Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The changing thermal state of permafrost

Abstract

Permafrost temperatures have increased in polar and high-elevation regions, affecting the climate system and the integrity of natural and built environments. In this Review, we outline changes in the thermal state of permafrost, focusing on permafrost temperatures and active-layer thickness. Increases in permafrost temperature vary spatially owing to interactions between climate, vegetation, snow cover, organic-layer thickness and ground ice content. In warmer permafrost (temperatures close to 0 °C), rates of warming are typically less than 0.3 °C per decade, as observed in sub-Arctic regions. In colder permafrost (temperatures less than −2 °C), by contrast, warming of up to about 1 °C per decade is apparent, as in the high-latitude Arctic. Increased active-layer thicknesses have also been observed since the 1990s in some regions, including a change of 0.4 m in the Russian Arctic. Simulations unanimously indicate that warming and thawing of permafrost will continue in response to climate change and potentially accelerate, but there is substantial variation in the magnitude and timing of predicted changes between different models and scenarios. A greater understanding of longer-term interactions between permafrost, climate, vegetation and snow cover, as well as improved model representation of subsurface conditions including ground ice, will further reduce uncertainty regarding the thermal state of permafrost and its future response.

Key points

  • Widespread and persistent warming of permafrost is observed in polar regions and at high elevations since about 1980, at rates that vary regionally.

  • The highest permafrost temperatures in the instrumental record were recorded in 2018–2019 at most sites in Arctic and sub-Arctic regions.

  • Trends in permafrost warming are consistent with trends in air temperature. However, local conditions including snow cover and vegetation modulate the response of permafrost under a warming climate.

  • Permafrost is projected to continue to warm and thaw in response to climatic warming, but there is uncertainty with respect to the magnitude and timing of these changes.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Trends in permafrost temperatures from monitoring sites.
Fig. 2: Permafrost temperature time series.
Fig. 3: ALT time series.
Fig. 4: Drivers and conditions influencing the thermal regime of permafrost.
Fig. 5: Impact of snow and environmental disturbance on ground thermal regime.

References

  1. Harris, S. A. et al. Glossary of Permafrost and Related Ground-Ice Terms Vol. 154 (National Research Council Canada, 1988).

  2. Wang, Q., Fan, X. & Wang, M. Recent warming amplification over high elevation regions across the globe. Clim. Dyn. 43, 87–101 (2014).

    Google Scholar 

  3. Serreze, M. C. & Barry, R. G. Processes and impacts of Arctic amplification: a research synthesis. Glob. Planet. Change 77, 85–96 (2011).

    Google Scholar 

  4. Biskaborn, B. K. et al. Permafrost is warming at a global scale. Nat. Commun. 10, 1–11 (2019).

    Google Scholar 

  5. Derksen, C. et al. in Canada’s Changing Climate Report Ch. 5 (eds Bush, E. & Lemmen, D. S.) 194–260 (Government of Canada, 2019).

  6. Intergovernmental Panel on Climate Change. Special report on the ocean and cryosphere in a changing climate (IPCC, 2019).

  7. Romanovsky, V. E. et al. in Snow, Water, Ice and Permafrost in the Arctic (SWIPA) 2017 Ch. 4 65–102 (AMAP, 2017).

  8. Etzelmüller, B. et al. Twenty years of European mountain permafrost dynamics — the PACE legacy. Environ. Res. Lett. 15, 104070 (2020).

    Google Scholar 

  9. Haberkorn, A., Kenner, R., Noetzli, J. & Phillips, M. Changes in ground temperature and dynamics in mountain permafrost in the Swiss Alps. Front. Earth Sci. 9, 626686 (2021).

    Google Scholar 

  10. Kokelj, S. V. & Jorgenson, M. T. Advances in thermokarst research. Permafr. Periglac. Process. 24, 108–119 (2013).

    Google Scholar 

  11. Gruber, S. & Haeberli, W. Permafrost in steep bedrock slopes and its temperature-related destabilization following climate change. J. Geophys. Res. 112, F02S18 (2007).

    Google Scholar 

  12. Marcer, M. et al. Rock glaciers throughout the French Alps accelerated and destabilised since 1990 as air temperatures increased. Commun. Earth Environ. 2, 81 (2021).

    Google Scholar 

  13. Krautblatter, M., Funk, D. & Günzel, F. K. Why permafrost rocks become unstable: a rock-ice-mechanical model in time and space. Earth Surf. Process. Landf. 38, 876–887 (2013).

    Google Scholar 

  14. Bommer, C., Phillips, M. & Arenson, L. U. Practical recommendations for planning, constructing and maintaining infrastructure in mountain permafrost: mountain Infrastructure. Permafr. Periglac. Process. 21, 97–104 (2010).

    Google Scholar 

  15. Hjort, J. et al. Impacts of permafrost degradation on infrastructure. Nat. Rev. Earth Environ. https://doi.org/10.1038/s43017-021-00247-8 (2021).

  16. Hugelius, G. et al. Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps. Biogeosciences 11, 6573–6593 (2014).

    Google Scholar 

  17. Miner, K. R. et al. Permafrost carbon emissions in a changing Arctic. Nat. Rev. Earth Environ. https://doi.org/10.1038/s43017-021-00230-3 (2021).

  18. Biskaborn, B. K. et al. The new database of the Global Terrestrial Network for Permafrost (GTN-P). Earth Syst. Sci. Data 7, 245–259 (2015).

    Google Scholar 

  19. Romanovsky, V. E., Smith, S. L. & Christiansen, H. H. Permafrost thermal state in the polar Northern Hemisphere during the international polar year 2007–2009: a synthesis. Permafr. Periglac. Process. 21, 106–116 (2010).

    Google Scholar 

  20. Harris, C., Haeberli, W., Vonder Mühll, D. & King, L. Permafrost monitoring in the high mountains of Europe: the PACE Project in its global context. Permafr. Periglac. Process. 12, 3–11 (2001).

    Google Scholar 

  21. Harris, C. et al. Permafrost and climate in Europe: monitoring and modelling thermal, geomorphological and geotechnical responses. Earth Sci. Rev. 92, 117–171 (2009).

    Google Scholar 

  22. Vieira, G. et al. Thermal state of permafrost and active-layer monitoring in the Antarctic: advances during the international polar year 2007–2009. Permafr. Periglac. Process. 21, 182–197 (2010).

    Google Scholar 

  23. Zhao, L., Wu, Q., Marchenko, S. S. & Sharkhuu, N. Thermal state of permafrost and active layer in Central Asia during the international polar year. Permafr. Periglac. Process. 21, 198–207 (2010).

    Google Scholar 

  24. Brown, J., Hinkel, K. M. & Nelson, F. E. The Circumpolar Active Layer Monitoring (CALM) program: research designs and initial results. Polar Geogr. 24, 166–258 (2000).

    Google Scholar 

  25. Duchesne, C., Smith, S. L., Ednie, M. & Bonnaventure, P. P. in Proc. 68th Canadian Geotechnical Conf. 7th Canadian Permafrost Conf. (Canadian Geotechnical Society, 2015).

  26. Swiss Permafrost Monitoring Network. Permafrost in Switzerland 2014/2015 to 2017/2018 (PERMOS, 2019).

  27. Smith, S. L. & Brown, J. Assessment of the status of the development of the standards for the Terrestrial Essential Climate Variables — T7 — Permafrost and seasonally frozen ground (GTOS, 2009).

  28. Noetzli, J. et al. Best practice for measuring permafrost temperature in boreholes based on the experience in the Swiss Alps. Front. Earth Sci. 9, 607875 (2021).

    Google Scholar 

  29. Noetzli, J. et al. State of the climate in 2019. Bull. Am. Met. Soc. 101, S34–S36 (2020).

    Google Scholar 

  30. Romanovsky, V. E. et al. State of the climate in 2019. Bull. Am. Met. Soc. 101, S265–S269 (2020).

    Google Scholar 

  31. Smith, S. L., Duchesne, C. & Lewkowicz, A. G. in Cold Regions Engineering 2019 (eds Bilodeau, J. P., Nadeau, D. F., Fortier, D. & Conciatori, D.) 670–677 (American Society of Civil Engineers, 2019).

  32. Zhao, L. et al. Changing climate and the permafrost environment on the Qinghai–Tibet (Xizang) plateau. Permafr. Periglac. Process. 31, 396–405 (2020).

    Google Scholar 

  33. Osterkamp, T. E. in Proc. Ninth Int. Conf. Permafrost Vol. 2 (eds Kane, D. L. & Hinkel, K. M.) 1333–1338 (Inst. Northern Engineering, Univ. Alaska, 2008).

  34. Smith, S. L., Burgess, M. M. & Taylor, A. E. in Permafrost: Proc. 8th Int. Conf. Permafrost (eds Phillips, M., Springman, S. M. & Arenson, L. U.) 1073–1078 (CRC, 2003).

  35. Smith, S. L., Burgess, M. M., Riseborough, D. & Nixon, F.M. Recent trends from Canadian permafrost thermal monitoring network sites. Permafr. Periglac. Process. 16, 19–30 (2005).

    Google Scholar 

  36. Allard, M., Wang, B. & Pilon, J. Recent cooling along the southern shore of Hudson Strait, Quebec, Canada, documented from permafrost temperature measurements. Arctic Antarctic Alp. Res. 27, 157–166 (1995).

    Google Scholar 

  37. Romanovsky, V. E., Sazonova, T. S., Balobaev, V. T., Shender, N. I. & Sergueev, D. O. Past and recent changes in air and permafrost temperatures in eastern Siberia. Glob. Planet. Change 56, 399–413 (2007).

    Google Scholar 

  38. Harris, C. et al. Warming permafrost in European mountains. Glob. Planet. Change 39, 215–225 (2003).

    Google Scholar 

  39. Isaksen, K., Sollid, J. L., Holmlund, P. & Harris, C. Recent warming of mountain permafrost in Svalbard and Scandinavia. J. Geophys. Res. 112, F02S04 (2007).

    Google Scholar 

  40. Wu, Q. & Zhang, T. Recent permafrost warming on the Qinghai–Tibetan Plateau. J. Geophys. Res. 113, D13108 (2008).

    Google Scholar 

  41. Christiansen, H. H. et al. The thermal state of permafrost in the Nordic area during the international polar year 2007–2009. Permafr. Periglac. Process. 21, 156–181 (2010).

    Google Scholar 

  42. Romanovsky, V. E. et al. Thermal state of permafrost in Russia. Permafr. Periglac. Process. 21, 136–155 (2010).

    Google Scholar 

  43. Smith, S. et al. Thermal state of permafrost in North America: a contribution to the international polar year. Permafr. Periglac. Process. 21, 117–135 (2010).

    Google Scholar 

  44. Duchesne, C., Chartrand, J. & Smith, S. L. Report on 2018 field activities and collection of ground-thermal and active-layer data in the Mackenzie Corridor, Northwest Territories (Natural Resources Canada, 2020).

  45. Allard, M., Sarrazin, D. & L’Hérault, E. Borehole and near-surface ground temperatures in Northeastern Canada. Nordicana D https://doi.org/10.5885/45291SL-34F28A9491014AFD (2020).

  46. Drozdov, D. S. et al. in Proc. 68th Canadian Geotechnical Conf. 7th Canadian Permafrost Conf. (Canadian Geotechnical Society, 2015).

  47. Vasiliev, A. A. et al. Permafrost degradation in the Western Russian Arctic. Environ. Res. Lett. 15, 045001 (2020).

    Google Scholar 

  48. Noetzli, J. et al. State of the climate in 2018. Bull. Am. Met. Soc. 100, S21–S22 (2019).

    Google Scholar 

  49. Schmid, M.-O. et al. Assessment of permafrost distribution maps in the Hindu Kush Himalayan region using rock glaciers mapped in Google Earth. Cryosphere 9, 2089–2099 (2015).

    Google Scholar 

  50. Allen, S. K. et al. Permafrost studies in Kullu District, Himachal Pradesh. Curr. Sci. 111, 550 (2016).

    Google Scholar 

  51. Hasler, A., Geertsema, M., Foord, V., Gruber, S. & Noetzli, J. The influence of surface characteristics, topography and continentality on mountain permafrost in British Columbia. Cryosphere 9, 1025–1038 (2015).

    Google Scholar 

  52. Gruber, S. et al. in Proc. 68th Canadian Geotechnical Conf. 7th Canadian Permafrost Conf. (Canadian Geotechnical Society, 2015).

  53. Andrés, N., Palacios, D., Úbeda, J. & Alcalá, J. Ground thermal conditions at Chachani volcano, southern Peru. Geograf. Ann. Ser. A 93, 151–162 (2011).

    Google Scholar 

  54. Nagy, B., Ignéczi, Á., Kovács, J., Szalai, Z. & Mari, L. Shallow ground temperature measurements on the highest volcano on Earth, Mt. Ojos del Salado, Arid Andes, Chile. Permafr. Periglac. Process. 30, 3–18 (2019).

    Google Scholar 

  55. Yoshikawa, K. et al. Current thermal state of permafrost in the southern Peruvian Andes and potential impact from El Niño–Southern Oscillation (ENSO). Permafr. Periglac. Process. 31, 598–609 (2020).

    Google Scholar 

  56. Allen, S. K., Gruber, S. & Owens, I. F. Exploring steep bedrock permafrost and its relationship with recent slope failures in the southern Alps of New Zealand. Permafr. Periglac. Process. 20, 345–356 (2009).

    Google Scholar 

  57. Abramov, A. et al. Two decades of active layer thickness monitoring in northeastern Asia. Polar Geogr. https://doi.org/10.1080/1088937X.2019.1648581 (2019).

  58. Strand, S. M., Christiansen, H. H., Johansson, M., Åkerman, J. & Humlum, O. Active layer thickening and controls on interannual variability in the Nordic Arctic compared to the circum-Arctic. Permafr. Periglac. Process. 32, 47–58 (2021).

    Google Scholar 

  59. O’Neill, H. B., Roy-Leveillee, P., Lebedeva, L. & Ling, F. Recent advances (2010–2019) in the study of taliks. Permafrost Periglac Process 31, 346–357 (2020).

    Google Scholar 

  60. Hrbáček, F. et al. Active layer monitoring in Antarctica: an overview of results from 2006 to 2015. Polar Geogr. https://doi.org/10.1080/1088937X.2017.1420105 (2018).

  61. Ramos, M. et al. Recent shallowing of the thaw depth at Crater Lake, Deception Island, Antarctica (2006–2014). CATENA 149, 519–528 (2017).

    Google Scholar 

  62. Nicolsky, D. J. & Romanovsky, V. E. Modeling long-term permafrost degradation. J. Geophys. Res. Earth Surf. 123, 1756–1771 (2018).

    Google Scholar 

  63. Throop, J., Lewkowicz, A. G. & Smith, S. L. Climate and ground temperature relations at sites across the continuous and discontinuous permafrost zones, northern Canada. Can. J. Earth Sci. 49, 865–876 (2012).

    Google Scholar 

  64. Isaksen, K. et al. Degrading mountain permafrost in southern Norway: spatial and temporal variability of mean ground temperatures, 1999–2009. Permafr. Periglac. Process. 22, 361–377 (2011).

    Google Scholar 

  65. Mollaret, C. et al. Mountain permafrost degradation documented through a network of permanent electrical resistivity tomography sites. Cryosphere 13, 2557–2578 (2019).

    Google Scholar 

  66. Farquharson, L. M. et al. Climate change drives widespread and rapid thermokarst development in very cold permafrost in the Canadian high Arctic. Geophys. Res. Lett. 46, 6681–6689 (2019).

    Google Scholar 

  67. O’Neill, H. B., Smith, S. L. & Duchesne, C. in Cold Regions Engineering 2019 (eds Bilodeau, J. P., Nadeau, D. F., Fortier, D. & Conciatori, D.) 643–651 (American Society of Civil Engineers, 2019).

  68. Shiklomanov, N. I., Streletskiy, D. A., Little, J. D. & Nelson, F. E. Isotropic thaw subsidence in undisturbed permafrost landscapes. Geophys. Res. Lett. 40, 6356–6361 (2013).

    Google Scholar 

  69. Streletskiy, D. A. et al. Thaw subsidence in undisturbed tundra landscapes, Barrow, Alaska, 1962–2015: Barrow subsidence. Permafr. Periglac. Process. 28, 566–572 (2017).

    Google Scholar 

  70. Connon, R., Devoie, É., Hayashi, M., Veness, T. & Quinton, W. The influence of shallow taliks on permafrost thaw and active layer dynamics in subarctic Canada. J. Geophys. Res. Earth Surf. 123, 281–297 (2018).

    Google Scholar 

  71. Riseborough, D. W. in Proc. Ninth Int. Conf. Permafrost Vol. 2 (eds Kane, D. L. & Hinkel, K. M.) 1487–1492 (Inst. Northern Engineering, Univ. Alaska, 2008).

  72. Zhang, G., Nan, Z., Wu, X., Ji, H. & Zhao, S. The role of winter warming in permafrost change over the Qinghai–Tibet plateau. Geophys. Res. Lett. 46, 11261–11269 (2019).

    Google Scholar 

  73. Osterkamp, T. E. Characteristics of the recent warming of permafrost in Alaska. J. Geophys. Res. 112, F02S02 (2007).

    Google Scholar 

  74. Smith, S. L., Throop, J., Lewkowicz, A. G. & Burn, C. R. Recent changes in climate and permafrost temperatures at forested and polar desert sites in northern Canada. Can. J. Earth Sci. 49, 914–924 (2012).

    Google Scholar 

  75. Taylor, A. E., Wang, K., Smith, S. L., Burgess, M. M. & Judge, A. S. Canadian Arctic Permafrost Observatories: detecting contemporary climate change through inversion of subsurface temperature time series. J. Geophys. Res. 111, 1–14 (2006).

    Google Scholar 

  76. Gruber, S., Hoelzle, M. & Haeberli, W. Rock-wall temperatures in the Alps: modelling their topographic distribution and regional differences. Permafr. Periglac. Process. 15, 299–307 (2004).

    Google Scholar 

  77. O’Neill, H. B. & Burn, C. R. Impacts of variations in snow cover on permafrost stability, including simulated snow management, Dempster Highway, Peel Plateau, Northwest Territories. Arct. Sci. 3, 150–178 (2017).

    Google Scholar 

  78. Palmer, M. J., Burn, C. R., Kokelj, S. V. & Allard, M. Factors influencing permafrost temperatures across tree line in the uplands east of the Mackenzie Delta, 2004–2010. Can. J. Earth Sci. 49, 877–894 (2012).

    Google Scholar 

  79. Morse, P. D., Burn, C. R. & Kokelj, S. V. Influence of snow on near-surface ground temperatures in upland and alluvial environments of the outer Mackenzie Delta, Northwest Territories. Can. J. Earth Sci. 49, 895–913 (2012).

    Google Scholar 

  80. Sazonova, T. S. & Romanovsky, V. E. A model for regional-scale estimation of temporal and spatial variability of active layer thickness and mean annual ground temperatures. Permafr. Periglac. Process. 14, 125–139 (2003).

    Google Scholar 

  81. Loranty, M. M. et al. Reviews and syntheses: Changing ecosystem influences on soil thermal regimes in northern high-latitude permafrost regions. Biogeosciences 15, 5287–5313 (2018).

    Google Scholar 

  82. Juszak, I., Eugster, W., Heijmans, M. M. P. D. & Schaepman-Strub, G. Contrasting radiation and soil heat fluxes in Arctic shrub and wet sedge tundra. Biogeosciences 13, 4049–4064 (2016).

    Google Scholar 

  83. Boeckli, L., Brenning, A., Gruber, S. & Noetzli, J. A statistical approach to modelling permafrost distribution in the European Alps or similar mountain ranges. Cryosphere 6, 125–140 (2012).

    Google Scholar 

  84. Burn, C. R. & Kokelj, S. V. The environment and permafrost of the Mackenzie Delta area. Permafr. Periglac. Process. 20, 83–105 (2009).

    Google Scholar 

  85. Kropp, H. et al. Shallow soils are warmer under trees and tall shrubs across Arctic and boreal ecosystems. Environ. Res. Lett. 16, 015001 (2020).

    Google Scholar 

  86. Lantz, T. C., Marsh, P. & Kokelj, S. V. Recent shrub proliferation in the mackenzie delta uplands and microclimatic implications. Ecosystems 16, 47–59 (2013).

    Google Scholar 

  87. Frost, G. V., Epstein, H. E., Walker, D. A., Matyshak, G. & Ermokhina, K. Seasonal and long-term changes to active-layer temperatures after tall shrubland expansion and succession in Arctic tundra. Ecosystems 21, 507–520 (2018).

    Google Scholar 

  88. Myers-Smith, I. H. et al. Climate sensitivity of shrub growth across the tundra biome. Nat. Clim. Chang. 5, 887–891 (2015).

    Google Scholar 

  89. Boike, J. et al. Thermal processes of thermokarst lakes in the continuous permafrost zone of northern Siberia — observations and modeling (Lena River Delta, Siberia). Biogeosciences 12, 5941–5965 (2015).

    Google Scholar 

  90. Jones, B. M. et al. Increase in beaver dams controls surface water and thermokarst dynamics in an Arctic tundra region, Baldwin Peninsula, northwestern Alaska. Environ. Res. Lett. 15, 075005 (2020).

    Google Scholar 

  91. Quinton, W. et al. A synthesis of three decades of hydrological research at Scotty Creek, NWT, Canada. Hydrol. Earth Syst. Sci. 23, 2015–2039 (2019).

    Google Scholar 

  92. Godin, E. & Fortier, D. Geomorphology of a thermo-erosion gully, Bylot Island, Nunavut, Canada. Can. J. Earth Sci. 49, 979–986 (2012).

    Google Scholar 

  93. Boisson, A., Allard, M. & Sarrazin, D. Permafrost aggradation along the emerging eastern coast of Hudson Bay, Nunavik (northern Québec, Canada). Permafr. Periglac. Process. 31, 128–140 (2020).

    Google Scholar 

  94. Mackay, J. R. & Burn, C. R. The first 20 years (1978–1979 to 1998–1999) of ice-wedge growth at the Illisarvik experimental drained lake site, western Arctic coast, Canada. Can. J. Earth Sci. 39, 95–111 (2002).

    Google Scholar 

  95. Clayton, L. K. et al. Active layer thickness as a function of soil water content. Environ. Res. Lett. 16, 055028 (2021).

    Google Scholar 

  96. Wright, N., Hayashi, M. & Quinton, W. L. Spatial and temporal variations in active layer thawing and their implication on runoff generation in peat-covered permafrost terrain. Water Resour. Res. 45, 1–13 (2009).

    Google Scholar 

  97. Devoie, É. G., Craig, J. R., Connon, R. F. & Quinton, W. L. Taliks: a tipping point in discontinuous permafrost degradation in peatlands. Water Resour. Res. 55, 9838–9857 (2019).

    Google Scholar 

  98. Romanovsky, V. E. & Osterkamp, T. E. Interannual variations of the thermal regime of the active layer and near-surface permafrost in northern Alaska. Permafr. Periglac. Process. 6, 313–335 (1995).

    Google Scholar 

  99. Douglas, T. A., Turetsky, M. R. & Koven, C. D. Increased rainfall stimulates permafrost thaw across a variety of Interior Alaskan boreal ecosystems. npj Clim. Atmos. Sci. 3, 28 (2020).

    Google Scholar 

  100. Burn, C. R. & Smith, C. A. S. Observations of the ‘thermal offset’ in near-surface mean annual ground temperatures at several sites near Mayo, Yukon Territory, Canada. Arctic 41, 99–104 (1988).

    Google Scholar 

  101. Neumann, R. B. et al. Warming effects of spring rainfall increase methane emissions from thawing permafrost. Geophys. Res. Lett. 46, 1393–1401 (2019).

    Google Scholar 

  102. Guan, X. J., Spence, C. & Westbrook, C. J. Shallow soil moisture — ground thaw interactions and controls — Part 2: Influences of water and energy fluxes. Hydrol. Earth Syst. Sci. 14, 1387–1400 (2010).

    Google Scholar 

  103. Zhang, Y. et al. Comparison of algorithms and parameterisations for infiltration into organic-covered permafrost soils. Hydrol. Earth Syst. Sci. 14, 729–750 (2010).

    Google Scholar 

  104. Grant, R. F., Humphreys, E. R. & Lafleur, P. M. Ecosystem CO2 and CH4 exchange in a mixed tundra and a fen within a hydrologically diverse Arctic landscape: 1. Modeling versus measurements: CO2 and CH4 exchange in the Arctic. J. Geophys. Res. Biogeosci. 120, 1366–1387 (2015).

    Google Scholar 

  105. Mekonnen, Z. A., Riley, W. J., Grant, R. F. & Romanovsky, V. E. Changes in precipitation and air temperature contribute comparably to permafrost degradation in a warmer climate. Environ. Res. Lett. 16, 024008 (2021).

    Google Scholar 

  106. Flannigan, M. et al. Global wildland fire season severity in the 21st century. For. Ecol. Manag. 294, 54–61 (2013).

    Google Scholar 

  107. Holloway, J. E. et al. Impact of wildfire on permafrost landscapes: a review of recent advances and future prospects. Permafr. Periglac. Process. 31, 371–382 (2020).

    Google Scholar 

  108. Jones, B. M. et al. Recent Arctic tundra fire initiates widespread thermokarst development. Sci. Rep. 5, 15865 (2015).

    Google Scholar 

  109. Viereck, L. A. in Proc. 4th Canadian Permafrost Conf. (ed. French, H. M.) 123–135 (National Research Council of Canada, 1982).

  110. Burn, C. R. in Cryosols: Permafrost-Affected Soils (ed. Kimble, J. M.) 391–413 (Springer, 2004).

  111. Brown, D. R. N. et al. Interactive effects of wildfire and climate on permafrost degradation in Alaskan lowland forests. J. Geophys. Res. Biogeosci. 120, 1619–1637 (2015).

    Google Scholar 

  112. Kirdyanov, A. V. et al. Long-term ecological consequences of forest fires in the continuous permafrost zone of Siberia. Environ. Res. Lett. 15, 034061 (2020).

    Google Scholar 

  113. Li, X. et al. Effects of forest fires on the permafrost environment in the northern Da Xing’anling (Hinggan) mountains, northeast China. Permafr. Periglac. Process. 30, 163–177 (2019).

    Google Scholar 

  114. Narita, K. et al. Vegetation and permafrost thaw depth 10 years after a tundra fire in 2002, Seward Peninsula, Alaska. Arctic Antarctic Alp. Res. 47, 547–559 (2015).

    Google Scholar 

  115. Smith, S. L., Riseborough, D. W. & Bonnaventure, P. P. Eighteen year record of forest fire effects on ground thermal regimes and permafrost in the central Mackenzie Valley, NWT, Canada. Permafr. Periglac. Process. 26, 289–303 (2015).

    Google Scholar 

  116. Kokelj, S. V., Lantz, T. C., Kanigan, J., Smith, S. L. & Coutts, R. Origin and polycyclic behaviour of tundra thaw slumps, Mackenzie Delta region, Northwest Territories, Canada. Permafr. Periglac. Process. 20, 173–184 (2009).

    Google Scholar 

  117. Nitzbon, J. et al. Fast response of cold ice-rich permafrost in northeast Siberia to a warming climate. Nat. Commun. 11, 2201 (2020).

    Google Scholar 

  118. Raynolds, M. K. et al. Cumulative geoecological effects of 62 years of infrastructure and climate change in ice-rich permafrost landscapes, Prudhoe Bay Oilfield, Alaska. Glob. Change Biol. 20, 1211–1224 (2014).

    Google Scholar 

  119. Hinkel, K. M. & Hurd, J. K. Jr Permafrost destabilization and thermokarst following snow fence installation, Barrow, Alaska, U.S.A. Arctic Antarctic Alp. Res. 38, 530–539 (2006).

    Google Scholar 

  120. Johansson, M. et al. Rapid responses of permafrost and vegetation to experimentally increased snow cover in sub-Arctic Sweden. Environ. Res. Lett. 8, 035025 (2013).

    Google Scholar 

  121. O’Neill, H. B. & Burn, C. R. Talik formation at a snow fence in continuous permafrost, western Arctic Canada. Permafr. Periglac. Process. 28, 558–565 (2017).

    Google Scholar 

  122. Smith, S. L., Burgess, M. M. & Riseborough, D. W. in Proc. Ninth Int. Conf. Permafrost Vol. 2 (eds Kane, D. L. & Hinkel, K. M.) 1665–1670 (Inst. Northern Engineering, Univ. Alaska, 2008).

  123. Smith, S. L. & Riseborough, D. W. Modelling the thermal response of permafrost terrain to right-of-way disturbance and climate warming. Cold Reg. Sci. Technol. 60, 92–103 (2010).

    Google Scholar 

  124. Fisher, R. A. & Koven, C. D. Perspectives on the future of land surface models and the challenges of representing complex terrestrial systems. J. Adv. Model. Earth Syst. 12, e2018MS001453 (2020).

    Google Scholar 

  125. Riseborough, D. W., Shiklomanov, N., Etzelmüller, B., Gruber, S. & Marchenko, S. Recent advances in permafrost modelling. Permafr. Periglac. Process. 19, 137–156 (2008).

    Google Scholar 

  126. Aalto, J., Karjalainen, O., Hjort, J. & Luoto, M. Statistical forecasting of current and future circum-Arctic ground temperatures and active layer thickness. Geophys. Res. Lett. 45, 4889–4898 (2018).

    Google Scholar 

  127. Chadburn, S. E. et al. An observation-based constraint on permafrost loss as a function of global warming. Nat. Clim. Chang. 7, 340–344 (2017).

    Google Scholar 

  128. Farbrot, H., Isaksen, K., Etzelmüller, B. & Gisnås, K. Ground thermal regime and permafrost distribution under a changing climate in northern Norway. Permafr. Periglac. Process. 24, 20–38 (2013).

    Google Scholar 

  129. Guo, D. & Wang, H. CMIP5 permafrost degradation projection: a comparison among different regions. J. Geophys. Res. Atmos. 121, 4499–4517 (2016).

    Google Scholar 

  130. Kong, Y. & Wang, C.-H. Responses and changes in the permafrost and snow water equivalent in the Northern Hemisphere under a scenario of 1.5 °C warming. Adv. Clim. Chang. Res. 8, 235–244 (2017).

    Google Scholar 

  131. Etzelmüller, B. et al. Mapping and modelling the occurrence and distribution of mountain permafrost. Nor. Geografisk Tidsskr. Nor. J. Geogr. 55, 186–194 (2001).

    Google Scholar 

  132. Noetzli, J., Hoelzle, M. & Haeberli, W. in Permafrost: Proc. 8th Int. Conf. Permafrost (eds Phillips, M., Springman, S. M. & Arenson, L. U.) 827–832 (CRC, 2003).

  133. Gruber, S. Derivation and analysis of a high-resolution estimate of global permafrost zonation. Cryosphere 6, 221–233 (2012).

    Google Scholar 

  134. Kenner, R., Noetzli, J., Hoelzle, M., Raetzo, H. & Phillips, M. Distinguishing ice-rich and ice-poor permafrost to map ground temperatures and ground ice occurrence in the Swiss Alps. Cryosphere 13, 1925–1941 (2019).

    Google Scholar 

  135. Bonnaventure, P. P. & Lewkowicz, A. G. Impacts of mean annual air temperature change on a regional permafrost probability model for the southern Yukon and northern British Columbia, Canada. Cryosphere 7, 935–946 (2013).

    Google Scholar 

  136. Burke, E. J., Zhang, Y. & Krinner, G. Evaluating permafrost physics in the Coupled Model Intercomparison Project 6 (CMIP6) models and their sensitivity to climate change. Cryosphere 14, 3155–3174 (2020).

    Google Scholar 

  137. Qin, Y. et al. Numerical modeling of the active layer thickness and permafrost thermal state across Qinghai–Tibetan plateau. J. Geophys. Res. Atmos. 122, 11,604–11,620 (2017).

    Google Scholar 

  138. Slater, A. G. & Lawrence, D. M. Diagnosing present and future permafrost from climate models. J. Clim. 26, 5608–5623 (2013).

    Google Scholar 

  139. Westermann, S., Schuler, T. V., Gisnås, K. & Etzelmüller, B. Transient thermal modeling of permafrost conditions in southern Norway. Cryosphere 7, 719–739 (2013).

    Google Scholar 

  140. Zhang, Y., Chen, W. & Riseborough, D. W. Transient projections of permafrost distribution in Canada during the 21st century under scenarios of climate change. Glob. Planet. Change 60, 443–456 (2008).

    Google Scholar 

  141. Marmy, A., Salzmann, N., Scherler, M. & Hauck, C. Permafrost model sensitivity to seasonal climatic changes and extreme events in mountainous regions. Environ. Res. Lett. 8, 035048 (2013).

    Google Scholar 

  142. Fiddes, J. & Gruber, S. TopoSUB: a tool for efficient large area numerical modelling in complex topography at sub-grid scales. Geosci. Model. Dev. 5, 1245–1257 (2012).

    Google Scholar 

  143. Noetzli, J., Gruber, S., Kohl, T., Salzmann, N. & Haeberli, W. Three-dimensional distribution and evolution of permafrost temperatures in idealized high-mountain topography. J. Geophys. Res. 112, F02S13 (2007).

    Google Scholar 

  144. Salzmann, N., Frei, C., Vidale, P.-L. & Hoelzle, M. The application of Regional Climate Model output for the simulation of high-mountain permafrost scenarios. Glob. Planet. Change 56, 188–202 (2007).

    Google Scholar 

  145. Marmy, A. et al. Semi-automated calibration method for modelling of mountain permafrost evolution in Switzerland. Cryosphere 10, 2693–2719 (2016).

    Google Scholar 

  146. Koven, C. D., Riley, W. J. & Stern, A. Analysis of permafrost thermal dynamics and response to climate change in the CMIP5 Earth System Models. J. Clim. 26, 1877–1900 (2013).

    Google Scholar 

  147. Pruessner, L., Phillips, M., Farinotti, D., Hoelzle, M. & Lehning, M. Near-surface ventilation as a key for modeling the thermal regime of coarse blocky rock glaciers. Permafr. Periglac. Process. 29, 152–163 (2018).

    Google Scholar 

  148. Burn, C. R. & Nelson, F. E. Comment on “A projection of severe near-surface permafrost degradation during the 21st century” by David M. Lawrence and Andrew G. Slater. Geophys. Res. Lett. 33, L21503 (2006).

    Google Scholar 

  149. Noetzli, J. & Gruber, S. Transient thermal effects in Alpine permafrost. Cryosphere 3, 85–99 (2009).

    Google Scholar 

  150. O’Neill, H. B. et al. Permafrost thaw and northern development. Nat. Clim. Chang. 10, 722–723 (2020).

    Google Scholar 

  151. Aas, K. S. et al. Thaw processes in ice-rich permafrost landscapes represented with laterally coupled tiles in a land surface model. Cryosphere 13, 591–609 (2019).

    Google Scholar 

  152. Cai, L., Lee, H., Aas, K. S. & Westermann, S. Projecting circum-Arctic excess-ground-ice melt with a sub-grid representation in the Community Land Model. Cryosphere 14, 4611–4626 (2020).

    Google Scholar 

  153. Lee, H., Swenson, S. C., Slater, A. G. & Lawrence, D. M. Effects of excess ground ice on projections of permafrost in a warming climate. Environ. Res. Lett. 9, 124006 (2014).

    Google Scholar 

  154. Westermann, S. et al. Simulating the thermal regime and thaw processes of ice-rich permafrost ground with the land-surface model CryoGrid 3. Geosci. Model. Dev. 9, 523–546 (2016).

    Google Scholar 

  155. O’Neill, H. B., Wolfe, S. A. & Duchesne, C. New ground ice maps for Canada using a paleogeographic modelling approach. Cryosphere 13, 753–773 (2019).

    Google Scholar 

  156. Wang, Q., Fan, X. & Wang, M. Evidence of high-elevation amplification versus Arctic amplification. Sci. Rep. 6, 19219 (2016).

    Google Scholar 

  157. Gisnås, K. et al. A statistical approach to represent small-scale variability of permafrost temperatures due to snow cover. Cryosphere 8, 2063–2074 (2014).

    Google Scholar 

  158. Zweigel, R. B. et al. Simulating snow redistribution and its effect on ground surface temperature at a high-arctic site on svalbard. J. Geophys. Res. Earth Surf. 126, e2020JF005673 (2021).

    Google Scholar 

  159. Fiddes, J., Aalstad, K. & Westermann, S. Hyper-resolution ensemble-based snow reanalysis in mountain regions using clustering. Hydrol. Earth Syst. Sci. 23, 4717–4736 (2019).

    Google Scholar 

  160. Magnin, F. et al. Modelling rock wall permafrost degradation in the Mont Blanc massif from the LIA to the end of the 21st century. Cryosphere 11, 1813–1834 (2017).

    Google Scholar 

  161. Steffen, K. & Box, J. Surface climatology of the Greenland Ice Sheet: Greenland Climate Network 1995–1999. J. Geophys. Res. 106, 33951–33964 (2001).

    Google Scholar 

  162. National Research Council. Opportunities to use remote sensing in understanding permafrost and related ecological characteristics: report of a workshop (National Academies Press, 2014).

  163. Chen, J., Günther, F., Grosse, G., Liu, L. & Lin, H. Sentinel-1 InSAR measurements of elevation changes over Yedoma Uplands on Sobo-Sise Island, Lena Delta. Remote. Sens. 10, 1152 (2018).

    Google Scholar 

  164. Lewkowicz, A. G. & Way, R. G. Extremes of summer climate trigger thousands of thermokarst landslides in a High Arctic environment. Nat. Commun. 10, 1329 (2019).

    Google Scholar 

  165. Liljedahl, A. K. et al. Pan-Arctic ice-wedge degradation in warming permafrost and its influence on tundra hydrology. Nat. Geosci. 9, 312–318 (2016).

    Google Scholar 

  166. Rouyet, L., Lauknes, T. R., Christiansen, H. H., Strand, S. M. & Larsen, Y. Seasonal dynamics of a permafrost landscape, Adventdalen, Svalbard, investigated by InSAR. Remote Sens. Environ. 231, 111236 (2019).

    Google Scholar 

  167. Brown, J., Ferrians, Jr., O. J., Heginbottom, J. A. & Melnikov, E. S. Circum-Arctic Map of Permafrost and Ground Ice Conditions (National Snow and Ice Data Center, 2001).

  168. Luthin, J. N. & Guymon, G. L. Soil moisture-vegetation-temperature relationships in central Alaska. J. Hydrol. 23, 233–246 (1974).

    Google Scholar 

  169. Lachenbruch, A. H. Thermal effects of the ocean on permafrost. Geol. Soc. Am. Bull. 68, 1515 (1957).

    Google Scholar 

  170. Hoelzle, M. & Gruber, S. in Proc. Ninth Int. Conf. Permafrost Vol. 2 (eds Kane, D. L. & Hinkel, K. M.) 723–728 (Inst. Northern Engineering, Univ. Alaska, 2008).

  171. Smith, M. W. & Riseborough, D. W. Climate and the limits of permafrost: a zonal analysis. Permafr. Periglac. Process. 13, 1–15 (2002).

    Google Scholar 

  172. Lachenbruch, A. H. & Marshall, B. V. Changing climate: geothermal evidence from permafrost in the Alaskan Arctic. Science 234, 689–696 (1986).

    Google Scholar 

  173. Cuesta-Valero, F. J., García-García, A., Beltrami, H., González-Rouco, J. F. & García-Bustamante, E. Long-term global ground heat flux and continental heat storage from geothermal data. Clim. Past. 17, 451–468 (2021).

    Google Scholar 

  174. Isaksen, K., Mühll, D. V., Gubler, H., Kohl, T. & Sollid, J. L. Ground surface-temperature reconstruction based on data from a deep borehole in permafrost at Janssonhaugen, Svalbard. Ann. Glaciol. 31, 287–294 (2000).

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the Geological Survey of Canada of Natural Resources Canada, the Norwegian Meteorological Institute, the WSL Institute for Snow and Avalanche Research SLF, MeteoSwiss and the Federal Office for the Environment and the Swiss Academy of Sciences, and the University of Alaska Fairbanks. S. Wolfe (Geological Survey of Canada) provided helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

S.L.S. and H.B.O′N. conceived and drafted the paper. All authors contributed to the provision of information, editing and revisions.

Corresponding author

Correspondence to Sharon L. Smith.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Earth & Environment thanks Hanne Christiansen, Lin Zhao and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

CALM network: https://www2.gwu.edu/~calm

Global Climate Observing System: https://gcos.wmo.int/en/home

Global Terrestrial Network for Permafrost: https://gtnp.arcticportal.org/

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Smith, S.L., O’Neill, H.B., Isaksen, K. et al. The changing thermal state of permafrost. Nat Rev Earth Environ 3, 10–23 (2022). https://doi.org/10.1038/s43017-021-00240-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43017-021-00240-1

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing