Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Responses and impacts of atmospheric rivers to climate change

Abstract

Atmospheric rivers (ARs) are characterized by intense moisture transport, which, on landfall, produce precipitation which can be both beneficial and destructive. ARs in California, for example, are known to have ended drought conditions but also to have caused substantial socio-economic damage from landslides and flooding linked to extreme precipitation. Understanding how AR characteristics will respond to a warming climate is, therefore, vital to the resilience of communities affected by them, such as the western USA, Europe, East Asia and South Africa. In this Review, we use a theoretical framework to synthesize understanding of the dynamic and thermodynamic responses of ARs to anthropogenic warming and connect them to observed and projected changes and impacts revealed by observations and complex models. Evidence suggests that increased atmospheric moisture (governed by Clausius–Clapeyron scaling) will enhance the intensity of AR-related precipitation — and related hydrological extremes — but with changes that are ultimately linked to topographic barriers. However, due to their dependency on both weather and climate-scale processes, which themselves are often poorly constrained, projections are uncertain. To build confidence and improve resilience, future work must focus efforts on characterizing the multiscale development of ARs and in obtaining observations from understudied regions, including the West Pacific, South Pacific and South Atlantic.

Key points

  • Atmospheric rivers are important components of the meridional transport of atmospheric moisture. They influence the hydroclimate of a number of regions in the mid-latitudes.

  • On land, atmospheric rivers are the source of both beneficial water resources and deleterious hazards (mudslides, floods and, in their absence on longer timescales, droughts).

  • The robust thermodynamic response of atmospheric moisture to climate change means that future atmospheric rivers will contain more moisture, but circulation changes and potential decreases in their precipitation efficiency must be considered in future impact studies.

  • At the global scale, much is still unknown about atmospheric rivers, including basic observations of their development, their interaction with large-scale dynamics and their role in short-duration, high-volume melt events over the Arctic and Antarctic.

  • Future research on the mechanisms driving atmospheric rivers and their life cycles will be a critical advancement for further quantifying their response to climate change.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Characteristics of a typical atmospheric river.
Fig. 2: Projected changes and impacts in atmospheric rivers.
Fig. 3: Decomposition of integrated vapour transport.

References

  1. 1.

    Newell, R. E., Newell, N. E., Zhu, Y. & Scott, C. Tropospheric rivers? – A pilot study. Geophys. Res. Lett. 19, 2401–2404 (1992).

    Google Scholar 

  2. 2.

    American Meteorological Society. Atmospheric River. Glossary of Meteorology. http://glossary.ametsoc.org/wiki/Atmospheric_river (2019).

  3. 3.

    Zhu, Y. & Newell, R. E. A proposed algorithm for moisture fluxes from atmospheric rivers. Mon. Weather Rev. 126, 725–735 (1998).

    Google Scholar 

  4. 4.

    Newman, M., Kiladis, G. N., Weickmann, K. M., Ralph, F. M. & Sardeshmukh, P. D. Relative contributions of synoptic and low-frequency eddies to time-mean atmospheric moisture transport, including the role of atmospheric rivers. J. Clim. 25, 7341–7361 (2012).

    Google Scholar 

  5. 5.

    Ralph, F. M. et al. Dropsonde observations of total integrated water vapor transport within North Pacific atmospheric rivers. J. Hydrometeorol. 18, 2577–2596 (2017).

    Google Scholar 

  6. 6.

    Cordeira, J. M., Ralph, F. M. & Moore, B. J. The development and evolution of two atmospheric rivers in proximity to western North Pacific tropical cyclones in October 2010. Mon. Weather Rev. 141, 4234–4255 (2013).

    Google Scholar 

  7. 7.

    Dacre, H. F., Clark, P. A., Martínez-Alvarado, O., Stringer, M. A. & Lavers, D. A. How do atmospheric rivers form? Bull. Am. Meteorol. Soc. 96, 1243–1255 (2015).

    Google Scholar 

  8. 8.

    Bao, J.-W., Michelson, S. A., Neiman, P. J., Ralph, F. M. & Wilczak, J. M. Interpretation of enhanced integrated water vapor bands associated with extratropical cyclones: their formation and connection to tropical moisture. Mon. Weather Rev. 134, 1063–1080 (2006).

    Google Scholar 

  9. 9.

    Sodemann, H. & Stohl, A. Moisture origin and meridional transport in atmospheric rivers and their association with multiple cyclones. Mon. Weather Rev. 141, 2850–2868 (2013).

    Google Scholar 

  10. 10.

    Garaboa-Paz, D., Eiras-Barca, J., Huhn, F. & Pérez-Muñuzuri, V. Lagrangian coherent structures along atmospheric rivers. Chaos 25, 063105 (2015).

    Google Scholar 

  11. 11.

    Ramos, A. M., Tomé, R., Trigo, R. M., Liberato, M. L. R. & Pinto, J. G. Projected changes in atmospheric rivers affecting Europe in CMIP5 models. Geophys. Res. Lett. 43, 9315–9323 (2016).

    Google Scholar 

  12. 12.

    Hu, H. & Dominguez, F. Understanding the role of tropical moisture in atmospheric rivers. J. Geophys. Res. Atmos. 124, 13826–13842 (2019).

    Google Scholar 

  13. 13.

    Zhou, Y., Kim, H. & Guan, B. Life cycle of atmospheric rivers: identification and climatological characteristics. J. Geophys. Res. Atmos. 123, 12715–12725 (2018).

    Google Scholar 

  14. 14.

    Guan, B. & Waliser, D. E. Tracking atmospheric rivers globally: spatial distributions and temporal evolution of life cycle characteristics. J. Geophys. Res. Atmos. 124, 12523–12552 (2019).

    Google Scholar 

  15. 15.

    Shields, C. A. et al. Meridional heat transport during atmospheric rivers in high-resolution CESM climate projections. Geophys. Res. Lett. 46, 14702–14712 (2019).

    Google Scholar 

  16. 16.

    Zhang, Z., Ralph, F. M. & Zheng, M. The relationship between extratropical cyclone strength and atmospheric river intensity and position. Geophys. Res. Lett. 46, 1814–1823 (2019).

    Google Scholar 

  17. 17.

    Eiras-Barca, J. et al. The concurrence of atmospheric rivers and explosive cyclogenesis in the North Atlantic and North Pacific basins. Earth Syst. Dyn. 9, 91–102 (2018).

    Google Scholar 

  18. 18.

    Dacre, H. F., Martínez-Alvarado, O. & Mbengue, C. O. Linking atmospheric rivers and warm conveyor belt airflows. J. Hydrometeorol. 20, 1183–1196 (2019).

    Google Scholar 

  19. 19.

    Ralph, F. M., Neiman, P. J. & Rotunno, R. Dropsonde observations in low-level jets over the northeastern Pacific Ocean from CALJET-1998 and PACJET-2001: mean vertical-profile and atmospheric river characteristics. Mon. Weather Rev. 133, 889–910 (2005).

    Google Scholar 

  20. 20.

    Rutz, J. J., Steenburgh, W. J. & Ralph, F. M. Climatological characteristics of atmospheric rivers and their inland penetration over the western United States. Mon. Weather Rev. 142, 905–921 (2014).

    Google Scholar 

  21. 21.

    Guan, B. & Waliser, D. E. Detection of atmospheric rivers: evaluation and application of an algorithm for global studies. J. Geophys. Res. Atmos. 120, 12514–12535 (2015).

    Google Scholar 

  22. 22.

    Lavers, D. A. & Villarini, G. The contribution of atmospheric rivers to precipitation in Europe and the United States. J. Hydrol. 522, 382–390 (2015).

    Google Scholar 

  23. 23.

    Waliser, D. & Guan, B. Extreme winds and precipitation during landfall of atmospheric rivers. Nat. Geosci. 10, 179–183 (2017).

    Google Scholar 

  24. 24.

    Ridder, N., de Vries, H. & Drijfhout, S. The role of atmospheric rivers in compound events consisting of heavy precipitation and high storm surges along the Dutch coast. Nat. Hazards Earth Syst. Sci. 18, 3311–3326 (2018).

    Google Scholar 

  25. 25.

    Kamae, Y., Mei, W. & Xie, S.-P. Climatological relationship between warm season atmospheric rivers and heavy rainfall over East Asia. J. Meteorol. Soc. Japan Ser. II 95, 411–431 (2017).

    Google Scholar 

  26. 26.

    Viale, M. & Nuñez, M. N. Climatology of winter orographic precipitation over the subtropical central Andes and associated synoptic and regional characteristics. J. Hydrometeorol. 12, 481–507 (2011).

    Google Scholar 

  27. 27.

    Garreaud, R. Warm winter storms in central Chile. J. Hydrometeorol. 14, 1515–1534 (2013).

    Google Scholar 

  28. 28.

    Viale, M., Valenzuela, R., Garreaud, R. & Ralph, F. M. Impacts of atmospheric rivers on precipitation in southern South America. J. Hydrometeorol. 19, 1671–1687 (2018).

    Google Scholar 

  29. 29.

    Blamey, R. C., Ramos, A. M., Trigo, R. M., Tomé, R. & Reason, C. J. C. The influence of atmospheric rivers over the South Atlantic on winter rainfall in South Africa. J. Hydrometeorol. 19, 127–142 (2018).

    Google Scholar 

  30. 30.

    Neiman, P. J., Ralph, F. M., Wick, G. A., Lundquist, J. D. & Dettinger, M. D. Meteorological characteristics and overland precipitation impacts of atmospheric rivers affecting the West Coast of North America based on eight years of SSM/I satellite observations. J. Hydrometeorol. 9, 22–47 (2008).

    Google Scholar 

  31. 31.

    Stohl, A., Forster, C. & Sodemann, H. Remote sources of water vapor forming precipitation on the Norwegian west coast at 60°N – a tale of hurricanes and an atmospheric river. J. Geophys. Res. Atmos. 113, D05102 (2008).

    Google Scholar 

  32. 32.

    Lavers, D. A. et al. Winter floods in Britain are connected to atmospheric rivers. Geophys. Res. Lett. 38, L23803 (2011).

    Google Scholar 

  33. 33.

    Lavers, D. A., Villarini, G., Allan, R. P., Wood, E. F. & Wade, A. J. The detection of atmospheric rivers in atmospheric reanalyses and their links to British winter floods and the large-scale climatic circulation. J. Geophys. Res. Atmos. 117, D20106 (2012).

    Google Scholar 

  34. 34.

    Lavers, D. A. & Villarini, G. The nexus between atmospheric rivers and extreme precipitation across Europe. Geophys. Res. Lett. 40, 3259–3264 (2013).

    Google Scholar 

  35. 35.

    Ramos, A. M., Trigo, R. M., Liberato, M. L. R. & Tomé, R. Daily precipitation extreme events in the Iberian Peninsula and its association with atmospheric rivers. J. Hydrometeorol. 16, 579–597 (2015).

    Google Scholar 

  36. 36.

    Brands, S., Gutiérrez, J. M. & San-Martín, D. Twentieth-century atmospheric river activity along the west coasts of Europe and North America: algorithm formulation, reanalysis uncertainty and links to atmospheric circulation patterns. Clim. Dyn. 48, 2771–2795 (2017).

    Google Scholar 

  37. 37.

    Hirota, N., Takayabu, Y. N., Kato, M. & Arakane, S. Roles of an atmospheric river and a cutoff low in the extreme precipitation event in Hiroshima on 19 august 2014. Mon. Weather Rev. 144, 1145–1160 (2016).

    Google Scholar 

  38. 38.

    Kingston, D. G., Lavers, D. A. & Hannah, D. M. Floods in the Southern Alps of New Zealand: the importance of atmospheric rivers. Hydrol. Process. 30, 5063–5070 (2016).

    Google Scholar 

  39. 39.

    Little, K., Kingston, D. G., Cullen, N. J. & Gibson, P. B. The role of atmospheric rivers for extreme ablation and snowfall events in the Southern Alps of New Zealand. Geophys. Res. Lett. 46, 2761–2771 (2019).

    Google Scholar 

  40. 40.

    Lavers, D. A. & Villarini, G. Atmospheric rivers and flooding over the central United States. J. Clim. 26, 7829–7836 (2013).

    Google Scholar 

  41. 41.

    Mahoney, K. et al. Understanding the role of atmospheric rivers in heavy precipitation in the southeast United States. Mon. Weather Rev. 144, 1617–1632 (2016).

    Google Scholar 

  42. 42.

    Mo, R. & Lin, H. Tropical–mid-latitude interactions: case study of an inland-penetrating atmospheric river during a major winter storm over North America. Atmosphere-Ocean 57, 208–232 (2019).

    Google Scholar 

  43. 43.

    Lorente-Plazas, R. et al. Unusual atmospheric-river-like structures coming from Africa induce extreme precipitation over western Mediterranean Sea. J. Geophys. Res. Atmos. 125, e2019JD031280 (2020).

    Google Scholar 

  44. 44.

    Gorodetskaya, I. V. et al. The role of atmospheric rivers in anomalous snow accumulation in East Antarctica. Geophys. Res. Lett. 41, 6199–6206 (2014).

    Google Scholar 

  45. 45.

    Woods, C., Caballero, R. & Svensson, G. Large-scale circulation associated with moisture intrusions into the Arctic during winter. Geophys. Res. Lett. 40, 4717–4721 (2013).

    Google Scholar 

  46. 46.

    Bozkurt, D., Rondanelli, R., Marín, J. C. & Garreaud, R. Foehn event triggered by an atmospheric river underlies record-setting temperature along continental Antarctica. J. Geophys. Res. Atmos. 123, 3871–3892 (2018).

    Google Scholar 

  47. 47.

    Turner, J. et al. The dominant role of extreme precipitation events in Antarctic snowfall variability. Geophys. Res. Lett. 46, 3502–3511 (2019).

    Google Scholar 

  48. 48.

    Nash, D., Waliser, D., Guan, B., Ye, H. & Ralph, F. M. The role of atmospheric rivers in extratropical and polar hydroclimate. J. Geophys. Res. Atmos. 123, 6804–6821 (2018).

    Google Scholar 

  49. 49.

    Komatsu, K. K., Alexeev, V. A., Repina, I. A. & Tachibana, Y. Poleward upgliding Siberian atmospheric rivers over sea ice heat up arctic upper air. Sci. Rep. 8, 2872 (2018).

    Google Scholar 

  50. 50.

    Hegyi, B. M. & Taylor, P. C. The unprecedented 2016–2017 Arctic sea ice growth season: the crucial role of atmospheric rivers and longwave fluxes. Geophys. Res. Lett. 45, 5204–5212 (2018).

    Google Scholar 

  51. 51.

    Wille, J. D. et al. West Antarctic surface melt triggered by atmospheric rivers. Nat. Geosci. 12, 911–916 (2019).

    Google Scholar 

  52. 52.

    Dettinger, M. D. Climate change, atmospheric rivers, and floods in California – a multimodel analysis of storm frequency and magnitude changes. J. Am. Water Resour. Assoc. 47, 514–523 (2011).

    Google Scholar 

  53. 53.

    Ralph, F. M., Coleman, T. A., Neiman, P. J., Zamora, R. J. & Dettinger, M. D. Observed impacts of duration and seasonality of atmospheric river landfalls on soil moisture and runoff in coastal northern California. J. Hydrometeorol. 14, 443–459 (2013).

    Google Scholar 

  54. 54.

    Ralph, F. M. et al. A scale to characterize the strength and impacts of atmospheric rivers. Bull. Am. Meteorol. Soc. 100, 269–289 (2019).

    Google Scholar 

  55. 55.

    Payne, A. E. & Magnusdottir, G. Dynamics of landfalling atmospheric rivers over the North Pacific in 30 years of MERRA reanalysis. J. Clim. 27, 7133–7150 (2014).

    Google Scholar 

  56. 56.

    Fish, M. A., Wilson, A. M. & Raph, F. M. Atmospheric river families: definition and associated synoptic conditions. J. Hydrometeorol. 20, 2091–2108 (2019).

    Google Scholar 

  57. 57.

    White, A. B., Moore, B. J., Gottas, D. J. & Neiman, P. J. Winter storm conditions leading to excessive runoff above California’s Oroville Dam during January and February 2017. Bull. Am. Meteorol. Soc. 100, 55–70 (2019).

    Google Scholar 

  58. 58.

    Hendy, I. L., Napier, T. J. & Schimmelmann, A. From extreme rainfall to drought: 250 years of annually resolved sediment deposition in Santa Barbara Basin, California. Quat. Int. 387, 3–12 (2015).

    Google Scholar 

  59. 59.

    Du, X., Hendy, I. & Schimmelmann, A. A 9000-year flood history for Southern California: a revised stratigraphy of varved sediments in Santa Barbara Basin. Mar. Geol. 397, 29–42 (2018).

    Google Scholar 

  60. 60.

    Gonzales, K. R., Swain, D. L., Nardi, K. M., Barnes, E. A. & Diffenbaugh, N. S. Recent warming of landfalling atmospheric rivers along the west coast of the United States. J. Geophys. Res. Atmos. 124, 6810–6826 (2019).

    Google Scholar 

  61. 61.

    Siler, N. & Roe, G. How will orographic precipitation respond to surface warming? An idealized thermodynamic perspective. Geophys. Res. Lett. 41, 2606–2613 (2014).

    Google Scholar 

  62. 62.

    O’Gorman, P. A. & Schneider, T. The physical basis for increases in precipitation extremes in simulations of 21st-century climate change. Proc. Natl Acad. Sci. USA 106, 14773–14777 (2009).

    Google Scholar 

  63. 63.

    Kirshbaum, D. J. & Smith, R. B. Orographic precipitation in the tropics: large-eddy simulations and theory. J. Atmos. Sci. 66, 2559–2578 (2009).

    Google Scholar 

  64. 64.

    Gao, Y. et al. Dynamical and thermodynamical modulations on future changes of landfalling atmospheric rivers over western North America. Geophys. Res. Lett. 42, 7179–7186 (2015).

    Google Scholar 

  65. 65.

    Lavers, D. A. et al. Future changes in atmospheric rivers and their implications for winter flooding in Britain. Environ. Res. Lett. 8, 034010 (2013).

    Google Scholar 

  66. 66.

    Gao, Y., Lu, J. & Leung, L. R. Uncertainties in projecting future changes in atmospheric rivers and their impacts on heavy precipitation over Europe. J. Clim. 29, 6711–6726 (2016).

    Google Scholar 

  67. 67.

    Kaplan, M. et al. The role of upstream mid-tropospheric circulations in the Sierra Nevada enabling leeside (spillover) precipitation. Part II: A secondary atmospheric river accompanying a midlevel jet. J. Hydrometeorol. 10, 1327–1354 (2009).

    Google Scholar 

  68. 68.

    Backes, T., Kaplan, M. L., Schumer, R. & Mejia, J. F. A climatology of the vertical structure of water vapor transport to the Sierra Nevada in cool season atmospheric river precipitation events. J. Hydrometeorol. 16, 1029–1047 (2015).

    Google Scholar 

  69. 69.

    Shepherd, T. G. Atmospheric circulation as a source of uncertainty in climate change projections. Nat. Geosci. 7, 703–708 (2014).

    Google Scholar 

  70. 70.

    Vallis, G. K., Zurita-Gotor, P., Cairns, C. & Kidston, J. Response of the large-scale structure of the atmosphere to global warming. Q. J. R. Meteorol. Soc. 141, 1479–1501 (2015).

    Google Scholar 

  71. 71.

    Butler, A. H., Thompson, D. W. J. & Heikes, R. The steady-state atmospheric circulation response to climate change–like thermal forcings in a simple general circulation model. J. Clim. 23, 3474–3496 (2010).

    Google Scholar 

  72. 72.

    Screen, J. A. & Simmonds, I. The central role of diminishing sea ice in recent Arctic temperature amplification. Nature 464, 1334–1337 (2010).

    Google Scholar 

  73. 73.

    Stuecker, M. F. et al. Polar amplification dominated by local forcing and feedbacks. Nat. Clim. Change 8, 1076–1081 (2018).

    Google Scholar 

  74. 74.

    Held, I. M. Large-scale dynamics and global warming. Bull. Am. Meteorol. Soc. 74, 228–242 (1993).

    Google Scholar 

  75. 75.

    Shaw, T. & Voigt, A. Tug of war on summertime circulation between radiative forcing and sea-surface warming. Nat. Geosci. 8, 560–566 (2015).

    Google Scholar 

  76. 76.

    Deser, C., Tomas, R. A. & Sun, L. The role of ocean–atmosphere coupling in the zonal-mean atmospheric response to Arctic sea ice loss. J. Clim. 28, 2168–2186 (2015).

    Google Scholar 

  77. 77.

    Barnes, E. A. & Screen, J. A. The impact of Arctic warming on the midlatitude jet-stream: Can it? Has it? Will it? WIREs Clim. Change 6, 277–286 (2015).

    Google Scholar 

  78. 78.

    Barnes, E. A. & Polvani, L. Response of the midlatitude jets, and of their variability, to increased greenhouse gases in the CMIP5 models. J. Clim. 26, 7117–7135 (2013).

    Google Scholar 

  79. 79.

    Lu, J., Vecchi, G. A. & Reichler, T. Expansion of the Hadley cell under global warming. Geophys. Res. Lett. 34, L06805 (2007).

    Google Scholar 

  80. 80.

    Frierson, D. M. W., Lu, J. & Chen, G. Width of the Hadley cell in simple and comprehensive general circulation models. Geophys. Res. Lett. 34, L06804 (2007).

    Google Scholar 

  81. 81.

    Yin, J. H. A consistent poleward shift of the storm tracks in simulations of 21st century climate. Geophys. Res. Lett. 32, L18701 (2005).

    Google Scholar 

  82. 82.

    Chang, E. K. M., Guo, Y. & Xia, X. CMIP5 multimodel ensemble projection of storm track change under global warming. J. Geophys. Res. Atmos. 117, D23118 (2012).

    Google Scholar 

  83. 83.

    Willison, J., Robinson, W. A. & Lackmann, G. M. The importance of resolving mesoscale latent heating in the North Atlantic storm track. J. Atmos. Sci. 70, 2234–2250 (2013).

    Google Scholar 

  84. 84.

    Li, M., Woollings, T., Hodges, K. & Masato, G. Extratropical cyclones in a warmer, moister climate: A recent Atlantic analogue. Geophys. Res. Lett. 41, 8594–8601 (2014).

    Google Scholar 

  85. 85.

    Nusbaumer, J. & Noone, D. Numerical evaluation of the modern and future origins of atmospheric river moisture over the west coast of the United States. J. Geophys. Res. Atmos. 123, 6423–6442 (2018).

    Google Scholar 

  86. 86.

    Pendergrass, A. G. What precipitation is extreme? Science 360, 1072 (2018).

    Google Scholar 

  87. 87.

    O’Gorman, P. A. Precipitation extremes under climate change. Curr. Clim. Change Rep. 1, 49–59 (2015).

    Google Scholar 

  88. 88.

    Hagos, S. M., Leung, L. R., Yoon, J.-H., Lu, J. & Gao, Y. A projection of changes in landfalling atmospheric river frequency and extreme precipitation over western North America from the Large Ensemble CESM simulations. Geophys. Res. Lett. 43, 1357–1363 (2016).

    Google Scholar 

  89. 89.

    Benedict, I., Ødemark, K., Nipen, T. & Moore, R. Large-scale flow patterns associated with extreme precipitation and atmospheric rivers over Norway. Mon. Weather Rev. 147, 1415–1428 (2019).

    Google Scholar 

  90. 90.

    Guan, B., Molotch, N. P., Waliser, D. E., Fetzer, E. J. & Neiman, P. J. Extreme snowfall events linked to atmospheric rivers and surface air temperature via satellite measurements. Geophys. Res. Lett. 37, L20401 (2010).

    Google Scholar 

  91. 91.

    Smith, B. L., Yuter, S. E., Neiman, P. J. & Kingsmill, D. E. Water vapor fluxes and orographic precipitation over northern California associated with a landfalling atmospheric river. Mon. Weather. Rev. 138, 74–100 (2010).

    Google Scholar 

  92. 92.

    Hecht, C. W. & Cordeira, J. M. Characterizing the influence of atmospheric river orientation and intensity on precipitation distributions over North Coastal California. Geophys. Res. Lett. 44, 9048–9058 (2017).

    Google Scholar 

  93. 93.

    Valenzuela, R. A. & Garreaud, R. D. Extreme daily rainfall in central-southern Chile and its relationship with low-level horizontal water vapor fluxes. J. Hydrometeorol. 20, 1829–1850 (2019).

    Google Scholar 

  94. 94.

    Westra, S., Alexander, L. V. & Zwiers, F. W. Global increasing trends in annual maximum daily precipitation. J. Clim. 26, 3904–3918 (2013).

    Google Scholar 

  95. 95.

    Liu, C. et al. Continental-scale convection-permitting modeling of the current and future climate of North America. Clim. Dyn. 49, 71–95 (2017).

    Google Scholar 

  96. 96.

    Shi, X. & Durran, D. R. The response of orographic precipitation over idealized midlatitude mountains due to global increases in CO2. J. Clim. 27, 3938–3956 (2014).

    Google Scholar 

  97. 97.

    Pavelsky, T. M., Sobolowski, S., Kapnick, S. B. & Barnes, J. B. Changes in orographic precipitation patterns caused by a shift from snow to rain. Geophys. Res. Lett. 39, L18706 (2012).

    Google Scholar 

  98. 98.

    Sandvik, M. I., Sorteberg, A. & Rasmussen, R. Sensitivity of historical orographically enhanced extreme precipitation events to idealized temperature perturbations. Clim. Dyn. 50, 143–157 (2018).

    Google Scholar 

  99. 99.

    Haarsma, R. J. et al. High resolution model intercomparison project (HighResMIP v1.0) for CMIP6. Geosci. Model Dev. 9, 4185–4208 (2016).

    Google Scholar 

  100. 100.

    Mahoney, K. et al. An examination of an inland-penetrating atmospheric river flood event under potential future thermodynamic conditions. J. Clim. 31, 6281–6297 (2018).

    Google Scholar 

  101. 101.

    Shi, X. & Durran, D. Sensitivities of extreme precipitation to global warming are lower over mountains than over oceans and plains. J. Clim. 29, 4779–4791 (2016).

    Google Scholar 

  102. 102.

    Swain, D. L., Langenbrunner, B., Neelin, J. D. & Hall, A. Increasing precipitation volatility in twenty-first-century California. Nat. Clim. Change 8, 427–433 (2018).

    Google Scholar 

  103. 103.

    Gershunov, A., Shulgina, T., Ralph, F. M., Lavers, D. A. & Rutz, J. J. Assessing the climate-scale variability of atmospheric rivers affecting western North America. Geophys. Res. Lett. 44, 7900–7908 (2017).

    Google Scholar 

  104. 104.

    Sharma, A., Wasko, C. & Lettenmaier, D. P. If precipitation extremes are increasing, why aren’t floods? Water Resour. Res. 54, 8545–8551 (2018).

    Google Scholar 

  105. 105.

    Wang, G., Power, S. B. & McGree, S. Unambiguous warming in the western tropical Pacific primarily caused by anthropogenic forcing. Int. J. Climatol. 36, 933–944 (2016).

    Google Scholar 

  106. 106.

    Sharma, A. R. & Déry, S. J. Variability and trends of landfalling atmospheric rivers along the Pacific Coast of northwestern North America. Int. J. Climatol. 40, 544–558 (2020).

    Google Scholar 

  107. 107.

    Espinoza, V., Waliser, D. E., Guan, B., Lavers, D. A. & Ralph, F. M. Global analysis of climate change projection effects on atmospheric rivers. Geophys. Res. Lett. 45, 4299–4308 (2018).

    Google Scholar 

  108. 108.

    Payne, A. E. & Magnusdottir, G. An evaluation of atmospheric rivers over the North Pacific in CMIP5 and their response to warming under RCP 8.5. J. Geophys. Res. Atmos. 120, 11173–11190 (2015).

    Google Scholar 

  109. 109.

    Radiĉ, V., Cannon, A. J., Menounos, B. & Gi, N. Future changes in autumn atmospheric river events in British Columbia, Canada, as projected by CMIP5 global climate models. J. Geophys. Res. Atmos. 120, 9279–9302 (2015).

    Google Scholar 

  110. 110.

    Shields, C. A. & Kiehl, J. T. Atmospheric river landfall-latitude changes in future climate simulations. Geophys. Res. Lett. 43, 8775–8782 (2016).

    Google Scholar 

  111. 111.

    Shields, C. A. & Kiehl, J. T. Simulating the pineapple express in the half degree community climate system model, CCSM4. Geophys. Res. Lett. 43, 7767–7773 (2016).

    Google Scholar 

  112. 112.

    Sousa, P. M., Blamey, R. C., Reason, C. J. C., Ramos, A. M. & Trigo, R. M. The ‘Day Zero’ Cape Town drought and the poleward migration of moisture corridors. Environ. Res. Lett. 13, 124025 (2018).

    Google Scholar 

  113. 113.

    Warner, M. D., Mass, C. F. & Salathé, E. P. Jr. Changes in winter atmospheric rivers along the North American west coast in CMIP5 climate models. J. Hydrometeorol. 16, 118–128 (2015).

    Google Scholar 

  114. 114.

    Polade, S. D., Gershunov, A., Cayan, D. R., Dettinger, M. D. & Pierce, D. W. Precipitation in a warming world: Assessing projected hydro-climate changes in California and other Mediterranean climate regions. Sci. Rep. 7, 10783 (2017).

    Google Scholar 

  115. 115.

    Sousa, P. M. et al. North Atlantic integrated water vapor transport–from 850 to 2100 CE: impacts on western European rainfall. J. Clim. 33, 263–279 (2020).

    Google Scholar 

  116. 116.

    Dong, L., Leung, L. R. & Song, F. Future changes of subseasonal precipitation variability in North America during winter under global warming. Geophys. Res. Lett. 45, 12467–12476 (2018).

    Google Scholar 

  117. 117.

    Dong, L., Leung, L. R., Lu, J. & Gao, Y. Contributions of extreme and non-extreme precipitation to California precipitation seasonality changes under warming. Geophys. Res. Lett. 46, 13470–13478 (2019).

    Google Scholar 

  118. 118.

    Paltan, H. et al. Global floods and water availability driven by atmospheric rivers. Geophys. Res. Lett. 44, 10387–10395 (2017).

    Google Scholar 

  119. 119.

    Barth, N. A., Villarini, G. & White, K. Accounting for mixed populations in flood frequency analysis: a Bulletin 17C perspective. J. Hydrol. Eng. 24, 04019002 (2019).

    Google Scholar 

  120. 120.

    Barth, N. A., Villarini, G., Nayak, M. A. & White, K. Mixed populations and annual flood frequency estimates in the western United States: the role of atmospheric rivers. Water Resour. Res. 53, 257–269 (2017).

    Google Scholar 

  121. 121.

    Ralph, F. M. et al. Flooding on California’s Russian River: role of atmospheric rivers. Geophys. Res. Lett. 33, L13801 (2006).

    Google Scholar 

  122. 122.

    Neiman, P. J., Schick, L. J., Ralph, F. M., Hughes, M. & Wick, G. A. Flooding in western Washington: the connection to atmospheric rivers. J. Hydrometeorol. 12, 1337–1358 (2011).

    Google Scholar 

  123. 123.

    Khouakhi, A. & Villarini, G. On the relationship between atmospheric rivers and high sea water levels along the US West Coast. Geophys. Res. Lett. 43, 8815–8822 (2016).

    Google Scholar 

  124. 124.

    Demaria, E. M. C. et al. Observed hydrologic impacts of landfalling atmospheric rivers in the Salt and Verde river basins of Arizona, United States. Water Resour. Res. 53, 10025–10042 (2017).

    Google Scholar 

  125. 125.

    Nayak, M.A. & Villarini, G. A long-term perspective of the hydroclimatological impacts of atmospheric rivers over the central United States. Water Resour. Res. 53, 1144–1166. (2017).

    Google Scholar 

  126. 126.

    Dirmeyer, P. A. & Kinter, J. L. III The “maya express”: floods in the US Midwest. EOS Trans. 90, 101–102 (2009).

    Google Scholar 

  127. 127.

    Moore, B. J., Neiman, P. J., Ralph, F. M. & Barthold, F. E. Physical processes associated with heavy flooding rainfall in Nashville, Tennessee, and vicinity during 1–2 May 2010: the role of an atmospheric river and mesoscale convective systems. Mon. Weather. Rev. 140, 358–378 (2012).

    Google Scholar 

  128. 128.

    Azad, R. & Sorteberg, A. Extreme daily precipitation in coastal western Norway and the link to atmospheric rivers. J. Geophys. Res. Atmos. 122, 2080–2095 (2017).

    Google Scholar 

  129. 129.

    Ramos, A. M., Martins, M. J., Tomé, R. & Trigo, R. M. Extreme precipitation events in summer in the Iberian Peninsula and its relationship with atmospheric rivers. Front. Earth Sci. 6, 110 (2018).

    Google Scholar 

  130. 130.

    Zscheischler, J. et al. Future climate risk from compound events. Nat. Clim. Change 8, 469–477 (2018).

    Google Scholar 

  131. 131.

    Rössler, O. et al. Retrospective analysis of a nonforecasted rain-on-snow flood in the Alps – a matter of model limitations or unpredictable nature? Hydrol. Earth Syst. Sci. 18, 2265–2285 (2014).

    Google Scholar 

  132. 132.

    Oakley, N. S., Lancaster, J. T., Kaplan, M. L. & Ralph, F. M. Synoptic conditions associated with cool season post-fire debris flows in the Transverse Ranges of southern California. Nat. Hazards 88, 327–354 (2017).

    Google Scholar 

  133. 133.

    Oakley, N. S. et al. A 22-year climatology of cool season hourly precipitation thresholds conducive to shallow landslides in California. Earth Interact. 22, 1–35 (2018).

    Google Scholar 

  134. 134.

    Dettinger, M. D. Atmospheric rivers as drought busters on the US West Coast. J. Hydrometeorol. 14, 1721–1732 (2013).

    Google Scholar 

  135. 135.

    Wang, S. Y. S., Yoon, J.-H., Becker, E. & Gillies, R. California from drought to deluge. Nat. Clim. Change 7, 465–468 (2017).

    Google Scholar 

  136. 136.

    Hu, H., Dominguez, F., Kumar, P., McDonnell, J. & Gochis, D. A numerical water tracer model for understanding event-scale hydrometeorological phenomena. J. Hydrometeorol. 19, 947–967 (2018).

    Google Scholar 

  137. 137.

    Leung, L. R. & Qian, Y. Atmospheric rivers induced heavy precipitation and flooding in the western US simulated by the WRF regional climate model. Geophys. Res. Lett. 36, L03820 (2009).

    Google Scholar 

  138. 138.

    Guan, B., Waliser, D. E., Ralph, F. M., Fetzer, E. J. & Neiman, P. J. Hydrometeorological characteristics of rain-on-snow events associated with atmospheric rivers. Geophys. Res. Lett. 43, 2964–2973 (2016).

    Google Scholar 

  139. 139.

    Chen, X., Leung, L. R., Wigmosta, M. & Richmond, M. Impact of atmospheric rivers on surface hydrological processes in western US watersheds. J. Geophys. Res. Atmos. 124, 8896–8916 (2019).

    Google Scholar 

  140. 140.

    Leung, L. R. et al. Mid-century ensemble regional climate change scenarios for the western United States. Clim. Change 62, 75–113 (2004).

    Google Scholar 

  141. 141.

    Barnett, T. P., Adam, J. C. & Lettenmaier, D. P. Potential impacts of a warming climate on water availability in snow-dominated regions. Nature 438, 303–309 (2005).

    Google Scholar 

  142. 142.

    Rauscher, S. A., Pal, J. S., Diffenbaugh, N. S. & Benedetti, M. M. Future changes in snowmelt-driven runoff timing over the western US. Geophys. Res. Lett. 35, L16703 (2008).

    Google Scholar 

  143. 143.

    Gobiet, A. et al. 21st century climate change in the European Alps - a review. Sci. Total. Environ. 493, 1138–1151 (2014).

    Google Scholar 

  144. 144.

    Musselman, K. N., Clark, M. P., Liu, C., Ikeda, K. & Rasmussen, R. Slower snowmelt in a warmer world. Nat. Clim. Change 7, 214–219 (2017).

    Google Scholar 

  145. 145.

    Cohen, J., Ye, H. & Jones, J. Trends and variability in rain-on-snow events. Geophys. Res. Lett. 42, 7115–7122 (2015).

    Google Scholar 

  146. 146.

    Musselman, K. N. et al. Projected increases and shifts in rain-on-snow flood risk over western North America. Nat. Clim. Change 8, 808–812 (2018).

    Google Scholar 

  147. 147.

    Huang, X., Hall, A. D. & Berg, N. Anthropogenic warming impacts on today’s Sierra Nevada snowpack and flood risk. Geophys. Res. Lett. 45, 6215–6222 (2018).

    Google Scholar 

  148. 148.

    Islam, S. U., Curry, C. L., Déry, S. J. & Zwiers, F. W. Quantifying projected changes in runoff variability and flow regimes of the Fraser River Basin, British Columbia. Hydrol. Earth Syst. Sci. 23, 811–828 (2019).

    Google Scholar 

  149. 149.

    Curry, C. L., Islam, S. U., Zwiers, F. W. & Déry, S. J. Atmospheric rivers increase future flood risk in Western Canada’s largest pacific river. Geophys. Res. Lett. 46, 1651–1661 (2019).

    Google Scholar 

  150. 150.

    Singh, I., Dominguez, F., Demaria, E. & Walter, J. Extreme landfalling atmospheric river events in Arizona: Possible future changes. J. Geophys. Res. Atmos. 123, 7076–7097 (2018).

    Google Scholar 

  151. 151.

    Hu, H. et al. Linking atmospheric river hydrological impacts on the US West Coast to Rossby wave breaking. J. Clim. 30, 3381–3399 (2017).

    Google Scholar 

  152. 152.

    Corringham, T. W., Ralph, F. M., Gershunov, A., Cayan, D. R. & Talbot, C. A. Atmospheric rivers drive flood damages in the western United States. Sci. Adv. 5, eaax4631 (2019).

    Google Scholar 

  153. 153.

    Hatchett, B. J. et al. Avalanche fatalities during atmospheric river events in the western United States. J. Hydrometeorol. 18, 1359–1374 (2017).

    Google Scholar 

  154. 154.

    Dominguez, F. et al. Tracking an atmospheric river in a warmer climate: from water vapor to economic impacts. Earth Syst. Dyn. 9, 249–266 (2018).

    Google Scholar 

  155. 155.

    Shields, C. A. et al. Atmospheric river tracking method intercomparison project (ARTMIP): project goals and experimental design. Geosci. Model Dev. 11, 2455–2474 (2018).

    Google Scholar 

  156. 156.

    Rutz, J. J. et al. The atmospheric river tracking method intercomparison project (ARTMIP): quantifying uncertainties in atmospheric river climatology. J. Geophys. Res. Atmos. 124, 13777–13802 (2019).

    Google Scholar 

  157. 157.

    Delworth, T. L. et al. Simulated climate and climate change in the GFDL CM2.5 high-resolution coupled climate model. J. Clim. 25, 2755–2781 (2012).

    Google Scholar 

  158. 158.

    Kinter, J. L. et al. Revolutionizing climate modeling with Project Athena: a multi-institutional, international collaboration. Bull. Am. Meteorol. Soc. 94, 231–245 (2013).

    Google Scholar 

  159. 159.

    Mizielinski, M. S. et al. High resolution global climate modelling; the UPSCALE project, a large simulation campaign. Geosci. Model Dev. 7, 1629–1640 (2014).

    Google Scholar 

  160. 160.

    Small, R. J. et al. A new synoptic scale resolving global climate simulation using the Community Earth System Model. J. Adv. Modeling Earth Syst. 6, 1065–1094 (2014).

    Google Scholar 

  161. 161.

    Wehner, M. F. et al. The effect of horizontal resolution on simulation quality in the community atmospheric model, CAM5.1. J. Adv. Model. Earth Syst. 6, 980–997 (2014).

    Google Scholar 

  162. 162.

    Kamae, Y., Mei, W. & Xie, S.-P. Ocean warming pattern effects on future changes in East Asian atmospheric rivers. Environ. Res. Lett. 14, 054019 (2019).

    Google Scholar 

  163. 163.

    Hagos, S., Leung, L. R., Yang, Q., Zhao, C. & Lu, J. Resolution and dynamical core dependence of atmospheric river frequency in global model simulations. J. Clim. 28, 2764–2776 (2015).

    Google Scholar 

  164. 164.

    Guan, B. & Waliser, D. E. Atmospheric rivers in 20 year weather and climate simulations: A multimodel, global evaluation. J. Geophys. Res. Atmos. 122, 5556–5581 (2017).

    Google Scholar 

  165. 165.

    Roberts, M. J. et al. The benefits of global high resolution for climate simulation: process understanding and the enabling of stakeholder decisions at the regional scale. Bull. Am. Meteorol. Soc. 99, 2341–2359 (2018).

    Google Scholar 

  166. 166.

    Roberts, M. J. et al. Description of the resolution hierarchy of the global coupled HadGEM3-GC3.1 model as used in CMIP6 HighResMIP experiments. Geosci. Model Dev. 12 4999–5028 (2019).

    Google Scholar 

  167. 167.

    Roberts, M. MOHC HadGEM3-GC31-HM model output prepared for CMIP6 HighResMIP hist-1950. Version YYYYMMDD. Earth Syst. Grid Federation, https://doi.org/10.22033/ESGF/CMIP6.6040 (2018).

    Article  Google Scholar 

  168. 168.

    Demory, M.-E. et al. The role of horizontal resolution in simulating drivers of the global hydrological cycle. Clim. Dyn. 42, 2201–2225 (2014).

    Google Scholar 

  169. 169.

    Lu, J. et al. Toward the dynamical convergence on the jet stream in aquaplanet AGCMs. J. Clim. 28, 6763–6782 (2015).

    Google Scholar 

  170. 170.

    Vannière, B. et al. Multi-model evaluation of the sensitivity of the global energy budget and hydrological cycle to resolution. Clim. Dyn. 52, 6817–6846 (2019).

    Google Scholar 

  171. 171.

    van Haren, R., Haarsma, R. J., van Oldenborgh, G. J. & Hazeleger, W. Resolution dependence of European precipitation in a state-of-the-art atmospheric general circulation model. J. Clim. 28, 5134–5149 (2015).

    Google Scholar 

  172. 172.

    Schiemann, R. et al. Mean and extreme precipitation over European river basins better simulated in a 25 km AGCM. Hydrol. Earth Syst. Sci. 22, 3933–3950 (2018).

    Google Scholar 

  173. 173.

    Goldenson, N., Leung, L. R., Bitz, C. M. & Blanchard-Wrigglesworth, E. Influence of atmospheric rivers on mountain snowpack in the western United States. J. Clim. 31, 9921–9940 (2018).

    Google Scholar 

  174. 174.

    Mundhenk, B. D., Barnes, E. A., Maloney, E. D. & Baggett, C. F. Skillful empirical subseasonal prediction of landfalling atmospheric river activity using the Madden–Julian oscillation and quasi-biennial oscillation. npj Clim. Atmos. Sci. 1, 20177 (2018).

    Google Scholar 

  175. 175.

    Richter, J. H., Solomon, A. & Bacmeister, J. T. On the simulation of the quasi-biennial oscillation in the Community Atmosphere Model, version 5. J. Geophys. Res. Atmos. 119, 3045–3062 (2014).

    Google Scholar 

  176. 176.

    Stone, D. A. et al. Experiment design of the International CLIVAR C20C+ Detection and Attribution project. Weather Clim. Extremes 24, 100206 (2019).

    Google Scholar 

  177. 177.

    Gershunov, A. et al. Precipitation regime change in Western North America: the role of atmospheric rivers. Sci. Rep. 9, 9944 (2019).

    Google Scholar 

  178. 178.

    Mallakpour, I., Sadegh, M. & AghaKouchak, A. A new normal for streamflow in California in a warming climate: wetter wet seasons and drier dry seasons. J. Hydrol. 567, 203–211 (2018).

    Google Scholar 

  179. 179.

    Pierce, D. W. et al. The key role of heavy precipitation events in climate model disagreements of future annual precipitation changes in California. J. Clim. 26, 5879–5896 (2013).

    Google Scholar 

  180. 180.

    Loikith, P. C. et al. A climatology of daily synoptic circulation patterns and associated surface meteorology over southern South America. Clim. Dyn. 53, 4019–4035 (2019).

    Google Scholar 

  181. 181.

    Pasquier, J. T., Pfahl, S. & Grams, C. M. Modulation of atmospheric river occurrence and associated precipitation extremes in the North Atlantic Region by European weather regimes. Geophys. Res. Lett. 46, 1014–1023 (2019).

    Google Scholar 

  182. 182.

    Lavers, D. A., Ralph, F. M., Waliser, D. E., Gershunov, A. & Dettinger, M. D. Climate change intensification of horizontal water vapor transport in CMIP5. Geophys. Res. Lett. 42, 5617–5625 (2015).

    Google Scholar 

  183. 183.

    Mattingly, K. S., Ramseyer, C. A., Rosen, J. J., Mote, T. L. & Muthyala, R. Increasing water vapor transport to the Greenland Ice Sheet revealed using self-organizing maps. Geophys. Res. Lett. 43, 9250–9258 (2016).

    Google Scholar 

Download references

Acknowledgements

L.R.L. and C.A.S. (NCAR via NSF IA 1947282) are supported by the U.S. Department of Energy Office of Science Biological and Environmental Research as part of the Earth and Environmental System Modeling Regional and Global Model Analysis program area. Pacific Northwest National Laboratory is operated for the Department of Energy by Battelle Memorial Institute under contract DE-AC05-75RL01830. The National Center for Atmospheric Research (NCAR) is sponsored by the National Science Foundation (NSF) under Cooperative Agreement 1852977. G.V. is supported by the U.S. Army Corps of Engineers’ Institute for Water Resources. A.M.R. is supported by the Scientific Employment Stimulus 2017 from FCT (CEECIND/00027/2017). Atmospheric River Tracking Method Intercomparison Project (ARTMIP) is a grass-roots community effort and has received support from the U.S. Department of Energy Office of Science Biological and Environmental Research as part of the Regional and Global Climate Modeling Program, and the Center for Western Weather and Water Extremes at Scripps Institute for Oceanography at the University of California, San Diego.

Author information

Affiliations

Authors

Contributions

The authors all contributed equally to the identification of main topics and their organization in the article. A. E. Payne led the writing and revision of the manuscript, with input and contributions from N. Siler (theory), L. R. Leung (theory, impacts), A. M. Ramos (projections), G. Villarini (impacts), C. A. Shields (Box 1) and M.-E. Demory (Box 2). A. E. Payne directed the modification of Fig. 1 and designed Figs. 2 and 3. C. A. Shields contributed the figure in Box 1 and M.-E. Demory contributed the figure in Box 2.

Corresponding author

Correspondence to Ashley E. Payne.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Earth & Environment thanks Y. Kamae, F. Dominguez, V. Espinoza and M. Nayak for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Payne, A.E., Demory, ME., Leung, L.R. et al. Responses and impacts of atmospheric rivers to climate change. Nat Rev Earth Environ 1, 143–157 (2020). https://doi.org/10.1038/s43017-020-0030-5

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing