Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Megadroughts in the Common Era and the Anthropocene

Abstract

Exceptional drought events, known as megadroughts, have occurred on every continent outside Antarctica over the past ~2,000 years, causing major ecological and societal disturbances. In this Review, we discuss shared causes and features of Common Era (Year 1–present) and future megadroughts. Decadal variations in sea surface temperatures are the primary driver of megadroughts, with secondary contributions from radiative forcing and land–atmosphere interactions. Anthropogenic climate change has intensified ongoing megadroughts in south-western North America and across Chile and Argentina. Future megadroughts will be substantially warmer than past events, with this warming driving projected increases in megadrought risk and severity across many regions, including western North America, Central America, Europe and the Mediterranean, extratropical South America, and Australia. However, several knowledge gaps currently undermine confidence in understanding past and future megadroughts. These gaps include a paucity of high-resolution palaeoclimate information over Africa, tropical South America and other regions; incomplete representations of internal variability and land surface processes in climate models; and the undetermined capacity of water-resource management systems to mitigate megadrought impacts. Addressing these deficiencies will be crucial for increasing confidence in projections of future megadrought risk and for resiliency planning.

Key points

  • The term ‘megadrought’ is often used to refer to droughts that exceed the length of most droughts in the instrumental record, the period of climate observations largely serving as the basis for modern water-resource management and infrastructure.

  • Although developing a more quantitative megadrought definition is challenging, it is suggested that the term be reserved for “persistent, multi-year drought events that are exceptional in terms of severity, duration, or spatial extent when compared to other regional droughts during the instrumental period or the Common Era”.

  • Past megadroughts caused major ecological and societal disturbances over the last two millennia and were forced primarily by persistent ocean states, with possible secondary contributions from internal atmospheric variability, volcanic and solar forcing, and land–atmosphere interactions.

  • Some of the most active megadrought regions in the past are also areas where anthropogenic climate change is projected to increase future drought risk through declines in precipitation, increases in evaporative demand, and/or changes in plant water use.

  • Megadroughts have the potential to substantially strain modern water-management systems, although understanding of the risks of such events, and their ultimate impacts, is still limited by imperfect knowledge of past and future megadrought dynamics.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Common Era drought characteristics of soil moisture.
Fig. 2: Common Era megadroughts.
Fig. 3: Anthropogenic contributions to twenty-first-century megadroughts.
Fig. 4: Projected megadrought risk.

Data availability

North America, Mexico, South America and Australia–New Zealand drought atlas reconstructions are available from http://drought.memphis.edu/. Updated version of the Eurasian drought atlases is available from https://www.dropbox.com/s/vl9jfm7ls0szbin/GEDA_rec.nc. Data for the south-western North America megadrought analyses (Box 1) can be found at https://www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id=gov.noaa.nodc:0241207. Data for the Angkor megadrought analysis (Box 2) can be found at https://www.dropbox.com/s/n2lo99h9qn17prg/madaV2.nc. All CMIP6 data are available from the Earth System Grid (https://esgf-node.llnl.gov/search/cmip6/).

References

  1. Stockton, C. W. & Jacoby, G. C. Long-term Surface-water Supply and Streamflow Trends in the Upper Colorado River Basin: Based on Tree-ring Analyses (Institute of Geophysics and Planetary Physics, Univ. of California, 1976).

  2. Woodhouse, C. A. & Overpeck, J. T. 2000 years of drought variability in the central United States. Bull. Am. Meteorol. Soc. 79, 2693–2714 (1998).

    Article  Google Scholar 

  3. Cook, E. R., A, W. C., Mark, E. C., M, M. D. & W, S. D. Long-term aridity changes in the western United States. Science 306, 1015–1018 (2004).

    Article  Google Scholar 

  4. Meko, D. M. et al. Medieval drought in the Upper Colorado River Basin. Geophys. Res. Lett. https://doi.org/10.1029/2007GL029988 (2007).

    Article  Google Scholar 

  5. Stine, S. Extreme and persistent drought in California and Patagonia during mediaeval time. Nature 369, 546–549 (1994).

    Article  Google Scholar 

  6. Williams, A. P. et al. Temperature as a potent driver of regional forest drought stress and tree mortality. Nat. Clim. Change 3, 292–297 (2013).

    Article  Google Scholar 

  7. Brown, P. M. & Wu, R. Climate and disturbance forcing of episodic tree recruitment in a southwestern ponderosa pine landscape. Ecology 86, 3030–3038 (2005).

    Article  Google Scholar 

  8. Swetnam, T. W. & Betancourt, J. L. Mesoscale disturbance and ecological response to decadal climatic variability in the American Southwest. J. Clim. 11, 3128–3147 (1998).

    Article  Google Scholar 

  9. Benson, L. V. & Berry, M. S. Climate change and cultural response in the prehistoric American Southwest. KIVA 75, 87–117 (2009).

    Article  Google Scholar 

  10. Acuna-Soto, R., Stahle, D. W., Cleaveland, M. K. & Therrell, M. D. Megadrought and megadeath in 16th century Mexico. Emerg. Infect. Dis. 8, 360–362 (2002).

    Article  Google Scholar 

  11. Douglass, A. E. Dating Pueblo Bonito and other ruins of the Southwest. Natl Geogr. Soc. Contrib. Tech. Papers Pueblo Bonito Ser. 1, 1–74 (1935).

    Google Scholar 

  12. Stahle, D. W. & Dean, J. S. in Dendroclimatology: Progress and Prospects (eds Hughes, M. K., Swetnam, T. W. & Diaz, H. F.) 297–327 (Springer Netherlands, 2011).

  13. Schubert, S. D., Suarez, M. J., Pegion, P. J., Koster, R. D. & Bacmeister, J. T. On the cause of the 1930s dust bowl. Science 303, 1855–1859 (2004).

    Article  Google Scholar 

  14. Heim, R. R. A comparison of the early twenty-first century drought in the United States to the 1930s and 1950s drought episodes. Bull. Am. Meteorol. Soc. 98, 2579–2592 (2017).

    Article  Google Scholar 

  15. O’Donnell, A. J., McCaw, W. L., Cook, E. R. & Grierson, P. F. Megadroughts and pluvials in southwest Australia: 1350–2017 CE. Clim. Dyn. 57, 1817–1831 (2021).

    Article  Google Scholar 

  16. Vance, T. R., Roberts, J. L., Plummer, C. T., Kiem, A. S. & van Ommen, T. D. Interdecadal Pacific variability and eastern Australian megadroughts over the last millennium. Geophys. Res. Lett. 42, 129–137 (2015).

    Article  Google Scholar 

  17. Steiger, N. J., Smerdon, J. E., Seager, R., Williams, A. P. & Varuolo-Clarke, A. M. ENSO-driven coupled megadroughts in North and South America over the last millennium. Nat. Geosci. 14, 739–744 (2021).

    Article  Google Scholar 

  18. Ionita, M., Dima, M., Nagavciuc, V., Scholz, P. & Lohmann, G. Past megadroughts in Central Europe were longer, more severe and less warm than modern droughts. Commun. Earth Environ. 2, 61 (2021).

    Article  Google Scholar 

  19. Pederson, N., Hessl, A. E., Baatarbileg, N., Anchukaitis, K. J. & di Cosmo, N. Pluvials, droughts, the Mongol Empire, and modern Mongolia. Proc. Natl Acad. Sci. 111, 4375–4379 (2014).

    Article  Google Scholar 

  20. Hessl, A. E. et al. Past and future drought in Mongolia. Sci. Adv. 4, e1701832 (2018).

    Article  Google Scholar 

  21. Stahle, D. W. et al. Major Mesoamerican droughts of the past millennium. Geophys. Res. Lett. 38, e2010GL046472 (2011).

    Article  Google Scholar 

  22. Pfister, C. in Historical Disaster Experiences: Towards a Comparative and Transcultural History of Disasters Across Asia and Europe (ed. Schenk, G. J.) 155–185 (Springer International, 2017).

  23. Mishra, V. & Aadhar, S. Famines and likelihood of consecutive megadroughts in India. npj Clim. Atmos. Sci. 4, 59 (2021).

    Article  Google Scholar 

  24. Chen, K. et al. One drought and one volcanic eruption influenced the history of China: the Late Ming Dynasty mega-drought. Geophys. Res. Lett. 47, e2020GL088124 (2020).

    Article  Google Scholar 

  25. Gao, L. et al. The unusual recent streamflow declines in the Bailong River, north-central China, from a multi-century perspective. Quat. Sci. Rev. 260, 106927 (2021).

    Article  Google Scholar 

  26. Garreaud, R. D. et al. The Central Chile mega drought (2010–2018): a climate dynamics perspective. Int. J. Climatol. 40, 421–439 (2020).

    Article  Google Scholar 

  27. Garreaud, R. D. et al. The 2010–2015 megadrought in central Chile: impacts on regional hydroclimate and vegetation. Hydrol. Earth Syst. Sci. 21, 6307–6327 (2017).

    Article  Google Scholar 

  28. Garreaud, R. D., Clem, K. & Veloso, J. V. The South Pacific pressure trend dipole and the Southern Blob. J. Clim. 34, 7661–7676 (2021).

    Article  Google Scholar 

  29. Cook, B. I., Mankin, J. S. & Anchukaitis, K. J. Climate change and drought: from past to future. Curr. Clim. Change Rep. 4, 164–179 (2018).

    Article  Google Scholar 

  30. Lehner, F. et al. Projected drought risk in 1.5 °C and 2 °C warmer climates. Geophys. Res. Lett. 44, 7419–7428 (2017).

    Article  Google Scholar 

  31. Williams, A. P. et al. Large contribution from anthropogenic warming to an emerging North American megadrought. Science 368, 314–318 (2020).

    Article  Google Scholar 

  32. Ault, T. R., Mankin, J. S., Cook, B. I. & Smerdon, J. E. Relative impacts of mitigation, temperature, and precipitation on 21st-century megadrought risk in the American Southwest. Sci. Adv. 2, e1600873 (2016).

    Article  Google Scholar 

  33. Cook, B. I., Ault, T. R. & Smerdon, J. E. Unprecedented 21st century drought risk in the American Southwest and Central Plains. Sci. Adv. 1, e1400082 (2015).

    Article  Google Scholar 

  34. Cook, E. R. et al. Megadroughts in North America: placing IPCC projections of hydroclimatic change in a long-term palaeoclimate context. J. Quat. Sci. 25, 48–61 (2010).

    Article  Google Scholar 

  35. Cook, E. R., Seager, R., Cane, M. A. & Stahle, D. W. North American drought: reconstructions, causes, and consequences. Earth Sci. Rev. 81, 93–134 (2007).

    Article  Google Scholar 

  36. Cook, B. I. et al. North American megadroughts in the Common Era: reconstructions and simulations. WIREs Clim. Change 7, 411–432 (2016).

    Article  Google Scholar 

  37. Hodell, D. A., Brenner, M. & Curtis, J. H. Terminal Classic drought in the northern Maya lowlands inferred from multiple sediment cores in Lake Chichancanab (Mexico). Quat. Sci. Rev. 24, 1413–1427 (2005).

    Article  Google Scholar 

  38. Lough, J. M. Tropical river flow and rainfall reconstructions from coral luminescence: Great Barrier Reef, Australia. Paleoceanography 22, PA2218 (2007).

    Article  Google Scholar 

  39. Woodhouse, C. A., Meko, D. M., MacDonald, G. M., Stahle, D. W. & Cook, E. R. A 1200-year perspective of 21st century drought in southwestern North America. Proc. Natl Acad. Sci. USA 107, 21283–21288 (2010).

    Article  Google Scholar 

  40. Steiger, N. J. et al. Oceanic and radiative forcing of medieval megadroughts in the American Southwest. Sci. Adv. 5, eaax0087 (2019).

    Article  Google Scholar 

  41. Cook, E. R. et al. The European Russia Drought Atlas (1400–2016 CE). Clim. Dyn. 54, 2317–2335 (2020).

    Article  Google Scholar 

  42. Cook, E. R. et al. Old World megadroughts and pluvials during the Common Era. Sci. Adv. 1, e1500561 (2015).

    Article  Google Scholar 

  43. Cook, E. R. et al. Asian monsoon failure and megadrought during the last millennium. Science 328, 486 (2010).

    Article  Google Scholar 

  44. Stahle, D. W. et al. The Mexican Drought Atlas: tree-ring reconstructions of the soil moisture balance during the late pre-Hispanic, colonial, and modern eras. Quat. Sci. Rev. 149, 34–60 (2016).

    Article  Google Scholar 

  45. Morales, M. S. et al. Six hundred years of South American tree rings reveal an increase in severe hydroclimatic events since mid-20th century. Proc. Natl Acad. Sci. USA 117, 16816–16823 (2020).

    Article  Google Scholar 

  46. Palmer, J. G. et al. Drought variability in the eastern Australia and New Zealand summer drought atlas (ANZDA, CE 1500–2012) modulated by the Interdecadal Pacific Oscillation. Environ. Res. Lett. 10, 124002 (2015).

    Article  Google Scholar 

  47. Marvel, K. et al. Twentieth-century hydroclimate changes consistent with human influence. Nature 569, 59–65 (2019).

    Article  Google Scholar 

  48. Anchukaitis, K. J. et al. Coupled modes of North Atlantic Ocean–atmosphere variability and the onset of the Little Ice Age. Geophys. Res. Lett. 46, 12417–12426 (2019).

    Article  Google Scholar 

  49. Baek, S. H. et al. Precipitation, temperature, and teleconnection signals across the combined North American, Monsoon Asia, and Old World Drought Atlases. J. Clim. 30, 7141–7155 (2017).

    Article  Google Scholar 

  50. Williams, A. P. et al. Tree rings and observations suggest no stable cycles in Sierra Nevada cool-season precipitation. Water Resour. Res. 57, e2020WR028599 (2021).

    Article  Google Scholar 

  51. Dettinger, M. D., Ralph, F. M., Das, T., Neiman, P. J. & Cayan, D. R. Atmospheric rivers, floods and the water resources of California. Water 3, 445–478 (2011).

    Article  Google Scholar 

  52. Ault, T. R., Cole, J. E., Overpeck, J. T., Pederson, G. T. & Meko, D. M. Assessing the risk of persistent drought using climate model simulations and paleoclimate data. J. Clim. 27, 7529–7549 (2014).

    Article  Google Scholar 

  53. Ault, T. R. et al. The continuum of hydroclimate variability in western North America during the last millennium. J. Clim. 26, 5863–5878 (2013).

    Article  Google Scholar 

  54. Huybers, P. & Curry, W. Links between annual, Milankovitch and continuum temperature variability. Nature 441, 329–332 (2006).

    Article  Google Scholar 

  55. Redmond, K. T. The depiction of drought: a commentary. Bull. Am. Meteorol. Soc. 83, 1143–1147 (2002).

    Article  Google Scholar 

  56. Dracup, J. A., Lee, K. S. & Paulson, E. G. Jr On the definition of droughts. Water Resour. Res. 16, 297–302 (1980).

    Article  Google Scholar 

  57. Coats, S., Smerdon, J. E., Cook, B. I. & Seager, R. Are simulated megadroughts in the North American Southwest forced? J. Clim. 28, 124–142 (2015).

    Article  Google Scholar 

  58. Coats, S., Smerdon, J. E., Seager, R., Cook, B. I. & González-Rouco, J. F. Megadroughts in southwestern North America in ECHO-G millennial simulations and their comparison to proxy drought reconstructions. J. Clim. 26, 7635–7649 (2013).

    Article  Google Scholar 

  59. Cook, B. I. et al. Uncertainties, limits, and benefits of climate change mitigation for soil moisture drought in southwestern North America. Earths Future 9, e2021EF002014 (2021).

    Article  Google Scholar 

  60. Stevenson, S. et al. Climate variability, volcanic forcing, and last millennium hydroclimate extremes. J. Clim. 31, 4309–4327 (2018).

    Article  Google Scholar 

  61. Williams, A. P., Cook, B. I. & Smerdon, J. E. Rapid intensification of the emerging southwestern North American megadrought in 2021. Nat. Clim. Change 12, 232–234 (2022).

    Article  Google Scholar 

  62. Meehl, G. A. & Hu, A. Megadroughts in the Indian monsoon region and southwest North America and a mechanism for associated multidecadal Pacific Sea surface temperature anomalies. J. Clim. 19, 1605–1623 (2006).

    Article  Google Scholar 

  63. Herweijer, C., Seager, R., Cook, E. R. & Emile-Geay, J. North American droughts of the last millennium from a gridded network of tree-ring data. J. Clim. 20, 1353–1376 (2007).

    Article  Google Scholar 

  64. Douglass, A. E. The secret of the Southwest solved by talkative tree rings. Natl Geogr. 56, 737–770 (1929).

    Google Scholar 

  65. Douglass, A. E. Dating Pueblo Bonito and Other Ruins of the Southwest (National Geographic Society, 1935).

  66. Robeson, S. M., Maxwell, J. T. & Ficklin, D. L. Bias correction of paleoclimatic reconstructions: a new look at 1,200+ years of Upper Colorado River flow. Geophys. Res. Lett. 47, e2019GL086689 (2020).

    Article  Google Scholar 

  67. Stahle, D. W. et al. Tree-ring data document 16th century megadrought over North America. EOS Trans. Am. Geophys. Union. 81, 121–125 (2000).

    Article  Google Scholar 

  68. Cook, B. I. et al. Cold tropical Pacific sea surface temperatures during the late sixteenth-century North American megadrought. J. Geophys. Res. Atmos. 123, 307–11,320 (2018).

    Article  Google Scholar 

  69. Stahle, D. W., Fye, F. K., Cook, E. R. & Griffin, R. D. Tree-ring reconstructed megadroughts over North America since A.D. 1300. Clim. Change 83, 133 (2007).

    Article  Google Scholar 

  70. Benson, L., Petersen, K. & Stein, J. Anasazi (Pre-Columbian Native-American) migrations during the middle-12th and late-13th centuries — were they drought induced? Clim. Change 83, 187–213 (2007).

    Article  Google Scholar 

  71. Kohler, T. A. in Leaving Mesa Verde: Peril and Change in the Thirteenth-century Southwest 75–101 (Univ. of Arizona Press, 2010).

  72. Benson, L. V. et al. Possible impacts of early-11th-, middle-12th-, and late-13th-century droughts on western Native Americans and the Mississippian Cahokians. Quat. Sci. Rev. 26, 336–350 (2007).

    Article  Google Scholar 

  73. Stahle, D. W., Cleaveland, M. K., Blanton, D. B., Therrell, M. D. & Gay, D. A. The lost colony and Jamestown droughts. Science 280, 564–567 (1998).

    Article  Google Scholar 

  74. Schroeder, A. H. Shifting for survival in the Spanish Southwest. N M Hist. Rev. 43, 4 (1968).

    Google Scholar 

  75. Marlon, J. R. et al. Long-term perspective on wildfires in the western USA. Proc. Natl Acad. Sci. USA 109, E535 (2012).

    Article  Google Scholar 

  76. Calder, W. J., Parker, D., Stopka, C. J., Jiménez-Moreno, G. & Shuman, B. N. Medieval warming initiated exceptionally large wildfire outbreaks in the Rocky Mountains. Proc. Natl Acad. Sci. USA 112, 13261 (2015).

    Article  Google Scholar 

  77. Halfen, A. F. et al. Activation history of the Hutchinson dunes in east-central Kansas, USA during the past 2200 years. Aeolian Res. 5, 9–20 (2012).

    Article  Google Scholar 

  78. Hanson, P. R., Arbogast, A. F., Johnson, W. C., Joeckel, R. M. & Young, A. R. Megadroughts and late Holocene dune activation at the eastern margin of the Great Plains, north-central Kansas, USA. Aeolian Res. 1, 101–110 (2010).

    Article  Google Scholar 

  79. Forman, S. L., Oglesby, R. & Webb, R. S. Temporal and spatial patterns of Holocene dune activity on the Great Plains of North America: megadroughts and climate links. Glob. Planet. Change 29, 1–29 (2001).

    Article  Google Scholar 

  80. Miao, X. et al. A 10,000 year record of dune activity, dust storms, and severe drought in the central Great Plains. Geology 35, 119–122 (2007).

    Article  Google Scholar 

  81. Hodell, D. A., Curtis, J. H. & Brenner, M. Possible role of climate in the collapse of Classic Maya civilization. Nature 375, 391–394 (1995).

    Article  Google Scholar 

  82. Hodell, D. A., Brenner, M., Curtis, J. H. & Guilderson, T. Solar forcing of drought frequency in the Maya lowlands. Science 292, 1367–1370 (2001).

    Article  Google Scholar 

  83. Douglas, P. M. J. et al. Drought, agricultural adaptation, and sociopolitical collapse in the Maya lowlands. Proc. Natl Acad. Sci.USA 112, 5607 (2015).

    Article  Google Scholar 

  84. Curtis, J. H., Hodell, D. A. & Brenner, M. Climate variability on the Yucatan Peninsula (Mexico) during the past 3500 years, and implications for Maya cultural evolution. Quat. Res. 46, 37–47 (1996).

    Article  Google Scholar 

  85. Medina-Elizalde, M. et al. High resolution stalagmite climate record from the Yucatán Peninsula spanning the Maya terminal classic period. Earth Planet. Sci. Lett. 298, 255–262 (2010).

    Article  Google Scholar 

  86. Haug, G. H. et al. Climate and the collapse of Maya civilization. Science 299, 1731–1735 (2003).

    Article  Google Scholar 

  87. Medina-Elizalde, M. & Rohling, E. J. Collapse of classic Maya civilization related to modest reduction in precipitation. Science 335, 956–959 (2012).

    Article  Google Scholar 

  88. Evans, N. P. et al. Quantification of drought during the collapse of the classic Maya civilization. Science 361, 498–501 (2018).

    Article  Google Scholar 

  89. Aimers, J. & Hodell, D. Drought and the Maya. Nature 479, 44–45 (2011).

    Article  Google Scholar 

  90. Gioda, A. & del R.Prieto, M. Histoire des sécheresses Andines; Potosi, El Niño et le petit âge glaciaire. La Météorologie 27, 33–42 (1999).

    Article  Google Scholar 

  91. Bird, B. W. et al. A 2,300-year-long annually resolved record of the South American summer monsoon from the Peruvian Andes. Proc. Natl Acad. Sci. USA 108, 8583–8588 (2011).

    Article  Google Scholar 

  92. Granato-Souza, D. et al. Multidecadal changes in wet season precipitation totals over the eastern Amazon. Geophys. Res. Lett. 47, e2020GL087478 (2020).

    Article  Google Scholar 

  93. Touchan, R. et al. Spatiotemporal drought variability in northwestern Africa over the last nine centuries. Clim. Dyn. 37, 237–252 (2011).

    Article  Google Scholar 

  94. Nash, D. J. et al. African hydroclimatic variability during the last 2000 years. Quat. Sci. Rev. 154, 1–22 (2016).

    Article  Google Scholar 

  95. Tierney, J. E., Smerdon, J. E., Anchukaitis, K. J. & Seager, R. Multidecadal variability in East African hydroclimate controlled by the Indian Ocean. Nature 493, 389–392 (2013).

    Article  Google Scholar 

  96. Anchukaitis, K. J. & Tierney, J. E. Identifying coherent spatiotemporal modes in time-uncertain proxy paleoclimate records. Clim. Dyn. 41, 1291–1306 (2013).

    Article  Google Scholar 

  97. Halfman, J. D., Johnson, T. C. & Finney, B. P. New AMS dates, stratigraphic correlations and decadal climatic cycles for the past 4 ka at Lake Turkana, Kenya. Palaeogeogr. Palaeoclimatol. Palaeoecol. 111, 83–98 (1994).

    Article  Google Scholar 

  98. Buckles, L. K. et al. Interannual and (multi-)decadal variability in the sedimentary BIT index of Lake Challa, East Africa, over the past 2200 years: assessment of the precipitation proxy. Clim. Past. 12, 1243–1262 (2016).

    Article  Google Scholar 

  99. Russell, J. M. & Johnson, T. C. A high-resolution geochemical record from Lake Edward, Uganda Congo and the timing and causes of tropical African drought during the late Holocene. Quat. Sci. Rev. 24, 1375–1389 (2005).

    Article  Google Scholar 

  100. Russell, J. M. & Johnson, T. C. Little Ice Age drought in equatorial Africa: intertropical convergence zone migrations and El Niño-Southern Oscillation variability. Geology 35, 21–24 (2007).

    Article  Google Scholar 

  101. Owen, R. B. et al. Major low levels of Lake Malawi and their implications for speciation rates in cichlid fishes. Proc. R. Soc. B: Biol. Sci. 240, 519–553 (1990).

    Google Scholar 

  102. Nicholson, S. E. Historical and modern fluctuations of Lakes Tanganyika and Rukwa and their relationship to rainfall variability. Clim. Change 41, 53–71 (1999).

    Article  Google Scholar 

  103. Nicholson, S. E., Klotter, D. & Dezfuli, A. K. Spatial reconstruction of semi-quantitative precipitation fields over Africa during the nineteenth century from documentary evidence and gauge data. Quat. Res. 78, 13–23 (2012).

    Article  Google Scholar 

  104. Stager, J. C., Ryves, D., Cumming, B. F., Meeker, L. D. & Beer, J. Solar variability and the levels of Lake Victoria, East Africa, during the last millenium. J. Paleolimnol. 33, 243–251 (2005).

    Article  Google Scholar 

  105. Kiage, L. M. & Liu, K. Palynological evidence of climate change and land degradation in the Lake Baringo area, Kenya, East Africa, since AD 1650. Palaeogeogr. Palaeoclimatol. Palaeoecol. 279, 60–72 (2009).

    Article  Google Scholar 

  106. Legesse, D. et al. Environmental changes in a tropical lake (Lake Abiyata, Ethiopia) during recent centuries. Palaeogeogr. Palaeoclimatol. Palaeoecol. 187, 233–258 (2002).

    Article  Google Scholar 

  107. Wils, T. H. G. et al. Towards a reconstruction of Blue Nile baseflow from Ethiopian tree rings. Holocene 20, 837–848 (2010).

    Article  Google Scholar 

  108. Pankhurst, R. The Great Ethiopian Famine of 1888–1892: a new assessment. J. History Med. Allied Sci. XXI, 95–124 (1966).

    Article  Google Scholar 

  109. Miller, J. C. The significance of drought, disease and famine in the agriculturally marginal zones of west-central Africa. J. Afr. History 23, 17–61 (1982).

    Article  Google Scholar 

  110. Ngomanda, A. et al. Lowland rainforest response to hydrological changes during the last 1500 years in Gabon, Western Equatorial Africa. Quat. Res. 67, 411–425 (2007).

    Article  Google Scholar 

  111. Verschuren, D. in Past Climate Variability through Europe and Africa (eds Battarbee, R. W., Gasse, F. & Stickley, C. E.) 139–158 (Springer Netherlands, 2004).

  112. Shanahan, T. M. et al. Atlantic forcing of persistent drought in West Africa. Science 324, 377–380 (2009).

    Article  Google Scholar 

  113. Nguetsop, V. F., Servant-Vildary, S., Servant, M. & Roux, M. Long and short-time scale climatic variability in the last 5500 years in Africa according to modern and fossil diatoms from Lake Ossa (western Cameroon). Glob. Planet. Change 72, 356–367 (2010).

    Article  Google Scholar 

  114. Norrgård, S. Practising historical climatology in West Africa: a climatic periodisation 1750–1800. Clim. Change 129, 131–143 (2015).

    Article  Google Scholar 

  115. Büntgen, U. et al. Recent European drought extremes beyond Common Era background variability. Nat. Geosci. 14, 190–196 (2021).

    Article  Google Scholar 

  116. Büntgen, U. et al. 2500 years of European climate variability and human susceptibility. Science 331, 578–582 (2011).

    Article  Google Scholar 

  117. Nicault, A. et al. Mediterranean drought fluctuation during the last 500 years based on tree-ring data. Clim. Dyn. 31, 227–245 (2008).

    Article  Google Scholar 

  118. Gorostiza, S., Martí Escayol, M. A. & Barriendos, M. Controlling water infrastructure and codifying water knowledge: institutional responses to severe drought in Barcelona (1620–1650). Clim. Past. 17, 913–927 (2021).

    Article  Google Scholar 

  119. Oliva, M. et al. The Little Ice Age in Iberian mountains. Earth Sci. Rev. 177, 175–208 (2018).

    Article  Google Scholar 

  120. Sinha, A. et al. A global context for megadroughts in monsoon Asia during the past millennium. Quat. Sci. Rev. 30, 47–62 (2011).

    Article  Google Scholar 

  121. Sinha, A. et al. A 900-year (600 to 1500 A.D.) record of the Indian summer monsoon precipitation from the core monsoon zone of India. Geophys. Res. Lett. https://doi.org/10.1029/2007GL030431 (2007).

    Article  Google Scholar 

  122. Buckley, B. M. et al. Climate as a contributing factor in the demise of Angkor, Cambodia. Proc. Natl Acad. Sci.USA 107, 6748–6752 (2010).

    Article  Google Scholar 

  123. Zhang, X., Bai, M., Hao, Z. & Zheng, J. Potential causes of megadroughts in North China in the preindustrial period from the teleconnection perspective. Glob. Planet. Change 205, 103596 (2021).

    Article  Google Scholar 

  124. Zheng, J. et al. How climate change impacted the collapse of the Ming dynasty. Clim. Change 127, 169–182 (2014).

    Article  Google Scholar 

  125. Singh, D. et al. Climate and the global famine of 1876–78. J. Clim. 31, 9445–9467 (2018).

    Article  Google Scholar 

  126. Mishra, V. et al. Drought and famine in India, 1870–2016. Geophys. Res. Lett. 46, 2075–2083 (2019).

    Article  Google Scholar 

  127. Davis, M. Late Victorian Holocausts: El Niño Famines and the Making of the Third World (Verso, 2002).

  128. van Ommen, T. D. & Morgan, V. Snowfall increase in coastal East Antarctica linked with southwest Western Australian drought. Nat. Geosci. 3, 267–272 (2010).

    Article  Google Scholar 

  129. Tozer, C. R. et al. An ice core derived 1013-year catchment-scale annual rainfall reconstruction in subtropical eastern Australia. Hydrol. Earth Syst. Sci. 20, 1703–1717 (2016).

    Article  Google Scholar 

  130. Kiem, A. S. et al. Learning from the past — using palaeoclimate data to better understand and manage drought in South East Queensland (SEQ), Australia. J. Hydrol. Reg. Stud. 29, 100686 (2020).

    Article  Google Scholar 

  131. Ho, M., Kiem, A. S. & Verdon-Kidd, D. C. A paleoclimate rainfall reconstruction in the Murray-Darling Basin (MDB), Australia: 2. Assessing hydroclimatic risk using paleoclimate records of wet and dry epochs. Water Resour. Res. 51, 8380–8396 (2015).

    Article  Google Scholar 

  132. Cook, B. I. et al. The paleoclimate context and future trajectory of extreme summer hydroclimate in eastern Australia. J. Geophys. Res. Atmos. 121, 12820–12838 (2016).

    Article  Google Scholar 

  133. Cullen, L. E. & Grierson, P. F. Multi-decadal scale variability in autumn–winter rainfall in south-western Australia since 1655 AD as reconstructed from tree rings of Callitris columellaris. Clim. Dyn. 33, 433–444 (2009).

    Article  Google Scholar 

  134. Gallant, A. J. E. & Gergis, J. An experimental streamflow reconstruction for the River Murray, Australia, 1783–1988. Water Resour. Res. 47, W00G04 (2011).

    Article  Google Scholar 

  135. Allen, K. J. et al. Preliminary December–January inflow and streamflow reconstructions from tree rings for western Tasmania, southeastern Australia. Water Resour. Res. 51, 5487–5503 (2015).

    Article  Google Scholar 

  136. Vance, T. R., van Ommen, T. D., Curran, M. A. J., Plummer, C. T. & Moy, A. D. A millennial proxy record of ENSO and eastern Australian rainfall from the Law Dome Ice Core, East Antarctica. J. Clim. 26, 710–725 (2013).

    Article  Google Scholar 

  137. Bai, M., Zheng, J., Hao, Z., Zhang, X. & Zeng, G. Hydroclimate patterns over the northern hemisphere when megadroughts occurred in North China during the last millennium. Clim. Change 157, 365–385 (2019).

    Article  Google Scholar 

  138. Jungclaus, J. H. et al. The PMIP4 contribution to CMIP6 — part 3: the last millennium, scientific objective, and experimental design for the PMIP4 past1000 simulations. Geosci. Model. Dev. 10, 4005–4033 (2017).

    Article  Google Scholar 

  139. Stevenson, S., Otto-Bliesner, B., Fasullo, J. & Brady, E. “El Niño Like” hydroclimate responses to last millennium volcanic eruptions. J. Clim. 29, 2907–2921 (2016).

    Article  Google Scholar 

  140. Seager, R. et al. Blueprints for medieval hydroclimate. Quat. Sci. Rev. 26, 2322–2336 (2007).

    Article  Google Scholar 

  141. Clement, A. C., Seager, R., Cane, M. A. & Zebiak, S. E. An ocean dynamical thermostat. J. Clim. 9, 2190–2196 (1996).

    Article  Google Scholar 

  142. Coats, S., Smerdon, J. E., Karnauskas, K. B. & Seager, R. The improbable but unexceptional occurrence of megadrought clustering in the American West during the Medieval Climate Anomaly. Environ. Res. Lett. 11, 074025 (2016).

    Article  Google Scholar 

  143. Ault, T. R. et al. A robust null hypothesis for the potential causes of megadrought in western North America. J. Clim. 31, 3–24 (2018).

    Article  Google Scholar 

  144. Tejedor, E., Steiger, N. J., Smerdon, J. E., Serrano-Notivoli, R. & Vuille, M. Global hydroclimatic response to tropical volcanic eruptions over the last millennium. Proc. Natl Acad. Sci. USA 118, e2019145118 (2021).

    Article  Google Scholar 

  145. Rao, M. P. et al. European and Mediterranean hydroclimate responses to tropical volcanic forcing over the last millennium. Geophys. Res. Lett. 44, 5104–5112 (2017).

    Article  Google Scholar 

  146. Kim, W. M. & Raible, C. C. Dynamics of the Mediterranean droughts from 850 to 2099 CE in the Community Earth System Model. Clim. Past. 17, 887–911 (2021).

    Article  Google Scholar 

  147. Anchukaitis, K. J. et al. Influence of volcanic eruptions on the climate of the Asian monsoon region. Geophys. Res. Lett. https://doi.org/10.1029/2010GL044843 (2010).

    Article  Google Scholar 

  148. Stevenson, S., Timmermann, A., Chikamoto, Y., Langford, S. & DiNezio, P. Stochastically generated North American megadroughts. J. Clim. 28, 1865–1880 (2015).

    Article  Google Scholar 

  149. Coats, S. et al. Internal ocean–atmosphere variability drives megadroughts in western North America. Geophys. Res. Lett. 43, 9886–9894 (2016).

    Article  Google Scholar 

  150. Hunt, B. G. Global characteristics of pluvial and dry multi-year episodes, with emphasis on megadroughts. Int. J. Climatol. 31, 1425–1439 (2011).

    Article  Google Scholar 

  151. Trenberth, K. E. et al. Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J. Geophys. Res. Ocean. 103, 14291–14324 (1998).

    Article  Google Scholar 

  152. Feng, S., Oglesby, R. J., Rowe, C. M., Loope, D. B. & Hu, Q. Atlantic and Pacific SST influences on medieval drought in North America simulated by the community atmospheric model. Journal of Geophysical Research: Atmospheres https://doi.org/10.1029/2007JD009347 (2008).

    Article  Google Scholar 

  153. Seager, R. et al. Tropical Pacific forcing of North American medieval megadroughts: testing the concept with an atmosphere model forced by coral-reconstructed SSTs. J. Clim. 21, 6175–6190 (2008).

    Article  Google Scholar 

  154. Seager, R. et al. Mechanisms of ENSO-forcing of hemispherically symmetric precipitation variability. Q. J. R. Meteorol. Soc. 131, 1501–1527 (2005).

    Article  Google Scholar 

  155. Seager, R., Harnik, N., Kushnir, Y., Robinson, W. & Miller, J. Mechanisms of hemispherically symmetric climate variability. J. Clim. 16, 2960–2978 (2003).

    Article  Google Scholar 

  156. Ning, L. et al. Variability and mechanisms of megadroughts over eastern China during the last millennium: a model study. Atmosphere 10, 7 (2019).

    Article  Google Scholar 

  157. Wu, H. C. et al. Changes to Yucatán Peninsula precipitation associated with salinity and temperature extremes of the Caribbean Sea during the Maya civilization collapse. Sci. Rep. 7, 15825 (2017).

    Article  Google Scholar 

  158. Ummenhofer, C. C., D’Arrigo, R. D., Anchukaitis, K. J., Buckley, B. M. & Cook, E. R. Links between Indo-Pacific climate variability and drought in the Monsoon Asia Drought Atlas. Clim. Dyn. 40, 1319–1334 (2013).

    Article  Google Scholar 

  159. Seager, R. et al. Strengthening tropical Pacific zonal sea surface temperature gradient consistent with rising greenhouse gases. Nat. Clim. Change 9, 517–522 (2019).

    Article  Google Scholar 

  160. Delworth, T. L., Zeng, F., Rosati, A., Vecchi, G. A. & Wittenberg, A. T. A link between the hiatus in global warming and North American drought. J. Clim. 28, 3834–3845 (2015).

    Article  Google Scholar 

  161. Seneviratne, S. I. et al. Investigating soil moisture–climate interactions in a changing climate: a review. Earth Sci. Rev. 99, 125–161 (2010).

    Article  Google Scholar 

  162. Zhou, S. et al. Land–atmosphere feedbacks exacerbate concurrent soil drought and atmospheric aridity. Proc. Natl Acad. Sci. USA 116, 18848 (2019).

    Article  Google Scholar 

  163. Zhou, S. et al. Soil moisture–atmosphere feedbacks mitigate declining water availability in drylands. Nat. Clim. Change 11, 38–44 (2021).

    Article  Google Scholar 

  164. Tierney, J. E., Pausata, F. S. R. & deMenocal, P. B. Rainfall regimes of the Green Sahara. Sci. Adv. 3, e1601503 (2021).

    Article  Google Scholar 

  165. Guo, Z. et al. GLACE: the global land–atmosphere coupling experiment. Part II: analysis. J. Hydrometeorol. 7, 611–625 (2006).

    Article  Google Scholar 

  166. Cook, B. I., Miller, R. L. & Seager, R. Amplification of the North American “Dust Bowl” drought through human-induced land degradation. Proc. Natl Acad. Sci. USA 106, 4997 (2009).

    Article  Google Scholar 

  167. Giannini, A., Saravanan, R. & Chang, P. Oceanic forcing of Sahel rainfall on interannual to interdecadal time scales. Science 302, 1027–1030 (2003).

    Article  Google Scholar 

  168. Cook, B. I., Seager, R., Miller, R. L. & Mason, J. A. Intensification of North American megadroughts through surface and dust aerosol forcing. J. Clim. 26, 4414–4430 (2013).

    Article  Google Scholar 

  169. Cook, B. I. et al. Pre-Columbian deforestation as an amplifier of drought in Mesoamerica. Geophys. Res. Lett. 39, 16706 (2012).

    Article  Google Scholar 

  170. Oglesby, R. J., Sever, T. L., Saturno, W., Erickson, D. J. III & Srikishen, J. Collapse of the Maya: could deforestation have contributed? J. Geophys. Res. Atmos. https://doi.org/10.1029/2009JD011942 (2010).

    Article  Google Scholar 

  171. Marvel, K. et al. Observed and projected changes to the precipitation annual cycle. J. Clim. 30, 4983–4995 (2017).

    Article  Google Scholar 

  172. Marvel, K. & Bonfils, C. Identifying external influences on global precipitation. Proc. Natl Acad. Sci. 110, 19301–19306 (2013).

    Article  Google Scholar 

  173. Hoerling, M. et al. On the increased frequency of Mediterranean drought. J. Clim. 25, 2146–2161 (2012).

    Article  Google Scholar 

  174. Siirila-Woodburn, E. R. et al. A low-to-no snow future and its impacts on water resources in the western United States. Nat. Rev. Earth Environ. https://doi.org/10.1038/s43017-021-00219-y (2021).

    Article  Google Scholar 

  175. Mote, P. W., Li, S., Lettenmaier, D. P., Xiao, M. & Engel, R. Dramatic declines in snowpack in the western US. npj Clim. Atmos. Sci. 1, 2 (2018).

    Article  Google Scholar 

  176. Liu, J. et al. Contributions of anthropogenic forcings to evapotranspiration changes over 1980–2020 using GLEAM and CMIP6 simulations. J. Geophys. Res. Atmos. 126, e2021JD035367 (2021).

    Article  Google Scholar 

  177. Wang, R. et al. Recent increase in the observation-derived land evapotranspiration due to global warming. Environ. Res. Lett. 17, 24020 (2022).

    Article  Google Scholar 

  178. Mankin, J. S. et al. NOAA Drought Task Force Report on the 2020–2021 Southwestern US Drought (NOAA Drought Task Force, MAPP, and NIDIS, 2021).

  179. Zhuang, Y., Fu, R., Santer, B. D., Dickinson, R. E. & Hall, A. Quantifying contributions of natural variability and anthropogenic forcings on increased fire weather risk over the western United States. Proc. Natl Acad. Sci. USA 118, e2111875118 (2021).

    Article  Google Scholar 

  180. McVicar, T. R. et al. Global review and synthesis of trends in observed terrestrial near-surface wind speeds: implications for evaporation. J. Hydrol. 416–417, 182–205 (2012).

    Article  Google Scholar 

  181. Swann, A. L. S. Plants and drought in a changing climate. Curr. Clim. Change Rep. 4, 192–201 (2018).

    Article  Google Scholar 

  182. Mankin, J. S., Seager, R., Smerdon, J. E., Cook, B. I. & Williams, A. P. Mid-latitude freshwater availability reduced by projected vegetation responses to climate change. Nat. Geosci. 12, 983–988 (2019).

    Article  Google Scholar 

  183. Mankin, J. S. et al. Blue water trade-offs with vegetation in a CO2-enriched climate. Geophys. Res. Lett. 45, 3115–3125 (2018).

    Article  Google Scholar 

  184. Griffin, D. & Anchukaitis, K. J. How unusual is the 2012–2014 California drought? Geophys. Res. Lett. 41, 9017–9023 (2014).

    Article  Google Scholar 

  185. Williams, A. P. et al. Contribution of anthropogenic warming to California drought during 2012–2014. Geophys. Res. Lett. 42, 6819–6828 (2015).

    Article  Google Scholar 

  186. Woodhouse, C. A., Pederson, G. T., Morino, K., McAfee, S. A. & McCabe, G. J. Increasing influence of air temperature on upper Colorado River streamflow. Geophys. Res. Lett. 43, 2174–2181 (2016).

    Article  Google Scholar 

  187. Berg, N. & Hall, A. Anthropogenic warming impacts on California snowpack during drought. Geophys. Res. Lett. 44, 2511–2518 (2017).

    Article  Google Scholar 

  188. Xiao, M., Udall, B. & Lettenmaier, D. P. On the causes of declining Colorado River streamflows. Water Resour. Res. 54, 6739–6756 (2018).

    Article  Google Scholar 

  189. Harley, G. L., Maxwell, R. S., Black, B. A. & Bekker, M. F. A multi-century, tree-ring-derived perspective of the North Cascades (USA) 2014–2016 snow drought. Clim. Change 162, 127–143 (2020).

    Article  Google Scholar 

  190. Huang, X., Hall, A. D. & Berg, N. Anthropogenic warming impacts on today’s Sierra Nevada snowpack and flood risk. Geophys. Res. Lett. 45, 6215–6222 (2018).

    Article  Google Scholar 

  191. Mote, P. W. et al. Perspectives on the causes of exceptionally low 2015 snowpack in the western United States. Geophys. Res. Lett. 43, 10980–10988 (2016).

    Article  Google Scholar 

  192. Huning, L. S. & AghaKouchak, A. Global snow drought hot spots and characteristics. Proc. Natl Acad. Sci. USA 117, 19753–19759 (2020).

    Article  Google Scholar 

  193. Seager, R. et al. Climate variability and change of Mediterranean-type climates. J. Clim. 32, 2887–2915 (2019).

    Article  Google Scholar 

  194. Gudmundsson, L. & Seneviratne, S. I. Anthropogenic climate change affects meteorological drought risk in Europe. Environ. Res. Lett. 11, 044005 (2016).

    Article  Google Scholar 

  195. Kelley, C. P., Mohtadi, S., Cane, M. A., Seager, R. & Kushnir, Y. Climate change in the Fertile Crescent and implications of the recent Syrian drought. Proc. Natl Acad. Sci. USA 112, 3241 (2015).

    Article  Google Scholar 

  196. Pascale, S., Kapnick, S. B., Delworth, T. L., Hidalgo, H. G. & Cooke, W. F. Natural variability vs forced signal in the 2015–2019 Central American drought. Clim. Change 168, 16 (2021).

    Article  Google Scholar 

  197. Herrera, D. A. et al. Exacerbation of the 2013–2016 pan-Caribbean drought by anthropogenic warming. Geophys. Res. Lett. 45, 10619–10626 (2018).

    Article  Google Scholar 

  198. Pascale, S., Kapnick, S. B., Delworth, T. L. & Cooke, W. F. Increasing risk of another Cape Town “Day Zero” drought in the 21st century. Proc. Natl Acad. Sci. USA 117, 29495 (2020).

    Article  Google Scholar 

  199. Otto, F. E. L. et al. Anthropogenic influence on the drivers of the Western Cape drought 2015–2017. Environ. Res. Lett. 13, 124010 (2018).

    Article  Google Scholar 

  200. Delworth, T. L. & Zeng, F. Regional rainfall decline in Australia attributed to anthropogenic greenhouse gases and ozone levels. Nat. Geosci. 7, 583–587 (2014).

    Article  Google Scholar 

  201. Overpeck, J. T. & Udall, B. Climate change and the aridification of North America. Proc. Natl Acad. Sci. USA 117, 11856 (2020).

    Article  Google Scholar 

  202. Jasechko, S. & Perrone, D. California’s central valley groundwater wells run dry during recent drought. Earths Future 8, e2019EF001339 (2020).

    Article  Google Scholar 

  203. Cooley, H., Donnelly, K., Phurisamban, R. & Subramanian, M. Impacts of California’s Ongoing Drought: Agriculture Vol. 24 (Pacific Institute, 2015).

  204. Williams, A. P. et al. Observed impacts of anthropogenic climate change on wildfire in California. Earths Future 7, 892–910 (2019).

    Article  Google Scholar 

  205. Abatzoglou, J. T. & Williams, A. P. Impact of anthropogenic climate change on wildfire across western US forests. Proc. Natl Acad. Sci. USA 113, 11770 (2016).

    Article  Google Scholar 

  206. Lehner, F., Deser, C., Simpson, I. R. & Terray, L. Attributing the US Southwest’s recent shift into drier conditions. Geophys. Res. Lett. 45, 6251–6261 (2018).

    Article  Google Scholar 

  207. Seager, R. et al. Causes of the 2011–14 California drought. J. Clim. 28, 6997–7024 (2015).

    Article  Google Scholar 

  208. Ficklin, D. L. & Novick, K. A. Historic and projected changes in vapor pressure deficit suggest a continental-scale drying of the United States atmosphere. J. Geophys. Res. Atmos. 122, 2061–2079 (2017).

    Article  Google Scholar 

  209. Chiodi, A. M., Potter, B. E. & Larkin, N. K. Multi-decadal change in western US nighttime vapor pressure deficit. Geophys. Res. Lett. 48, e2021GL092830 (2021).

    Article  Google Scholar 

  210. Seager, R. et al. Climatology, variability, and trends in the US vapor pressure deficit, an important fire-related meteorological quantity. J. Appl. Meteorol. Climatol. 54, 1121–1141 (2015).

    Article  Google Scholar 

  211. Muñoz, A. A. et al. Water crisis in Petorca Basin, Chile: the combined effects of a mega-drought and water management. Water 12, 648 (2020).

    Article  Google Scholar 

  212. Serrano-Notivoli, R. et al. Hydroclimatic variability in Santiago (Chile) since the 16th century. Int. J. Climatol. 41, E2015–E2030 (2021).

    Article  Google Scholar 

  213. Boisier, J. P., Rondanelli, R., Garreaud, R. D. & Muñoz, F. Anthropogenic and natural contributions to the Southeast Pacific precipitation decline and recent megadrought in central Chile. Geophys. Res. Lett. 43, 413–421 (2016).

    Article  Google Scholar 

  214. Fuentealba, M., Bahamóndez, C., Sarricolea, P., Meseguer-Ruiz, O. & Latorre, C. The 2010–2020 “megadrought” drives reduction in lake surface area in the Andes of central Chile (32o–36o S). J. Hydrol. Reg. Stud. 38, 100952 (2021).

    Article  Google Scholar 

  215. Alvarez-Garreton, C., Boisier, J. P., Garreaud, R., Seibert, J. & Vis, M. Progressive water deficits during multiyear droughts in basins with long hydrological memory in Chile. Hydrol. Earth Syst. Sci. 25, 429–446 (2021).

    Article  Google Scholar 

  216. Shaw, T. E. et al. Glacier albedo reduction and drought effects in the extratropical Andes, 1986–2020. J. Glaciol. 67, 158–169 (2021).

    Article  Google Scholar 

  217. Rivera, J. A., Otta, S., Lauro, C. & Zazulie, N. A decade of hydrological drought in central-western Argentina. Front. Water https://doi.org/10.3389/frwa.2021.640544 (2021).

    Article  Google Scholar 

  218. González, M. E., Gómez-González, S., Lara, A., Garreaud, R. & Díaz-Hormazábal, I. The 2010–2015 megadrought and its influence on the fire regime in central and south-central Chile. Ecosphere 9, e02300 (2018).

    Article  Google Scholar 

  219. Zappa, G. Regional climate impacts of future changes in the mid-latitude atmospheric circulation: a storyline view. Curr. Clim. Change Rep. 5, 358–371 (2019).

    Article  Google Scholar 

  220. Boisier, J. P. et al. Anthropogenic drying in central-southern Chile evidenced by long-term observations and climate model simulations. Elementa 6, 74 (2018).

    Google Scholar 

  221. Seneviratne, S. I. et al. in Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds Zhao, B. et al.) 1513–1766 (Cambridge Univ. Press, 2021).

  222. Cook, B. I. et al. Twenty-first century drought projections in the CMIP6 forcing scenarios. Earths Future 8, e2019EF001461 (2020).

    Article  Google Scholar 

  223. Ukkola, A. M., de Kauwe, M. G., Roderick, M. L., Abramowitz, G. & Pitman, A. J. Robust future changes in meteorological drought in CMIP6 projections despite uncertainty in precipitation. Geophys. Res. Lett. 47, e2020GL087820 (2020).

    Article  Google Scholar 

  224. Mankin, J. S., Viviroli, D., Singh, D., Hoekstra, A. Y. & Diffenbaugh, N. S. The potential for snow to supply human water demand in the present and future. Environ. Res. Lett. 10, 114016 (2015).

    Article  Google Scholar 

  225. Livneh, B. & Badger, A. M. Drought less predictable under declining future snowpack. Nat. Clim. Change 10, 452–458 (2020).

    Article  Google Scholar 

  226. Vicente-Serrano, S. M., McVicar, T. R., Miralles, D. G., Yang, Y. & Tomas-Burguera, M. Unraveling the influence of atmospheric evaporative demand on drought and its response to climate change. WIREs Clim. Change 11, e632 (2020).

    Article  Google Scholar 

  227. Tuel, A., O’Gorman, P. A. & Eltahir, E. A. B. Elements of the dynamical response to climate change over the Mediterranean. J. Clim. 34, 1135–1146 (2021).

    Article  Google Scholar 

  228. Stevenson, S. et al. Twenty-first century hydroclimate: a continually changing baseline, with more frequent extremes. Proc. Natl Acad. Sci. USA 119, e2108124119 (2022).

    Article  Google Scholar 

  229. Mankin, J. S., Lehner, F., Coats, S. & McKinnon, K. A. The value of initial condition large ensembles to robust adaptation decision-making. Earths Future 8, e2012EF001610 (2020).

    Article  Google Scholar 

  230. Coats, S. & Mankin, J. S. The challenge of accurately quantifying future megadrought risk in the American Southwest. Geophys. Res. Lett. 43, 9225–9233 (2016).

    Article  Google Scholar 

  231. Field, J. P. et al. Forest management under megadrought: urgent needs at finer scale and higher intensity. Front. For. Glob. Change 3, 140 (2020).

    Article  Google Scholar 

  232. Coats, S. et al. Paleoclimate constraints on the spatiotemporal character of past and future droughts. J. Clim. 33, 9883–9903 (2020).

    Article  Google Scholar 

  233. Huang, X. & Stevenson, S. Connections between mean North Pacific circulation and western US precipitation extremes in a warming climate. Earths Future 9, e2020EF001944 (2021).

    Article  Google Scholar 

  234. Chiang, F., Mazdiyasni, O. & AghaKouchak, A. Amplified warming of droughts in southern United States in observations and model simulations. Sci. Adv. 4, eaat2380 (2021).

    Article  Google Scholar 

  235. Hessl, A. E. et al. Past and future drought in Mongolia. Sci. Adv. 4, e1701832 (2021).

    Article  Google Scholar 

  236. Parsons, L. A. Implications of CMIP6 projected drying trends for 21st century Amazonian drought risk. Earths Future 8, e2020EF001608 (2020).

    Article  Google Scholar 

  237. Milly, P. C. D. & Dunne, K. A. Colorado River flow dwindles as warming-driven loss of reflective snow energizes evaporation. Science 367, 1252–1255 (2020).

    Article  Google Scholar 

  238. Lehner, F., Wahl, E. R., Wood, A. W., Blatchford, D. B. & Llewellyn, D. Assessing recent declines in Upper Rio Grande runoff efficiency from a paleoclimate perspective. Geophys. Res. Lett. 44, 4124–4133 (2017).

    Article  Google Scholar 

  239. Udall, B. & Overpeck, J. The twenty-first century Colorado River hot drought and implications for the future. Water Resour. Res. 53, 2404–2418 (2017).

    Article  Google Scholar 

  240. van Dijk, A. I. J. M. et al. The millennium drought in southeast Australia (2001–2009): natural and human causes and implications for water resources, ecosystems, economy, and society. Water Resour. Res. 49, 1040–1057 (2013).

    Article  Google Scholar 

  241. Marchin, R. M. et al. Extreme heat increases stomatal conductance and drought-induced mortality risk in vulnerable plant species. Glob. Change Biol. 28, 1133–1146 (2021).

    Article  Google Scholar 

  242. Lehner, F. et al. The potential to reduce uncertainty in regional runoff projections from climate models. Nat. Clim. Change 9, 926–933 (2019).

    Article  Google Scholar 

  243. Faunt, C. C., Sneed, M., Traum, J. & Brandt, J. T. Water availability and land subsidence in the Central Valley, California, USA. Hydrogeol. J. 24, 675–684 (2016).

    Article  Google Scholar 

  244. Chang, J. et al. Reservoir operations to mitigate drought effects with a hedging policy triggered by the drought prevention limiting water level. Water Resour. Res. 55, 904–922 (2019).

    Article  Google Scholar 

  245. Apurv, T. & Cai, X. Impact of droughts on water supply in US watersheds: the role of renewable surface and groundwater resources. Earths Future 8, e2020EF001648 (2020).

    Article  Google Scholar 

  246. Lu, J., Carbone, G. J., Huang, X., Lackstrom, K. & Gao, P. Mapping the sensitivity of agriculture to drought and estimating the effect of irrigation in the United States, 1950–2016. Agric. For. Meteorol. 292–293, 108124 (2020).

    Article  Google Scholar 

  247. Pauloo, R. A. et al. Domestic well vulnerability to drought duration and unsustainable groundwater management in California’s Central Valley. Environ. Res. Lett. 15, 44010 (2020).

    Article  Google Scholar 

  248. Kuhn, E. & Fleck, J. Science Be Dammed: How Ignoring Inconvenient Science Drained the Colorado River (Univ. of Arizona Press, 2019).

  249. Fleck, J. & Castle, A. Green light for adaptive policies on the Colorado River. Water 14, 2 (2022).

    Article  Google Scholar 

  250. Grafton, R. Q. et al. The paradox of irrigation efficiency. Science 361, 748–750 (2018).

    Article  Google Scholar 

  251. di Baldassarre, G. et al. Water shortages worsened by reservoir effects. Nat. Sustain. 1, 617–622 (2018).

    Article  Google Scholar 

  252. Nielsen-Gammon, J. W. The 2011 Texas drought. Tex. Water J. 3, 59–95 (2012).

    Google Scholar 

  253. Mix, K., Groeger, A. W. & Lopes, V. L. Impacts of dam construction on streamflows during drought periods in the Upper Colorado River Basin, Texas. Lake Reserv. Res. Manag. 21, 329–337 (2016).

    Article  Google Scholar 

  254. Tedesco, J. 1950s drought plagued Texas for seven long years. San Antonio Express-News (11 September 2015); https://www.expressnews.com/150years/major-stories/article/1950s-drought-plagued-Texas-for-seven-long-years-6500014.php.

  255. Woodhouse, C. A. et al. Upper Colorado river basin 20th century droughts under 21st century warming: plausible scenarios for the future. Clim. Serv. 21, 100206 (2021).

    Article  Google Scholar 

  256. Verdon-Kidd, D., Beatty, R. & Allen, K. Planning urban water system responses to megadrought. Water e-J. 4, 1–11 (2019).

    Article  Google Scholar 

  257. Barichivich, J., Osborn, T., Harris, I., van der Schrier, G. & Jones, P. Monitoring global drought using the self-calibrating Palmer Drought Severity Index [in ‘State of the Climate in 2020’ eds. Dunn RJH, Aldred F, Gobron N, Miller JB & Willett KM]. Bull. Am. Meteorol. Soc. 102, S68–S70 (2021).

    Google Scholar 

  258. Nguyen, H. T. T., Turner, S. W. D., Buckley, B. M. & Galelli, S. Coherent streamflow variability in monsoon asia over the past eight centuries — links to oceanic drivers. Water Resour. Res. 56, e2020WR027883 (2020).

    Article  Google Scholar 

Download references

Acknowledgements

B.I.C., A.P.W. and K.M. are supported by National Oceanic and Atmospheric Administration (NOAA) MAPP NA19OAR4310278. B.I.C. and A.P.W. are also supported by NASA’s Modeling, Analysis, and Prediction programme (MAP-16-0081). J.E.S. is supported by National Science Foundation (NSF) AGS-1805490. B.I.C., A.P.W., K.M., J.E.S., J.S.M. and R.S. are supported by Department of Energy (DOE) Grant ESC0022302. J.E.S. and R.S. are supported by NSF AGS 2101214 and R.S. is supported by NSF AGS 2127684. K.A. is supported by Australian Research Council (ARC) Grant FT200100102. L.A.-H., A.P.W. and J.E.S. are supported by NSF OISE-1743738; L.A.-H. and A.P.W. also supported by AGS-1702789 and AGS-1903687. J.E.S., R.S. and J.S.M. are supported by NOAA MAPP NA20OAR4310425. M.I. is supported by the Helmholtz Association through the joint programme ‘Changing Earth — Sustaining our Future’ (PoF IV) of the Alfred-Wegener-Institut and the Helmholtz Climate Initiative REKLIM. F.L. is supported by the US DOE Office of Science, Office of Biological & Environmental Research (BER), Regional and Global Model Analysis (RGMA) component of the Earth and Environmental System Modeling Program under Award Number DE-SC0022070 and NSF IA 1947282. This work was also supported by the National Center for Atmospheric Research (NCAR), which is a major facility sponsored by the NSF under Cooperative Agreement No. 1852977. M.S.M. is supported by FONDECYT-BM-INC.INV 039-2019. H.T.T.N. is supported by the Lamont-Doherty Postdoctoral Fellowship. M.P.R. and U.K.T. supported by NOAA Climate & Global Change Fellowship #NA18NWS4620043B. M.R. is supported by NASA 80NSSC21K1713. D.G. is supported by NSF-AGS 1903504. K.J.A. is supported by NSF AGS-1501856, BCS-1759629 and AGS-1803995.

Author information

Authors and Affiliations

Authors

Contributions

B.I.C., J.E.S., E.R.C., A.P.W., K.J.A. and J.S.M. led the review. H.T.T.N provided Box 2 text and figure. J.S.M. provided Fig. 4. All authors contributed to the manuscript preparation, interpretation, discussion and writing.

Corresponding author

Correspondence to Benjamin I. Cook.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Earth & Environment thanks Brad Udall, Eduardo Zorita and Matteo Zampieri for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cook, B.I., Smerdon, J.E., Cook, E.R. et al. Megadroughts in the Common Era and the Anthropocene. Nat Rev Earth Environ 3, 741–757 (2022). https://doi.org/10.1038/s43017-022-00329-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43017-022-00329-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing