Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

River water quality shaped by land–river connectivity in a changing climate

Abstract

River water quality is crucial to ecosystem health and water security, yet its deterioration under climate change is often overlooked in climate risk assessments. Here we review how climate change influences river water quality via persistent, gradual shifts and episodic, intense extreme events. Although distinct in magnitude, intensity and duration, these changes modulate the structure and hydro-biogeochemical processes on land and in rivers, hence reshaping land–river connectivity and the quality of river waters. To advance understanding of and forecasting capabilities for water quality in future climates, it is essential to perceive land and rivers as interconnected systems. It is also vital to prioritize research under climate extremes, where the dynamics of water quality often challenge existing theories and models and call for shifts in conceptual paradigms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A conceptual diagram illustrating the propagating influence of climate change on water quality via land–river connectivity.
Fig. 2: Dissolved oxygen and water temperature across the globe.
Fig. 3: A conceptual diagram illustrating the impacts of climate extremes on land and river structure, processes and, ultimately, water quality.
Fig. 4: The distinct impacts of gradual change and climate extremes on river water quality.

Similar content being viewed by others

References

  1. Dong, G. et al. Spatial and temporal variety of prehistoric human settlement and its influencing factors in the upper Yellow River Valley, Qinghai Province, China. J. Archaeol. Sci. 40, 2538–2546 (2013).

    Article  Google Scholar 

  2. Kummu, M., de Moel, H., Ward, P. J. & Varis, O. How close do we live to water? A global analysis of population distance to freshwater bodies. PLoS ONE 6, e20578 (2011).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  3. Fang, Y. et al. Globally universal fractal pattern of human settlements in river networks. Earths Future 6, 1134–1145 (2018).

    Article  ADS  Google Scholar 

  4. IPCC Climate Change: The Physical Science Basis (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2021).

  5. Foley, J. A. et al. Global consequences of land use. Science 309, 570–574 (2005).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Allan, J. D. Landscapes and riverscapes: the influence of land use on stream ecosystems. Annu. Rev. Ecol. Evol. Syst. 35, 257–284 (2004).

    Article  Google Scholar 

  7. Hannah, D. M. et al. Illuminating the ‘invisible water crisis’ to address global water pollution challenges. Hydrol. Process 36, e14525 (2022).

    Article  Google Scholar 

  8. Liu, J. et al. Water scarcity assessments in the past, present, and future. Earths Future 5, 545–559 (2017).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  9. Bakker, K. Water security: research challenges and opportunities. Science 337, 914–915 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. van Vliet, M. T. H., Flörke, M. & Wada, Y. Quality matters for water scarcity. Nat. Geosci. 10, 800–802 (2017).

    Article  ADS  Google Scholar 

  11. McDonald, R. I., Weber, K. F., Padowski, J., Boucher, T. & Shemie, D. Estimating watershed degradation over the last century and its impact on water-treatment costs for the world’s large cities. Proc. Natl Acad. Sci. USA 113, 9117–9122 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  12. Keiser, D. A. & Shapiro, J. S. US water pollution regulation over the past half century: burning waters to crystal springs? J. Econ. Perspect. 33, 51–75 (2019).

    Article  Google Scholar 

  13. Strong Systems and Sound Investments: Evidence on and Key Insights Into Accelerating Progress on Sanitation, Drinking-water and Hygiene: UN-water Global Analysis and Assessment of Sanitation and Drinking-water (GLAAS) 2022 Report (World Health Organization, 2023).

  14. Woodward, G. et al. The effects of climatic fluctuations and extreme events on running water ecosystems. Phil. Trans. R. Soc. Lond. B 371, 20150274 (2016).

    Article  Google Scholar 

  15. Lake, P. S. Ecological effects of perturbation by drought in flowing waters. Freshw. Biol. 48, 1161–1172 (2003).

    Article  Google Scholar 

  16. van Vliet, M. T. H. et al. Vulnerability of US and European electricity supply to climate change. Nat. Clim. Change 2, 676–681 (2012).

  17. Ortiz, A. C. et al. Dryland irrigation increases accumulation rates of pedogenic carbonate and releases soil abiotic CO2. Sci. Rep. 12, 464 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. Rocher-Ros, G. et al. Global methane emissions from rivers and streams. Nature 621, 530–535 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  19. Raymond, P. A. et al. Global carbon dioxide emissions from inland waters. Nature 503, 355–359 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Yao, Y. et al. Increased global nitrous oxide emissions from streams and rivers in the Anthropocene. Nat. Clim. Change 10, 138–142 (2020).

    Article  ADS  CAS  Google Scholar 

  21. Zipper, S. C. et al. Pervasive changes in stream intermittency across the United States. Environ. Res. Lett. 16, 084033 (2021).

    Article  ADS  Google Scholar 

  22. Arnell, N. W. & Gosling, S. N. The impacts of climate change on river flood risk at the global scale. Climatic Change 134, 387–401 (2016).

    Article  ADS  Google Scholar 

  23. McCabe, G. J. et al. A hydrologic perspective of major U.S. droughts. Int. J. Climatol. 43, 1234–1250 (2023).

    Article  Google Scholar 

  24. Trenberth, K. E. Changes in precipitation with climate change. Clim. Res. 47, 123–138 (2011).

    Article  Google Scholar 

  25. Bowman, D. M. J. S. et al. Human exposure and sensitivity to globally extreme wildfire events. Nat. Ecol. Evol. 1, 0058 (2017).

    Article  Google Scholar 

  26. Williams, A. P. et al. Observed impacts of anthropogenic climate change on wildfire in California. Earths Future 7, 892–910 (2019).

    Article  ADS  Google Scholar 

  27. Smith, M. D. An ecological perspective on extreme climatic events: a synthetic definition and framework to guide future research. J. Ecol. 99, 656–663 (2011).

    Article  Google Scholar 

  28. Robinne, F.-N. et al. Scientists’ warning on extreme wildfire risks to water supply. Hydrol. Process 35, e14086 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Williams, A. P. et al. Growing impact of wildfire on western US water supply. Proc. Natl Acad. Sci. USA 119, e2114069119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Whitehead, P. G., Wilby, R. L., Battarbee, R. W., Kernan, M. & Wade, A. J. A review of the potential impacts of climate change on surface water quality. Hydrol. Sci. J. 54, 101–123 (2009).

    Article  Google Scholar 

  31. Giri, S. Water quality prospective in twenty first century: status of water quality in major river basins, contemporary strategies and impediments: a review. Environ. Pollut. 271, 116332 (2021).

    Article  CAS  PubMed  Google Scholar 

  32. van Vliet, M. T. H. et al. Global river water quality under climate change and hydroclimatic extremes. Nat. Rev. Earth Environ. 4, 687–702 (2023).

  33. Delpla, I., Jung, A. V., Baures, E., Clement, M. & Thomas, O. Impacts of climate change on surface water quality in relation to drinking water production. Environ. Int. 35, 1225–1233 (2009).

    Article  CAS  PubMed  Google Scholar 

  34. Mishra, A., Alnahit, A. & Campbell, B. Impact of land uses, drought, flood, wildfire, and cascading events on water quality and microbial communities: A review and analysis. J. Hydrol. 596, 125707 (2021).

    Article  CAS  Google Scholar 

  35. Fabian, P. S., Kwon, H.-H., Vithanage, M. & Lee, J.-H. Modeling, challenges, and strategies for understanding impacts of climate extremes (droughts and floods) on water quality in Asia: a review. Environ. Res. 225, 115617 (2023).

    Article  CAS  PubMed  Google Scholar 

  36. Wohl, E. et al. Connectivity as an emergent property of geomorphic systems. Earth Surf. Process. Landf. 44, 4–26 (2019).

    Google Scholar 

  37. Wen, H. et al. Temperature controls production but hydrology regulates export of dissolved organic carbon at the catchment scale. Hydrol. Earth Syst. Sci. 24, 945–966 (2020).

    CAS  Google Scholar 

  38. Lane, C. R. et al. Vulnerable waters are essential to watershed resilience. Ecosystems 26, 1–28 (2023).

    Article  CAS  Google Scholar 

  39. Li, L. et al. Toward catchment hydro-biogeochemical theories. WIREs Water 8, e1495 (2021).

    Article  Google Scholar 

  40. Knapp, J. L. A., Li, L. & Musolff, A. Hydrologic connectivity and source heterogeneity control concentration–discharge relationships. Hydrol. Process. 36, e14683 (2022).

    Article  ADS  Google Scholar 

  41. Jasechko, S., Kirchner, J. W., Welker, J. M. & McDonnell, J. J. Substantial proportion of global streamflow less than three months old. Nat. Geosci. 9, 126–129 (2016).

    Article  ADS  CAS  Google Scholar 

  42. McGuire, K. J. & McDonnell, J. J. Hydrological connectivity of hillslopes and streams: characteristic time scales and nonlinearities. Water Resour. Res. 46, W10543 (2010).

    Article  ADS  Google Scholar 

  43. McDonnell, J. J. et al. How old is streamwater? Open questions in catchment transit time conceptualization, modelling and analysis. Hydrol. Process. 24, 1745–1754 (2010).

    Article  ADS  Google Scholar 

  44. Allen, G. H. & Pavelsky, T. M. Global extent of rivers and streams. Science 361, 585–588 (2018).

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  45. Tromp-van Meerveld, H. J. & McDonnell, J. J. Threshold relations in subsurface stormflow: 2. The fill and spill hypothesis. Water Resour. Res. 42, W02411 (2006).

    ADS  Google Scholar 

  46. Hare, D. K., Helton, A. M., Johnson, Z. C., Lane, J. W. & Briggs, M. A. Continental-scale analysis of shallow and deep groundwater contributions to streams. Nat. Commun. 12, 1450 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kirchner, J. W., Benettin, P. & van Meerveld, I. Instructive surprises in the hydrological functioning of landscapes. Annu Rev. Earth Planet Sci. 51, 277–299 (2023).

    CAS  Google Scholar 

  48. Sprenger, M. et al. The demographics of water: a review of water ages in the critical zone. Rev. Geophys. 57, 800–834 (2019).

    Article  ADS  Google Scholar 

  49. Brantley, S. L. et al. Crossing disciplines and scales to understand the critical zone. Elements 3, 307–314 (2007).

    Article  ADS  CAS  Google Scholar 

  50. Herndon, E. M. et al. Landscape heterogeneity drives contrasting concentration-discharge relationships in shale headwater catchments. Hydrol. Earth Syst. Sci. 19, 3333–3347 (2015).

    CAS  Google Scholar 

  51. Stewart, B. et al. Streams as mirrors: reading subsurface water chemistry from stream chemistry. Water Resour. Res. 58, e2021WR029931 (2022).

    Article  ADS  CAS  Google Scholar 

  52. Musolff, A., Fleckenstein, J. H., Rao, P. S. C. & Jawitz, J. W. Emergent archetype patterns of coupled hydrologic and biogeochemical responses in catchments. Geophys. Res. Lett. 44, 4143–4151 (2017).

    Article  ADS  Google Scholar 

  53. Brantley, S. L. et al. Toward a conceptual model relating chemical reaction fronts to water flow paths in hills. Geomorphology 277, 100–117 (2017).

    Article  ADS  Google Scholar 

  54. Rose, L. A., Karwan, D. L. & Godsey, S. E. Concentration–discharge relationships describe solute and sediment mobilization, reaction, and transport at event and longer timescales. Hydrol. Process. 32, 2829–2844 (2018).

    Article  ADS  Google Scholar 

  55. Moatar, F., Abbott, B. W., Minaudo, C., Curie, F. & Pinay, G. Elemental properties, hydrology, and biology interact to shape concentration-discharge curves for carbon, nutrients, sediment, and major ions. Water Resour. Res. 53, 1270–1287 (2017).

    Article  ADS  CAS  Google Scholar 

  56. Zarnetske, J. P., Bouda, M., Abbott, B. W., Saiers, J. & Raymond, P. A. Generality of hydrologic transport limitation of watershed organic carbon flux across ecoregions of the United States. Geophys. Res. Lett. 45, 11702–11711 (2018).

    Article  ADS  CAS  Google Scholar 

  57. Zhi, W. & Li, L. The shallow and deep hypothesis: subsurface vertical chemical contrasts shape nitrate export patterns from different land uses. Environ. Sci. Technol. 54, 11915–11928 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  58. Li, L. et al. Climate controls on river chemistry. Earths Future 10, e2021EF002603 (2022).

    Article  ADS  CAS  Google Scholar 

  59. Basu, N. B. et al. Parsimonious modeling of hydrologic responses in engineered watersheds: structural heterogeneity versus functional homogeneity. Water Resour. Res. 46, W04501 (2010).

    Article  ADS  Google Scholar 

  60. Van Meter, K. J., Van Cappellen, P. & Basu, N. B. Legacy nitrogen may prevent achievement of water quality goals in the Gulf of Mexico. Science 360, 427–430 (2018).

    Article  ADS  PubMed  Google Scholar 

  61. Oswald, C. J. et al. Integrating urban water fluxes and moving beyond impervious surface cover: a review. J. Hydrol. 618, 129188 (2023).

    Article  Google Scholar 

  62. Blaszczak, J. R., Delesantro, J. M., Urban, D. L., Doyle, M. W. & Bernhardt, E. S. Scoured or suffocated: urban stream ecosystems oscillate between hydrologic and dissolved oxygen extremes. Limnol. Oceanogr. 64, 877–894 (2019).

    Article  ADS  CAS  Google Scholar 

  63. Duncan, J. M., Welty, C., Kemper, J. T., Groffman, P. M. & Band, L. E. Dynamics of nitrate concentration–discharge patterns in an urban watershed. Water Resour. Res. 53, 7349–7365 (2017).

    Article  ADS  Google Scholar 

  64. Schlesinger, W. H. & Bernhardt, E. S. Biogeochemistry: An Analysis of Global Change 3rd edn (Academic Press, 2013).

  65. Yan, Z. et al. A moisture function of soil heterotrophic respiration that incorporates microscale processes. Nat. Commun. 9, 2562 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  66. Jansson, J. K. & Hofmockel, K. S. Soil microbiomes and climate change. Nat. Rev. Microbiol. 18, 35–46 (2020).

    Article  CAS  PubMed  Google Scholar 

  67. Stielstra, C. M. et al. Climatic and landscape influences on soil moisture are primary determinants of soil carbon fluxes in seasonally snow-covered forest ecosystems. Biogeochemistry 123, 447–465 (2015).

    Article  Google Scholar 

  68. Fendorf, S., Michael, H. A. & van Geen, A. Spatial and temporal variations of groundwater arsenic in South and Southeast Asia. Science 328, 1123–1127 (2010).

    Article  ADS  CAS  PubMed  Google Scholar 

  69. Greaver, T. L. et al. Key ecological responses to nitrogen are altered by climate change. Nat. Clim. Change 6, 836–843 (2016).

    Article  ADS  CAS  Google Scholar 

  70. Stegen, J. C. et al. Variation in above-ground forest biomass across broad climatic gradients. Glob. Ecol. Biogeogr. 20, 744–754 (2011).

    Article  Google Scholar 

  71. Song, J. et al. A meta-analysis of 1,119 manipulative experiments on terrestrial carbon-cycling responses to global change. Nat. Ecol. Evol. 3, 1309–1320 (2019).

    Google Scholar 

  72. Gupta, A., Rico-Medina, A. & Caño-Delgado, A. I. The physiology of plant responses to drought. Science 368, 266–269 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  73. McCormick, E. L. et al. Widespread woody plant use of water stored in bedrock. Nature 597, 225–229 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  74. Schimel, J. P. Life in dry soils: effects of drought on soil microbial communities and processes. Annu Rev. Ecol. Evol. Syst. 49, 409–432 (2018).

    Article  Google Scholar 

  75. Hirmas, D. R. et al. Climate-induced changes in continental-scale soil macroporosity may intensify water cycle. Nature 561, 100–103 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  76. Sullivan, P. L. et al. Embracing the dynamic nature of soil structure: a paradigm illuminating the role of life in critical zones of the Anthropocene. Earth Sci. Rev. 225, 103873 (2022).

    Article  CAS  Google Scholar 

  77. Ratajczak, Z., Nippert, J. B. & Collins, S. L. Woody encroachment decreases diversity across North American grasslands and savannas. Ecology 93, 697–703 (2012).

    Article  PubMed  Google Scholar 

  78. Arce, M. I. et al. A conceptual framework for understanding the biogeochemistry of dry riverbeds through the lens of soil science. Earth Sci. Rev. 188, 441–453 (2019).

    Article  ADS  CAS  Google Scholar 

  79. Schreiner-McGraw, A. P. et al. Woody plant encroachment has a larger impact than climate change on dryland water budgets. Sci. Rep. 10, 8112 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  80. Stevens, N., Lehmann, C. E. R., Murphy, B. P. & Durigan, G. Savanna woody encroachment is widespread across three continents. Glob. Change Biol. 23, 235–244 (2017).

    Article  ADS  Google Scholar 

  81. Tune, A. K., Druhan, J. L., Lawrence, C. R. & Rempe, D. M. Deep root activity overprints weathering of petrogenic organic carbon in shale. Earth Planet. Sci. Lett. 607, 118048 (2023).

    Article  CAS  Google Scholar 

  82. Wen, H., Sullivan, P. L., Macpherson, G. L., Billings, S. A. & Li, L. Deepening roots can enhance carbonate weathering by amplifying CO2-rich recharge. Biogeosciences 18, 55–75 (2021).

    Article  ADS  CAS  Google Scholar 

  83. Rogora, M. et al. Decadal trends in water chemistry of Alpine lakes in calcareous catchments driven by climate change. Sci. Total Environ. 708, 135180 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  84. Kerins, D. & Li, L. High dissolved carbon concentration in arid rocky mountain streams. Environ. Sci. Technol. 57, 4656–4667 (2023).

    Article  CAS  PubMed  Google Scholar 

  85. Stewart, B. et al. Soil CO2 controls short‐term variation but climate regulates long‐term mean of riverine inorganic carbon. Glob. Biogeochem. Cycles 36, e2022GB007351 (2022).

    Article  CAS  Google Scholar 

  86. Godsey, S. E., Hartmann, J. & Kirchner, J. W. Catchment chemostasis revisited: water quality responds differently to variations in weather and climate. Hydrol. Process. 33, 3056–3069 (2019).

    Article  ADS  CAS  Google Scholar 

  87. Monteith, D. T. et al. Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry. Nature 450, 537–540 (2007).

    Article  ADS  CAS  PubMed  Google Scholar 

  88. de Wit, H. A., Ledesma, J. L. J. & Futter, M. N. Aquatic DOC export from subarctic Atlantic blanket bog in Norway is controlled by seasalt deposition, temperature and precipitation. Biogeochemistry 127, 305–321 (2016).

    Article  Google Scholar 

  89. Kaushal, S. S. et al. Freshwater salinization syndrome on a continental scale. Proc. Natl Acad. Sci. USA 115, E574–E583 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Kaushal, S. S. et al. Increased river alkalinization in the eastern U.S. Environ. Sci. Technol. 47, 10302–10311 (2013).

    CAS  PubMed  Google Scholar 

  91. Goldrich-Middaugh, G. M. et al. Regional drivers of stream chemical behavior: leveraging lithology, land use, and climate gradients across the Colorado River, Texas USA. Water Resour. Res. 58, e2022WR032155 (2022).

    Article  ADS  CAS  Google Scholar 

  92. Hawkings, J. et al. The Greenland Ice Sheet as a hot spot of phosphorus weathering and export in the Arctic. Glob. Biogeochem. Cycles 30, 191–210 (2016).

    Article  ADS  CAS  Google Scholar 

  93. Li, X. et al. Globally elevated chemical weathering rates beneath glaciers. Nat. Commun. 13, 407 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  94. Abbott, B. W. & Jones, J. B. Permafrost collapse alters soil carbon stocks, respiration, CH4, and N2O in upland tundra. Glob. Change Biol. 21, 4570–4587 (2015).

    Article  ADS  Google Scholar 

  95. Turetsky, M. R. et al. Carbon release through abrupt permafrost thaw. Nat. Geosci. 13, 138–143 (2020).

    Article  ADS  CAS  Google Scholar 

  96. Zhi, W., Ouyang, W., Shen, C. & Li, L. Temperature outweighs light and flow as the predominant driver of dissolved oxygen in US rivers. Nat. Water 1, 249–260 (2023).

  97. Zhi, W., Klinger, C., Liu, J. & Li, L. Widespread deoxygenation in warming rivers. Nat. Clim. Change 13, 1105–1113 (2023).

  98. Virro, H., Amatulli, G., Kmoch, A., Shen, L. & Uuemaa, E. GRQA: Global River Water Quality Archive. Earth Syst. Sci. Data 13, 5483–5507 (2021).

    Article  ADS  Google Scholar 

  99. Bernhardt, E. S. et al. The metabolic regimes of flowing waters. Limnol. Oceanogr. 63, S99–S118 (2018).

    Article  Google Scholar 

  100. Blaszczak, J. R. et al. Extent, patterns, and drivers of hypoxia in the world’s streams and rivers. Limnol. Oceanogr. Lett. 8, 453–463 (2023).

    Article  Google Scholar 

  101. Tassone, S. J. et al. Increasing heatwave frequency in streams and rivers of the United States. Limnol. Oceanogr. Lett. 8, 295–304 (2023).

    Article  Google Scholar 

  102. Khan, S. J. et al. Extreme weather events: should drinking water quality management systems adapt to changing risk profiles? Water Res. 85, 124–136 (2015).

    Article  CAS  PubMed  Google Scholar 

  103. Woolway, R. I. et al. Lake heatwaves under climate change. Nature 589, 402–407 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  104. Smith, H. G., Sheridan, G. J., Lane, P. N. J., Nyman, P. & Haydon, S. Wildfire effects on water quality in forest catchments: a review with implications for water supply. J. Hydrol. 396, 170–192 (2011).

    Article  ADS  CAS  Google Scholar 

  105. Ice, G. G., Neary, D. G. & Adams, P. W. Effects of wildfire on soils and watershed processes. J. For. 102, 16–20 (2004).

    Google Scholar 

  106. Ebel, B. A., Moody, J. A. & Martin, D. A. Post-fire temporal trends in soil-physical and -hydraulic properties and simulated runoff generation: insights from different burn severities in the 2013 Black Forest Fire, CO, USA. Sci. Total Environ. 802, 149847 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  107. Rhea, A. E., Covino, T. P. & Rhoades, C. C. Reduced N‐limitation and increased in‐stream productivity of autotrophic biofilms 5 and 15 years after severe wildfire. J. Geophys. Res. Biogeosci. https://doi.org/10.1029/2020jg006095 (2021).

  108. Murphy, S. F., McCleskey, R. B., Martin, D. A., Holloway, J. M. & Writer, J. H. Wildfire-driven changes in hydrology mobilize arsenic and metals from legacy mine waste. Sci. Total Environ. 743, 140635 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  109. Murphy, S. F., McCleskey, R. B., Martin, D. A., Writer, J. H. & Ebel, B. A. Fire, flood, and drought: extreme climate events alter flow paths and stream chemistry. J. Geophys. Res. Biogeosci. 123, 2513–2526 (2018).

    Article  CAS  Google Scholar 

  110. Rust, A. J., Saxe, S., McCray, J., Rhoades, C. C. & Hogue, T. S. Evaluating the factors responsible for post-fire water quality response in forests of the western USA. Int. J. Wildland Fire 28, 769 (2019).

    Article  CAS  Google Scholar 

  111. Hampton, T. B., Lin, S. & Nandita, B. Forest fire effects on stream water quality at continental scales: a meta-analysis. Environ. Res. Lett. 17, 064003 (2022).

    Article  ADS  CAS  Google Scholar 

  112. Abatzoglou, J. T. & Williams, A. P. Impact of anthropogenic climate change on wildfire across western US forests. Proc. Natl Acad. Sci. USA 113, 11770–11775 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  113. Vicente-Serrano, S. M., Quiring, S. M., Pena-Gallardo, M., Yuan, S. S. & Dominguez-Castro, F. A review of environmental droughts: increased risk under global warming? Earth Sci. Rev. 201, 102953 (2020).

    Article  Google Scholar 

  114. Song, X. et al. Drought conditions maximize the impact of high-frequency flow variations on thermal regimes and biogeochemical function in the hyporheic zone. Water Resour. Res. 54, 7361–7382 (2018).

    Article  ADS  Google Scholar 

  115. Brookfield, A. E. et al. Predicting algal blooms: are we overlooking groundwater? Sci. Total Environ. 769, 144442 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  116. Mosley, L. M. Drought impacts on the water quality of freshwater systems; review and integration. Earth Sci. Rev. 140, 203–214 (2015).

    Article  ADS  CAS  Google Scholar 

  117. Ravi, S., Breshears, D. D., Huxman, T. E. & D’Odorico, P. Land degradation in drylands: Interactions among hydrologic–aeolian erosion and vegetation dynamics. Geomorphology 116, 236–245 (2010).

    Article  ADS  Google Scholar 

  118. Xu, C. et al. Increasing impacts of extreme droughts on vegetation productivity under climate change. Nat. Clim. Change 9, 948–953 (2019).

    Article  ADS  CAS  Google Scholar 

  119. Raymond, P. A. & Saiers, J. E. Event controlled DOC export from forested watersheds. Biogeochemistry 100, 197–209 (2010).

    Article  Google Scholar 

  120. Wen, H. et al. From soils to streams: connecting terrestrial carbon transformation, chemical weathering, and solute export across hydrological regimes. Water Resour. Res. 8, e2022WR032314 (2022).

    Article  Google Scholar 

  121. Merz, B. et al. Causes, impacts and patterns of disastrous river floods. Nat. Rev. Earth Environ. 2, 592–609 (2021).

    Google Scholar 

  122. Seybold, E. C. et al. Winter runoff events pose an unquantified continental-scale risk of high wintertime nutrient export. Environ. Res. Lett. 17, 104044 (2022).

    Article  ADS  Google Scholar 

  123. McGrane, S. J. Impacts of urbanisation on hydrological and water quality dynamics, and urban water management: a review. Hydrol. Sci. J. 61, 2295–2311 (2016).

    Article  Google Scholar 

  124. Levy, K., Woster, A. P., Goldstein, R. S. & Carlton, E. J. Untangling the impacts of climate change on waterborne diseases: a systematic review of relationships between diarrheal diseases and temperature, rainfall, flooding, and drought. Environ. Sci. Technol. 50, 4905–4922 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  125. Cann, K. F., Thomas, D. R., Salmon, R. L., Wyn-Jones, A. P. & Kay, D. Extreme water-related weather events and waterborne disease. Epidemiol. Infect. 141, 671–686 (2013).

    Article  CAS  PubMed  Google Scholar 

  126. Kragh, T., Martinsen, K. T., Kristensen, E. & Sand-Jensen, K. From drought to flood: sudden carbon inflow causes whole-lake anoxia and massive fish kill in a large shallow lake. Sci. Total Environ. 739, 140072 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  127. Valett, H. M. et al. Biogeochemical and metabolic responses to the flood pulse in a semiarid floodplain. Ecology 86, 220–234 (2005).

    Article  Google Scholar 

  128. Libonati, R. et al. Drought–heatwave nexus in Brazil and related impacts on health and fires: a comprehensive review. Ann. N. Y. Acad. Sci. 1517, 44–62 (2022).

    Article  ADS  PubMed  Google Scholar 

  129. Sutanto, S. J., Vitolo, C., Di Napoli, C., D’Andrea, M. & Van Lanen, H. A. J. Heatwaves, droughts, and fires: exploring compound and cascading dry hazards at the pan-European scale. Environ. Int. 134, 105276 (2020).

    Article  PubMed  Google Scholar 

  130. Gruber, N., Boyd, P. W., Frölicher, T. L. & Vogt, M. Biogeochemical extremes and compound events in the ocean. Nature 600, 395–407 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  131. Huang, W. et al. High carbon losses from oxygen-limited soils challenge biogeochemical theory and model assumptions. Glob. Change Biol. 27, 6166–6180 (2021).

    Article  Google Scholar 

  132. Shumilova, O. et al. Simulating rewetting events in intermittent rivers and ephemeral streams: a global analysis of leached nutrients and organic matter. Glob. Change Biol. 25, 1591–1611 (2019).

    Article  ADS  Google Scholar 

  133. Angle, J. C. et al. Methanogenesis in oxygenated soils is a substantial fraction of wetland methane emissions. Nat. Commun. 8, 1567 (2017).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  134. Fairbairn, L. et al. Relationship between soil CO2 fluxes and soil moisture: anaerobic sources explain fluxes at high water content. Geoderma 434, 116493 (2023).

    Article  ADS  CAS  Google Scholar 

  135. Knapp, J. L. A., von Freyberg, J., Studer, B., Kiewiet, L. & Kirchner, J. W. Concentration–discharge relationships vary among hydrological events, reflecting differences in event characteristics. Hydrol. Earth Syst. Sci. 24, 2561–2576 (2020).

    Google Scholar 

  136. Brunner, M. I., Slater, L., Tallaksen, L. M. & Clark, M. Challenges in modeling and predicting floods and droughts: a review. WIREs Water 8, e1520 (2021).

    Article  Google Scholar 

  137. Guo, D. et al. A data-based predictive model for spatiotemporal variability in stream water quality. Hydrol. Earth Syst. Sci. 24, 827–847 (2020).

    Google Scholar 

  138. McCabe, M. F. et al. The future of Earth observation in hydrology. Hydrol. Earth Syst. Sci. 21, 3879–3914 (2017).

    Google Scholar 

  139. Zimmer, M. A. et al. Zero or not? Causes and consequences of zero‐flow stream gage readings. WIREs Water 7, e1436 (2020).

    Article  Google Scholar 

  140. Holbrook, W. S. et al. Links between physical and chemical weathering inferred from a 65-m-deep borehole through Earth’s critical zone. Sci. Rep. 9, 4495 (2019).

  141. Li, L. et al. Expanding the role of reactive transport models in critical zone processes. Earth Sci. Rev. 165, 280–301 (2017).

    CAS  Google Scholar 

  142. Li, L. Watershed reactive transport. Rev. Mineral. Geochem. 85, 381–418 (2019).

    Article  CAS  Google Scholar 

  143. Popper, K. R. Conjectures and Refutations: The Growth of Scientific Knowledge (Harper & Row, 1968).

  144. Sivapalan, M., Blöschl, G., Zhang, L. & Vertessy, R. Downward approach to hydrological prediction. Hydrol. Process. 17, 2101–2111 (2003).

    Article  ADS  Google Scholar 

  145. Underwood, K. L. et al. Machine-learning reveals equifinality in drivers of stream DOC concentration at continental scales. Water Resour. Res. 59, e2021WR030551 (2023).

    Article  ADS  Google Scholar 

  146. Nearing, G. S. et al. What role does hydrological science play in the age of machine learning? Water Resour. Res. 57, e2020WR028091 (2021).

    Article  ADS  Google Scholar 

  147. Read, J. S. et al. Process‐guided deep learning predictions of lake water temperature. Water Resour. Res. 55, 9173–9190 (2019).

    Article  ADS  Google Scholar 

  148. Appling, A. P., Oliver, S. K., Read, J. S., Sadler, J. M. & Zwart, J. A. in Encyclopedia of Inland Waters (eds Mehner, T. & Tockner, K.) 585–606 (Elsevier, 2022).

  149. Karpatne, A. et al. Theory-guided data science: a new paradigm for scientific discovery from data. IEEE Trans. Knowl. Data Eng. 29, 2318–2331 (2017).

    Article  Google Scholar 

  150. Shen, C. et al. Differentiable modelling to unify machine learning and physical models for geosciences. Nat. Rev. Earth Environ. 4, 552–567 (2023).

  151. Willard, J. D. et al. Predicting water temperature dynamics of unmonitored lakes with meta‐transfer learning. Water. Resour. Res. 57, e2021WR029579 (2021).

    Article  ADS  Google Scholar 

  152. Srivastava, S., Mehta, L. & Naess, L. O. Increased attention to water is key to adaptation. Nat. Clim. Change 12, 113–114 (2022).

    Article  ADS  Google Scholar 

  153. Dodds, W. K. et al. Eutrophication of U.S. freshwaters: analysis of potential economic damages. Environ. Sci. Technol. 43, 12–19 (2009).

    Article  ADS  CAS  PubMed  Google Scholar 

  154. Domingo, J. L. & Nadal, M. Human exposure to per- and polyfluoroalkyl substances (PFAS) through drinking water: a review of the recent scientific literature. Environ. Res. 177, 108648 (2019).

    Article  CAS  PubMed  Google Scholar 

  155. Berner, E. K. & Berner, R. A. Global Environment: Water, Air and Geochemical Cycles (Princeton Univ. Press, 2012).

  156. Boyd, C. E. Water Quality: An Introduction (Springer Nature, 2019).

  157. Appling, A. P. et al. The metabolic regimes of 356 rivers in the United States. Sci. Data 5, 180292 (2018).

    CAS  Google Scholar 

Download references

Acknowledgements

L.L. acknowledges the support of funding from US National Science Foundation (US NSF, EAR-2012669, 2012123, 2121621, 1911960) and US Department of Energy Environmental System Science programme (US DOE ESS, DE-SC0020146). P.L.S. acknowledges the support of funding from US NSF (EAR-2231723, 1911967) and US DOE ESS (DE-SC0023312). J.P. acknowledges the support of funding from National Science Foundation (EAR-2012123). G.-H.C.N. acknowledges the support of funding from US NSF (EAR-1759071) and US DOE ESS (DE-SC0020196). L.L. acknowledges students in the Li Reactive Water Group for feedback on an early version of the paper, and M. Wu for artistic suggestions on figures.

Author information

Authors and Affiliations

Authors

Contributions

L.L. initiated the first draft and finalized the paper. All co-authors equally participated in generating ideas, creating content and editing various versions of the manuscript.

Corresponding author

Correspondence to Li Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Climate Change thanks Jeff Chanat and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Knapp, J.L.A., Lintern, A. et al. River water quality shaped by land–river connectivity in a changing climate. Nat. Clim. Chang. 14, 225–237 (2024). https://doi.org/10.1038/s41558-023-01923-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41558-023-01923-x

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology