERC grant no. NE/P019293/1 (TICTOC).

Author information

Authors and Affiliations

Authors

Contributions

A.M. and M.F.J. designed the study. A.M. performed the numerical simulations and analysed the results. A.M. and M.F.J. interpreted the results and wrote the manuscript.

Corresponding author

Correspondence to Alice Marzocchi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Primary Handling Editor(s): James Super, Rachael Rhodes.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary text, Figs. 1–4 and Table 1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marzocchi, A., Jansen, M.F. Global cooling linked to increased glacial carbon storage via changes in Antarctic sea ice. Nat. Geosci. 12, 1001–1005 (2019). https://doi.org/10.1038/s41561-019-0466-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-019-0466-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing