Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Geomorphic and ecological constraints on the coastal carbon sink

An Author Correction to this article was published on 02 April 2024

This article has been updated

Abstract

Climate change is driving a fundamental reorganization of the coastal zone, in which carbon-rich ecosystems are simultaneously migrating, accreting and submerging. In this Review, we discuss the geomorphic processes constraining soil carbon accumulation and the ecological processes constraining greenhouse gas emissions that together determine the net radiative forcing of the coastal landscape and the size of the coastal carbon sink. Sea level rise creates vertical and lateral accommodation space that potentially enhances soil carbon accumulation in marshes and mangroves. However, sea level rise and saltwater intrusion lead to ecosystem transitions that result in loss of existing carbon pools, altering the balance between carbon sequestration and greenhouse gas emissions. We propose that ecosystem reorganization results in large, but mostly offsetting, changes in radiative forcing. At the continental scale, losses in soil carbon sequestration and wood production are offset by reduced methane emissions associated with salinization of freshwater ecosystems. Nevertheless, climate effects on the coastal carbon sink remain largely studied within individual ecosystems. Future work is needed to determine the connectivity of carbon between ecosystems, changes in carbon accumulation and greenhouse gas emissions as ecosystem transitions occur, and the fate of carbon as it moves through the coastal landscape.

Key points

  • Sea level rise is driving the reorganization of coastal ecosystems and has substantial consequences for the fate of the coastal carbon sink.

  • Geomorphic processes drive soil carbon accumulation, whereas ecological processes drive greenhouse gas emissions and changes in wood production.

  • Sea-level-driven losses in carbon accumulation (12 Tg CO2eq yr1) are roughly offset by reduced methane emissions associated with salinization (−13 Tg CO2eq yr−1) across the continental United States.

  • Future work is needed to improve the connection between carbon sequestration and greenhouse gas emissions across a thoroughly connected coastal landscape.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Simplified view of the coastal carbon sink.
Fig. 2: Influence of sea level rise on wetland soil carbon accumulation.
Fig. 3: Historical land loss in coastal Louisiana and implications for landscape-scale carbon budgets.
Fig. 4: Examples of how interacting global change drivers offset effects on ecosystem-level carbon sequestration.
Fig. 5: Radiative forcing as a consequence of ecosystem state change.

Similar content being viewed by others

Change history

References

  1. Mcleod, E. et al. A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Front. Ecol. Environ. 9, 552–560 (2011).

    Article  Google Scholar 

  2. Lovelock, C. E. & Reef, R. Variable impacts of climate change on blue carbon. One Earth 3, 195–211 (2020).

    Article  Google Scholar 

  3. Kirwan, M. L. & Megonigal, J. P. Tidal wetland stability in the face of human impacts and sea-level rise. Nature 504, 53–60 (2013).

    Article  CAS  Google Scholar 

  4. Macreadie, P. I. et al. The future of blue carbon science. Nat. Commun. 10, 3998 (2019).

    Article  Google Scholar 

  5. Kirwan, M. L., Temmerman, S., Skeehan, E. E., Guntenspergen, G. R. & Fagherazzi, S. Overestimation of marsh vulnerability to sea level rise. Nat. Clim. Change 6, 253–260 (2016).

    Article  Google Scholar 

  6. Saintilan, N. et al. Thresholds of mangrove survival under rapid sea level rise. Science 368, 1118–1121 (2020).

    Article  CAS  Google Scholar 

  7. Törnqvist, T. E., Cahoon, D. R., Morris, J. T. & Day, J. W. Coastal wetland resilience, accelerated sea-level rise, and the importance of timescale. AGU Adv. 2, e2020AV000334 (2021).

    Article  Google Scholar 

  8. Fox-Kemper, B. et al. Ocean, Cryosphere and Sea Level Change, 1211–1362 (Cambridge Univ. Press, 2021); https://doi.org/10.1017/9781009157896.011.

  9. Schuerch, M. et al. Future response of global coastal wetlands to sea-level rise. Nature 561, 231–234 (2018).

    Article  CAS  Google Scholar 

  10. Kirwan, M. L. & Mudd, S. M. Response of salt-marsh carbon accumulation to climate change. Nature 489, 550–553 (2012).

    Article  CAS  Google Scholar 

  11. Kirwan, M. L. & Gedan, K. B. Sea-level driven land conversion and the formation of ghost forests. Nat. Clim. Change 9, 450–457 (2019).

    Article  Google Scholar 

  12. Osland, M. J. et al. Migration and transformation of coastal wetlands in response to rising seas. Sci. Adv. 8, eabo5174 (2022).

    Article  Google Scholar 

  13. McDowell, N. G. et al. Processes and mechanisms of coastal woody-plant mortality. Glob. Change Biol. 28, 5881–5900 (2022).

    Article  CAS  Google Scholar 

  14. Saintilan, N. et al. Constraints on the adjustment of tidal marshes to accelerating sea level rise. Science 377, 523–527 (2022).

    Article  CAS  Google Scholar 

  15. Valentine, K. et al. Climate-driven tradeoffs between landscape connectivity and the maintenance of the coastal carbon sink. Nat. Commun. 14, 1137 (2023).

    Article  CAS  Google Scholar 

  16. Wang, F. et al. Global blue carbon accumulation in tidal wetlands increases with climate change. Natl Sci. Rev. 8, nwaa296 (2021).

    Article  CAS  Google Scholar 

  17. Smith, A. J. & Kirwan, M. L. Sea level-driven marsh migration results in rapid net loss of carbon. Geophys. Res. Lett. 48, e2021GL092420 (2021).

    Article  CAS  Google Scholar 

  18. Smart, L. S. et al. Aboveground carbon loss associated with the spread of ghost forests as sea levels rise. Environ. Res. Lett. 15, 104028 (2020).

    Article  CAS  Google Scholar 

  19. Warnell, K., Olander, L. & Currin, C. Sea level rise drives carbon and habitat loss in the US mid-Atlantic coastal zone. PLoS Clim. 1, e0000044 (2022).

    Article  Google Scholar 

  20. Ganju, N. K., Defne, Z., Elsey-Quirk, T. & Moriarty, J. M. Role of tidal wetland stability in lateral fluxes of particulate organic matter and carbon. J. Geophys. Res. Biogeosci. 124, 1265–1277 (2019).

    Article  CAS  Google Scholar 

  21. Schutte, C. A., Moore, W. S., Wilson, A. M. & Joye, S. B. Groundwater‐driven methane export reduces salt marsh blue carbon potential. Glob. Biogeochem. Cycles 34, e2020GB006587 (2020).

    Article  CAS  Google Scholar 

  22. Osland, M. J. et al. Climate and plant controls on soil organic matter in coastal wetlands. Glob. Change Biol. 24, 5361–5379 (2018).

    Article  Google Scholar 

  23. Noyce, G. L., Kirwan, M. L., Rich, R. L. & Megonigal, J. P. Asynchronous nitrogen supply and demand produce nonlinear plant allocation responses to warming and elevated CO2. Proc. Natl Acad. Sci. 116, 21623–21628 (2019).

    Article  CAS  Google Scholar 

  24. Rosentreter, J. A., Maher, D. T., Erler, D. V., Murray, R. H. & Eyre, B. D. Methane emissions partially offset ‘blue carbon’ burial in mangroves. Sci. Adv. 4, eaao4985 (2018).

    Article  Google Scholar 

  25. Noyce, G. L., Smith, A. J., Kirwan, M. L., Rich, R. L. & Megonigal, J. P. Oxygen priming induced by elevated CO2 reduces carbon sequestration in coastal wetlands. Nat. Geosci. 16, 63–68 (2023).

    Article  CAS  Google Scholar 

  26. Osland, M. J. et al. Beyond just sea‐level rise: considering macroclimatic drivers within coastal wetland vulnerability assessments to climate change. Glob. Change Biol. 22, 1–11 (2016).

    Article  Google Scholar 

  27. Dacey, J. W. H., Drake, B. G. & Klug, M. J. Stimulation of methane emission by carbon dioxide enrichment of marsh vegetation. Nature 370, 47–49 (1994).

    Article  CAS  Google Scholar 

  28. Megonigal, J. P. & Schlesinger, W. H. Enhanced CH4 emission from a wetland soil exposed to elevated CO2. Biogeochemistry 37, 77–88 (1997).

    Article  CAS  Google Scholar 

  29. Rietl, A. J., Megonigal, J. P., Herbert, E. R. & Kirwan, M. L. Vegetation type and decomposition priming mediate brackish marsh carbon accumulation under interacting facets of global change. Geophys. Res. Lett. 48, e2020GL092051 (2021).

    Article  CAS  Google Scholar 

  30. Langley, J. A., McKee, K. L., Cahoon, D. R., Cherry, J. A. & Megonigal, J. P. Elevated CO2 stimulates marsh elevation gain, counterbalancing sea-level rise. Proc. Natl Acad. Sci. USA 106, 6182–6186 (2009).

    Article  CAS  Google Scholar 

  31. Smith, A. J., Noyce, G. L., Megonigal, J. P., Guntenspergen, G. R. & Kirwan, M. L. Temperature optimum for marsh resilience and carbon accumulation revealed in a whole-ecosystem warming experiment. Glob. Change Biol. 28, 3236–3245 (2022).

    Article  CAS  Google Scholar 

  32. Chen, Y. & Kirwan, M. L. A phenology- and trend-based approach for accurate mapping of sea-level driven coastal forest retreat. Remote Sens. Environ. 281, 113229 (2022).

    Article  Google Scholar 

  33. Rovai, A. S. Global controls on carbon storage in mangrove soils. Nat. Clim. Change 8, 534–538 (2018).

    Article  CAS  Google Scholar 

  34. Holmquist, J. R. et al. Accuracy and precision of tidal wetland soil carbon mapping in the conterminous United States. Sci. Rep. 8, 9478 (2018).

    Article  Google Scholar 

  35. Twilley, R. R., Rovai, A. S. & Riul, P. Coastal morphology explains global blue carbon distributions. Front. Ecol. Environ. 16, 503–508 (2018).

    Article  Google Scholar 

  36. Macreadie, P. I. et al. Blue carbon as a natural climate solution. Nat. Rev. Earth Environ. 2, 826–839 (2021).

    Article  CAS  Google Scholar 

  37. Breithaupt, J. L. & Steinmuller, H. E. Refining the global estimate of mangrove carbon burial rates using sedimentary and geomorphic settings. Geophys. Res. Lett. 49, e2022GL100177 (2022).

    Article  CAS  Google Scholar 

  38. Rogers, K. et al. Wetland carbon storage controlled by millennial-scale variation in relative sea-level rise. Nature 567, 91–95 (2019).

    Article  CAS  Google Scholar 

  39. Henrichs, S. M. & Reeburgh, W. S. Anaerobic mineralization of marine sediment organic matter: rates and the role of anaerobic processes in the oceanic carbon economy. Geomicrobiol. J. 5, 191–237 (1987).

    Article  CAS  Google Scholar 

  40. Mudd, S. M., Howell, S. M. & Morris, J. T. Impact of dynamic feedbacks between sedimentation, sea-level rise, and biomass production on near-surface marsh stratigraphy and carbon accumulation. Estuar. Coast. Shelf Sci. 82, 377–389 (2009).

    Article  CAS  Google Scholar 

  41. Krauss, K. W. et al. How mangrove forests adjust to rising sea level. New Phytol. 202, 19–34 (2014).

    Article  Google Scholar 

  42. Krauss, K. W. et al. Created mangrove wetlands store belowground carbon and surface elevation change enables them to adjust to sea-level rise. Sci. Rep. 7, 1030 (2017).

    Article  Google Scholar 

  43. Stewart, C. E., Paustian, K., Conant, R. T., Plante, A. F. & Six, J. Soil carbon saturation: concept, evidence and evaluation. Biogeochemistry 86, 19–31 (2007).

    Article  CAS  Google Scholar 

  44. Herbert, E. R., Windham-Myers, L. & Kirwan, M. L. Sea-level rise enhances carbon accumulation in United States tidal wetlands. One Earth 4, 425–433 (2021).

    Article  Google Scholar 

  45. Wang, F., Lu, X., Sanders, C. J. & Tang, J. Tidal wetland resilience to sea level rise increases their carbon sequestration capacity in United States. Nat. Commun. 10, 5434 (2019).

    Article  CAS  Google Scholar 

  46. Holmquist, J. R., Brown, L. N. & MacDonald, G. M. Localized scenarios and latitudinal patterns of vertical and lateral resilience of tidal marshes to sea‐level rise in the contiguous United States. Earths Future 9, e2020EF001804 (2021).

    Article  Google Scholar 

  47. Gonneea, M. E. et al. Salt marsh ecosystem restructuring enhances elevation resilience and carbon storage during accelerating relative sea-level rise. Estuar. Coast. Shelf Sci. 217, 56–68 (2019).

    Article  CAS  Google Scholar 

  48. Braswell, A. E., Heffernan, J. B. & Kirwan, M. L. How old are marshes on the East Coast, USA? Complex patterns in wetland age within and among regions. Geophys. Res. Lett. 47, e2020GL089415 (2020).

    Article  Google Scholar 

  49. Roner, M. et al. Spatial variation of salt-marsh organic and inorganic deposition and organic carbon accumulation: inferences from the Venice lagoon, Italy. Adv. Water Resour. 93, 276–287 (2016).

    Article  CAS  Google Scholar 

  50. Coleman, D. J. et al. Reconciling models and measurements of marsh vulnerability to sea level rise. Limnol. Oceanogr. Lett. 7, 140–149 (2022).

    Article  Google Scholar 

  51. Kirwan, M. L. et al. Limits on the adaptability of coastal marshes to rising sea level. Geophys. Res. Lett. https://doi.org/10.1029/2010GL045489 (2010).

    Article  Google Scholar 

  52. Ganju, N. K. et al. Spatially integrative metrics reveal hidden vulnerability of microtidal salt marshes. Nat. Commun. 8, 14156 (2017).

    Article  CAS  Google Scholar 

  53. Syvitski, J. P. M. et al. Sinking deltas due to human activities. Nat. Geosci. 2, 681–686 (2009).

    Article  CAS  Google Scholar 

  54. Curray, J. R. in Papers in Marine Geology, Shepard Commemorative Volume (ed. Miller, R. L.) 175–203 (Macmillan, 1964).

  55. Hinson, A. L. et al. The spatial distribution of soil organic carbon in tidal wetland soils of the continental United States. Glob. Change Biol. 23, 5468–5480 (2017).

    Article  Google Scholar 

  56. Kirwan, M. L., Walters, D. C., Reay, W. G. & Carr, J. A. Sea level driven marsh expansion in a coupled model of marsh erosion and migration. Geophys. Res. Lett. 43, 4366–4373 (2016).

    Article  Google Scholar 

  57. Ensign, S. H. & Noe, G. B. Tidal extension and sea-level rise: recommendations for a research agenda. Front. Ecol. Environ. 16, 37–43 (2018).

    Article  Google Scholar 

  58. Deaton, C. D., Hein, C. J. & Kirwan, M. L. Barrier island migration dominates ecogeomorphic feedbacks and drives salt marsh loss along the Virginia Atlantic Coast, USA. Geology 45, 123–126 (2017).

    Article  Google Scholar 

  59. Mariotti, G. & Hein, C. J. Lag in response of coastal barrier-island retreat to sea-level rise. Nat. Geosci. 15, 633–638 (2022).

    Article  CAS  Google Scholar 

  60. Nienhuis, J. H. et al. Global-scale human impact on delta morphology has led to net land area gain. Nature 577, 514–518 (2020).

    Article  CAS  Google Scholar 

  61. Tognin, D., D’Alpaos, A., Marani, M. & Carniello, L. Marsh resilience to sea-level rise reduced by storm-surge barriers in the Venice Lagoon. Nat. Geosci. 14, 906–911 (2021).

    Article  CAS  Google Scholar 

  62. Enwright, N. M., Griffith, K. T. & Osland, M. J. Barriers to and opportunities for landward migration of coastal wetlands with sea-level rise. Front. Ecol. Environ. 14, 307–316 (2016).

    Article  Google Scholar 

  63. Rodriguez, A. B., McKee, B. A., Miller, C. B., Bost, M. C. & Atencio, A. N. Coastal sedimentation across North America doubled in the 20th century despite river dams. Nat. Commun. 11, 3249 (2020).

    Article  CAS  Google Scholar 

  64. Yang, S. L. et al. Role of delta-front erosion in sustaining salt marshes under sea-level rise and fluvial sediment decline. Limnol. Oceanogr. 65, 1990–2009 (2020).

    Article  Google Scholar 

  65. Murray, N. J. et al. High-resolution mapping of losses and gains of Earth’s tidal wetlands. Science 376, 744–749 (2022).

    Article  CAS  Google Scholar 

  66. Ladd, C. J. T., Duggan-Edwards, M. F., Bouma, T. J., Pagès, J. F. & Skov, M. W. Sediment supply explains long-term and large-scale patterns in salt marsh lateral expansion and erosion. Geophys. Res. Lett. 46, 11178–11187 (2019).

    Article  Google Scholar 

  67. Swales, A., Bentley, S. J., Lovelock, C. & Bell, R. G. Sediment processes and mangrove-habitat expansion on a rapidly-prograding Muddy Coast, New Zealand. Sixth International Symposium on Coastal Engineering and Science of Coastal Sediment Process 1441–1454 https://doi.org/10.1061/40926(239)111 (2012).

  68. Langston, A. K., Alexander, C. R., Alber, M. & Kirwan, M. L. Beyond 2100: elevation capital disguises salt marsh vulnerability to sea-level rise in Georgia, USA. Estuar. Coast. Shelf Sci. 249, 107093 (2021).

    Article  Google Scholar 

  69. Duran Vinent, O., Herbert, E. R., Coleman, D. J., Himmelstein, J. D. & Kirwan, M. L. Onset of runaway fragmentation of salt marshes. One Earth 4, 506–516 (2021).

    Article  Google Scholar 

  70. Mariotti, G. Revisiting salt marsh resilience to sea level rise: are ponds responsible for permanent land loss? Salt marsh ponds. J. Geophys. Res. Earth Surf. 121, 1391–1407 (2016).

    Article  Google Scholar 

  71. Horton, B. P. et al. Predicting marsh vulnerability to sea-level rise using Holocene relative sea-level data. Nat. Commun. 9, 2687 (2018).

    Article  Google Scholar 

  72. Törnqvist, T. E., Jankowski, K. L., Li, Y.-X. & González, J. L. Tipping points of Mississippi Delta marshes due to accelerated sea-level rise. Sci. Adv. 6, eaaz5512 (2020).

    Article  Google Scholar 

  73. Molino, G. D., Carr, J. A., Ganju, N. K. & Kirwan, M. L. Variability in marsh migration potential determined by topographic rather than anthropogenic constraints in the Chesapeake Bay region. Limnol. Oceanogr. Lett. 7, 321–331 (2022).

    Article  Google Scholar 

  74. White, E. E., Ury, E. A., Bernhardt, E. S. & Yang, X. Climate change driving widespread loss of coastal forested wetlands throughout the North American Coastal Plain. Ecosystems 25, 812–827 (2022).

    Article  Google Scholar 

  75. Stagg, C. L., Baustian, M. M., Perry, C. L., Carruthers, T. J. B. & Hall, C. T. Direct and indirect controls on organic matter decomposition in four coastal wetland communities along a landscape salinity gradient. J. Ecol. 106, 655–670 (2018).

    Article  CAS  Google Scholar 

  76. Stagg, C. L., Schoolmaster, D. R., Krauss, K. W., Cormier, N. & Conner, W. H. Causal mechanisms of soil organic matter decomposition: deconstructing salinity and flooding impacts in coastal wetlands. Ecology 98, 2003–2018 (2017).

    Article  Google Scholar 

  77. Herbert, E. R. et al. A global perspective on wetland salinization: ecological consequences of a growing threat to freshwater wetlands. Ecosphere 6, art206 (2015).

    Article  Google Scholar 

  78. Krauss, K. W. et al. The role of the upper tidal estuary in wetland blue carbon storage and flux. Glob. Biogeochem. Cycles 32, 817–839 (2018).

    Article  CAS  Google Scholar 

  79. Chen, Y. & Kirwan, M. L. Climate-driven decoupling of wetland and upland biomass trends on the mid-Atlantic coast. Nat. Geosci. 15, 913–918 (2022).

    Article  CAS  Google Scholar 

  80. Baustian, M. M., Stagg, C. L., Perry, C. L., Moss, L. C. & Carruthers, T. J. B. Long‐term carbon sinks in marsh soils of coastal Louisiana are at risk to wetland loss. J. Geophys. Res. Biogeosci. 126, e2020JG005832 (2021).

    Article  Google Scholar 

  81. Theuerkauf, E. J., Stephens, J. D., Ridge, J. T., Fodrie, F. J. & Rodriguez, A. B. Carbon export from fringing saltmarsh shoreline erosion overwhelms carbon storage across a critical width threshold. Estuar. Coast. Shelf Sci. 164, 367–378 (2015).

    Article  CAS  Google Scholar 

  82. Kirwan, M. L. & Murray, A. B. Tidal marshes as disequilibrium landscapes? Lags between morphology and Holocene sea level change. Geophys. Res. Lett. 35, 36050 (2008).

    Article  Google Scholar 

  83. Jordan, T. E. & Correll, D. L. Nutrient chemistry and hydrology of interstitial water in brackish tidal marshes of Chesapeake Bay. Estuar. Coast. Shelf Sci. 21, 45–55 (1985).

    Article  CAS  Google Scholar 

  84. Czapla, K. M., Anderson, I. C. & Currin, C. A. Net ecosystem carbon balance in a North Carolina, USA, Salt Marsh. J. Geophys. Res. Biogeosci. 125, e2019JG005509 (2020).

    Article  CAS  Google Scholar 

  85. Spivak, A. C., Gosselin, K. M. & Sylva, S. P. Shallow ponds are biogeochemically distinct habitats in salt marsh ecosystems. Limnol. Oceanogr. 63, 1622–1642 (2018).

    Article  CAS  Google Scholar 

  86. Bauer, J. E. et al. The changing carbon cycle of the coastal ocean. Nature 504, 61–70 (2013).

    Article  CAS  Google Scholar 

  87. Santos, I. R. et al. The renaissance of Odum’s outwelling hypothesis in ‘blue carbon’ science. Estuar. Coast. Shelf Sci. 255, 107361 (2021).

    Article  Google Scholar 

  88. Wang, Z. A., Kroeger, K. D., Ganju, N. K., Gonneea, M. E. & Chu, S. N. Intertidal salt marshes as an important source of inorganic carbon to the coastal ocean. Limnol. Oceanogr. 61, 1916–1931 (2016).

    Article  Google Scholar 

  89. Bogard, M. J. et al. Hydrologic export is a major component of coastal wetland carbon budgets. Glob. Biogeochem. Cycles 34, 006430 (2020).

    Article  Google Scholar 

  90. Mariotti, G. Beyond marsh drowning: the many faces of marsh loss (and gain). Adv. Water Resour. 144, 103710 (2020).

    Article  Google Scholar 

  91. Ganju, N. K., Defne, Z. & Fagherazzi, S. Are elevation and open-water conversion of salt marshes connected? Geophys. Res. Lett. 47, e2019GL086703 (2020).

    Article  Google Scholar 

  92. Schepers, L., Brennand, P., Kirwan, M. L., Guntenspergen, G. R. & Temmerman, S. Coastal marsh degradation into ponds induces irreversible elevation loss relative to sea level in a microtidal system. Geophys. Res. Lett. 47, e2020GL089121 (2020).

    Article  Google Scholar 

  93. Qi, M., MacGregor, J. & Gedan, K. Biogeomorphic patterns emerge with pond expansion in deteriorating marshes affected by relative sea level rise. Limnol. Oceanogr. 66, 1036–1049 (2021).

    Article  Google Scholar 

  94. Blair, N. E. & Aller, R. C. The fate of terrestrial organic carbon in the marine environment. Annu. Rev. Mar. Sci. 4, 401–423 (2012).

    Article  Google Scholar 

  95. Donatelli, C., Ganju, N. K., Zhang, X., Fagherazzi, S. & Leonardi, N. Salt marsh loss affects tides and the sediment budget in shallow bays. J. Geophys. Res. Earth Surf. 123, 2647–2662 (2018).

    Article  Google Scholar 

  96. Van de Broek, M. et al. Long-term organic carbon sequestration in tidal marsh sediments is dominated by old-aged allochthonous inputs in a macrotidal estuary. Glob. Change Biol. 24, 2498–2512 (2018).

    Article  Google Scholar 

  97. Hopkinson, C. S., Morris, J. T., Fagherazzi, S., Wollheim, W. M. & Raymond, P. A. Lateral marsh edge erosion as a source of sediments for vertical marsh accretion. J. Geophys. Res. Biogeosci. 123, 2444–2465 (2018).

    Article  CAS  Google Scholar 

  98. Najjar, R. G. et al. Carbon budget of tidal wetlands, estuaries, and shelf waters of eastern North America. Glob. Biogeochem. Cycles 32, 389–416 (2018).

    Article  CAS  Google Scholar 

  99. Prentice, C. et al. A synthesis of blue carbon stocks, sources, and accumulation rates in eelgrass (Zostera marina) meadows in the Northeast Pacific. Glob. Biogeochem. Cycles 34, e2019GB006345 (2020).

    Article  CAS  Google Scholar 

  100. McTigue, N. D., Walker, Q. A. & Currin, C. A. Refining estimates of greenhouse gas emissions from salt marsh ‘blue carbon’ erosion and decomposition. Front. Mar. Sci 8, 661442 (2021).

    Article  Google Scholar 

  101. Ward, M. A. et al. Blue carbon stocks and exchanges along the California coast. Biogeosciences 18, 4717–4732 (2021).

    Article  CAS  Google Scholar 

  102. Phang, V. X. H., Chou, L. M. & Friess, D. A. Ecosystem carbon stocks across a tropical intertidal habitat mosaic of mangrove forest, seagrass meadow, mudflat and sandbar: carbon stocks in intertidal ecosystems. Earth Surf. Process. Landf. 40, 1387–1400 (2015).

    Article  CAS  Google Scholar 

  103. Sasmito, S. D. et al. Organic carbon burial and sources in soils of coastal mudflat and mangrove ecosystems. CATENA 187, 104414 (2020).

    Article  CAS  Google Scholar 

  104. Czapla, K. M., Anderson, I. C. & Currin, C. A. The effect of fertilization on biomass and metabolism in North Carolina Salt marshes: modulated by location‐specific factors. J. Geophys. Res. Biogeosci. 125, e2019JG005238 (2020).

    Article  CAS  Google Scholar 

  105. Ren, L., Jensen, K., Porada, P. & Mueller, P. Biota-mediated carbon cycling — a synthesis of biotic-interaction controls on blue carbon. Ecol. Lett. 25, 521–540 (2022).

    Article  Google Scholar 

  106. Turner, R. E. Beneath the salt marsh canopy: loss of soil strength with increasing nutrient loads. Estuaries Coast 34, 1084–1093 (2011).

    Article  CAS  Google Scholar 

  107. Cahoon, D. R., McKee, K. L. & Morris, J. T. How plants influence resilience of salt marsh and mangrove wetlands to sea-level rise. Estuaries Coast 44, 883–898 (2021).

    Article  CAS  Google Scholar 

  108. Langley, J. A. & Megonigal, J. P. Ecosystem response to elevated CO2 levels limited by nitrogen-induced plant species shift. Nature 466, 96–99 (2010).

    Article  CAS  Google Scholar 

  109. Langley, J. A. & Hungate, B. A. Plant community feedbacks and long-term ecosystem responses to multi-factored global change. AoB Plants 6, plu035 (2014).

    Article  Google Scholar 

  110. Davidson, T. M., Altieri, A. H., Ruiz, G. M. & Torchin, M. E. Bioerosion in a changing world: a conceptual framework. Ecol. Lett. 21, 422–438 (2018).

    Article  Google Scholar 

  111. Cavanaugh, K. C. et al. Poleward expansion of mangroves is a threshold response to decreased frequency of extreme cold events. Proc. Natl Acad. Sci. USA 111, 723–727 (2014).

    Article  CAS  Google Scholar 

  112. Saintilan, N., Wilson, N. C., Rogers, K., Rajkaran, A. & Krauss, K. W. Mangrove expansion and salt marsh decline at mangrove poleward limits. Glob. Change Biol. 20, 147–157 (2014).

    Article  Google Scholar 

  113. Doughty, C. L. et al. Mangrove range expansion rapidly increases coastal wetland carbon storage. Estuaries Coast 39, 385–396 (2016).

    Article  CAS  Google Scholar 

  114. Bianchi, T. S. et al. Historical reconstruction of mangrove expansion in the Gulf of Mexico: linking climate change with carbon sequestration in coastal wetlands. Estuar. Coast. Shelf Sci. 119, 7–16 (2013).

    Article  CAS  Google Scholar 

  115. Yando, E. S. et al. Salt marsh-mangrove ecotones: using structural gradients to investigate the effects of woody plant encroachment on plant–soil interactions and ecosystem carbon pools. J. Ecol. 104, 1020–1031 (2016).

    Article  CAS  Google Scholar 

  116. Barreto, C. R., Morrissey, E. M., Wykoff, D. D. & Chapman, S. K. Co-occurring mangroves and salt marshes differ in microbial community composition. Wetlands 38, 497–508 (2018).

    Article  Google Scholar 

  117. Doyle, J. M., Earley, K. E. & Atkinson, R. B. An analysis of Atlantic white cedar (Chamaecyparis thyoides (L.) B.S.P.) tree rings as indicators of ghost forest development in a globally threatened ecosystem. Forests 12, 973 (2021).

    Article  Google Scholar 

  118. Haaf, L., Dymond, S. F. & Kreeger, D. A. Principal factors influencing tree growth in low-lying mid Atlantic coastal forests. Forests 12, 1351 (2021).

    Article  Google Scholar 

  119. Kirwan, M. L., Kirwan, J. L. & Copenheaver, C. A. Dynamics of an estuarine forest and its response to rising sea level. J. Coast. Res. 23, 457–463 (2007).

    Article  Google Scholar 

  120. Marbà, N., Krause-Jensen, D., Masqué, P. & Duarte, C. M. Expanding Greenland seagrass meadows contribute new sediment carbon sinks. Sci. Rep. 8, 14024 (2018).

    Article  Google Scholar 

  121. Olsen, A., Anderson, L. G. & Heinze, C. in The New Arctic (eds Evengård, B. et al.) 95–115 (Springer, 2015).

  122. Morris, J. T., Sundareshwar, P. V., Nietch, C. T., Kjerfve, B. & Cahoon, D. R. Responses of coastal wetlands to rising sea level. Ecology 83, 2869–2877 (2002).

    Article  Google Scholar 

  123. Kirwan, M. L. & Guntenspergen, G. R. Feedbacks between inundation, root production, and shoot growth in a rapidly submerging brackish marsh. J. Ecol. 100, 764–770 (2012).

    Article  Google Scholar 

  124. Mueller, P., Jensen, K. & Megonigal, J. P. Plants mediate soil organic matter decomposition in response to sea level rise. Glob. Change Biol. 22, 404–414 (2016).

    Article  Google Scholar 

  125. Lai, W.-L., Zhang, Y. & Chen, Z.-H. Radial oxygen loss, photosynthesis, and nutrient removal of 35 wetland plants. Ecol. Eng. 39, 24–30 (2012).

    Article  Google Scholar 

  126. Terrer, C. et al. A trade-off between plant and soil carbon storage under elevated CO2. Nature 591, 599–603 (2021).

    Article  CAS  Google Scholar 

  127. Noyce, G. L. & Megonigal, J. P. Biogeochemical and plant trait mechanisms drive enhanced methane emissions in response to whole-ecosystem warming. Biogeosciences 18, 2449–2463 (2021).

    Article  CAS  Google Scholar 

  128. Chmura, G. L., Anisfeld, S. C., Cahoon, D. R. & Lynch, J. C. Global carbon sequestration in tidal, saline wetland soils. Glob. Biogeochem. Cycles 17, e2002GB001917 (2003).

    Article  Google Scholar 

  129. Kauffman, J. B. et al. Total ecosystem carbon stocks of mangroves across broad global environmental and physical gradients. Ecol. Monogr. 90, e01405 (2020).

    Article  Google Scholar 

  130. Tan, L. et al. Conversion of coastal wetlands, riparian wetlands, and peatlands increases greenhouse gas emissions: a global meta‐analysis. Glob. Change Biol. 26, 1638–1653 (2020).

    Article  Google Scholar 

  131. Neubauer, S. C. & Megonigal, J. P. in Wetland Carbon and Environmental Management (eds Krauss, K. W. et al.) 33–71 (Wiley, 2021).

  132. Rosentreter, J. A., Al-Haj, A. N., Fulweiler, R. W. & Williamson, P. Methane and nitrous oxide emissions complicate coastal blue carbon assessments. Glob. Biogeochem. Cycles 35, e2020GB006858 (2021).

    Article  CAS  Google Scholar 

  133. Whiting, G. J. & Chanton, J. P. Primary production control of methane emission from wetlands. Nature 364, 794–795 (1993).

    Article  CAS  Google Scholar 

  134. Holland, H. D., Schlesinger, W. H. & Turekian, K. K. Biogeochemistry (Elsevier, 2005).

  135. La, W. et al. Sulfate concentrations affect sulfate reduction pathways and methane consumption in coastal wetlands. Water Res. 217, 118441 (2022).

    Article  CAS  Google Scholar 

  136. Poffenbarger, H. J., Needelman, B. A. & Megonigal, J. P. Salinity Influence on methane emissions from tidal marshes. Wetlands 31, 831–842 (2011).

    Article  Google Scholar 

  137. Al‐Haj, A. N. & Fulweiler, R. W. A synthesis of methane emissions from shallow vegetated coastal ecosystems. Glob. Change Biol. 26, 2988–3005 (2020).

    Article  Google Scholar 

  138. Megonigal, J. P. & Schlesinger, W. H. Methane-limited methanotrophy in tidal freshwater swamps. Glob. Biogeochem. Cycles 16, 35-1–35–10 (2002).

    Article  Google Scholar 

  139. Mueller, P. et al. Plant species determine tidal wetland methane response to sea level rise. Nat. Commun. 11, 5154 (2020).

    Article  CAS  Google Scholar 

  140. Martin, R. M. & Moseman-Valtierra, S. Greenhouse gas fluxes vary between phragmites australis and native vegetation zones in coastal wetlands along a salinity gradient. Wetlands 35, 1021–1031 (2015).

    Article  Google Scholar 

  141. Vann, C. D. & Megonigal, J. P. Elevated CO2 and water depth regulation of methane emissions: comparison of woody and non-woody wetland plant species. Biogeochemistry 63, 117–134 (2003).

    Article  CAS  Google Scholar 

  142. Krauss, K. W. & Whitbeck, J. L. Soil greenhouse gas fluxes during wetland forest retreat along the lower Savannah River, Georgia (USA). Wetlands 32, 73–81 (2012).

    Article  Google Scholar 

  143. Windham-Myers, L. et al. Potential for negative emissions of greenhouse gases (CO2, CH4 and N2O) through coastal peatland re-establishment: novel insights from high frequency flux data at meter and kilometer scales. Environ. Res. Lett. 13, 045005 (2018).

    Article  Google Scholar 

  144. Derby, R. K., Needelman, B. A., Roden, A. A. & Megonigal, J. P. Vegetation and hydrology stratification as proxies to estimate methane emission from tidal marshes. Biogeochemistry 157, 227–243 (2022).

    Article  CAS  Google Scholar 

  145. Covey, K. R. & Megonigal, J. P. Methane production and emissions in trees and forests. New Phytol. 222, 35–51 (2019).

    Article  Google Scholar 

  146. Martinez, M. & Ardón, M. Drivers of greenhouse gas emissions from standing dead trees in ghost forests. Biogeochemistry 154, 471–488 (2021).

    Article  CAS  Google Scholar 

  147. Moseman-Valtierra, S. et al. Substantial nitrous oxide emissions from intertidal sediments and groundwater in anthropogenically-impacted West Falmouth Harbor, Massachusetts. Chemosphere 119, 1281–1288 (2015).

    Article  CAS  Google Scholar 

  148. Gesch, D. B. Best practices for elevation-based assessments of sea-level rise and coastal flooding exposure. Front. Earth Sci. 6, 00230 (2018).

    Article  Google Scholar 

  149. Shirzaei, M. et al. Measuring, modelling and projecting coastal land subsidence. Nat. Rev. Earth Environ. 2, 40–58 (2021).

    Article  Google Scholar 

  150. Armstrong, S. B. & Lazarus, E. D. Masked shoreline erosion at large spatial scales as a collective effect of beach nourishment. Earths Future 7, 74–84 (2019).

    Article  Google Scholar 

  151. Kroeger, K. D., Crooks, S., Moseman-Valtierra, S. & Tang, J. Restoring tides to reduce methane emissions in impounded wetlands: a new and potent blue carbon climate change intervention. Sci. Rep. 7, 11914 (2017).

    Article  Google Scholar 

  152. Fargione, J. E. et al. Natural climate solutions for the United States. Sci. Adv. 4, eaat1869 (2018).

    Article  Google Scholar 

  153. LaRowe, D. E. et al. The fate of organic carbon in marine sediments — new insights from recent data and analysis. Earth-Sci. Rev. 204, 103146 (2020).

    Article  CAS  Google Scholar 

  154. Krause-Jensen, D. & Duarte, C. M. Substantial role of macroalgae in marine carbon sequestration. Nat. Geosci. 9, 737–742 (2016).

    Article  CAS  Google Scholar 

  155. Coastal Carbon Research Coordination Network. https://serc.si.edu/coastalcarbon (2018).

  156. Wilson, B. J. Salinity pulses interact with seasonal dry‐down to increase ecosystem carbon loss in marshes of the Florida Everglades. Ecol. Appl. 28, 2092–2108 (2018).

    Article  Google Scholar 

  157. Holm, G. O. et al. Ecosystem level methane fluxes from tidal freshwater and brackish marshes of the Mississippi River Delta: implications for coastal wetland carbon projects. Wetlands 36, 401–413 (2016).

    Article  Google Scholar 

  158. Neubauer, S. C. & Megonigal, J. P. Moving beyond global warming potentials to quantify the climatic role of ecosystems. Ecosystems 18, 1000–1013 (2015).

    Article  Google Scholar 

  159. Couvillion, B. et al. Scientific Investigations Map 3164: Land Area Change in Coastal Louisiana from 1932 to 2010 (US Geological Survey, 2011).

  160. Schieder, N. W., Walters, D. C. & Kirwan, M. L. Massive upland to wetland conversion compensated for historical marsh loss in Chesapeake bay, USA. Estuaries Coast 41, 940–951 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

Funding for this project was provided by the US Department of Energy, Office of Science, Office of Biological and Environmental Research, Environmental System Science programme (DE-SC0014413, DE-SC0019110 and DE-SC0021112), and through the COMPASS-FME project (DE-AC05-76RL01830). J.P.M. and G.L.N. acknowledge support from the Smithsonian Institution. M.L.K. and A.J.S. acknowledge support from the National Science Foundation (#1654374, 1832221 and 2012670) and the USGS Ecosystem Land Change Science Program.

Author information

Authors and Affiliations

Authors

Contributions

J.P.M. and A.J.S. researched data for the article. All authors wrote the article, made a substantial contribution to discussion of content, and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Matthew L. Kirwan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Earth & Environment thanks Faming Wang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kirwan, M.L., Megonigal, J.P., Noyce, G.L. et al. Geomorphic and ecological constraints on the coastal carbon sink. Nat Rev Earth Environ 4, 393–406 (2023). https://doi.org/10.1038/s43017-023-00429-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43017-023-00429-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing