Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Persistent organic pollutant cycling in forests


Owing to their toxicity, persistence and capacity for long-range atmospheric transport, persistent organic pollutants (POPs) are internationally regulated. However, forests can uptake and sequester POPs from the atmosphere, acting as a filter as they are transported to the poles as part of the so-called grasshopper effect. In this Review, we summarize POP (and polyaromatic hydrocarbon) cycling and distribution in forests, and discuss the environmental factors that impact POP fates. Pollutants are taken up by foliage and transported to the forest floor, where they can be stored in the litter layer or leach further into the soil. Typically, soil organic carbon content, temperature and latitude are the most important factors influencing POP distribution and storage, with boreal and tropical forests accumulating the greatest POP concentrations. Forest fires and deforestation, however, threaten the ability of forests to sequester POPs, with the former also anticipated to increase production of POPs and polyaromatic hydrocarbons through combustion. In order to better estimate the burden of POPs in the environment, greater large-scale and long-term observations are required in all forests, particularly in tropical regions and the Southern Hemisphere.

Key points

  • The forest filter effect describes the uptake of atmospheric persistent organic pollutants (POPs) by foliage and their transport to the forest floor via litterfall, throughfall and the erosion of wax and particles.

  • The global forest can store more than 100 Gg of POPs, delaying their long-range atmospheric transport.

  • POP and polyaromatic hydrocarbon concentrations tend to be higher in European forest soils than on other continents.

  • Deforestation and afforestation caused by human activities and climate change can substantially influence the terrestrial stock of POPs.

  • International strategies and regional and/or global models of POP fate should consider the impacts of climate change and forest fires on POPs cycling.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Persistent organic pollutant cycling across scales.
Fig. 2: Persistent organic pollutant and polyaromatic hydrocarbon observations in forests globally.
Fig. 3: Foliar uptake of atmospheric persistent organic pollutants.
Fig. 4: Persistent organic pollutants and polyaromatic hydrocarbons in forest soils.
Fig. 5: Estimation of stocks and soil storage fluxes of persistent organic pollutants and polyaromatic hydrocarbons.


  1. 1.

    Stockholm Convention on Persistent Organic Pollutants. Appendix D. Information Requirements and Screening Criteria. Stockholm Convention (2003).

  2. 2.

    Tian, C. et al. Assessing and forecasting atmospheric outflow of α-HCH from China on intra-, inter-, and decadal time scales. Environ. Sci. Technol. 46, 2220–2227 (2012).

    Article  Google Scholar 

  3. 3.

    Wang, R. et al. Sources and pathways of polycyclic aromatic hydrocarbons transported to Alert, the Canadian High Arctic. Environ. Sci. Technol. 44, 1017–1022 (2010).

    Article  Google Scholar 

  4. 4.

    Wania, F. & Mackay, D. Global fractionation and cold condensation of low volatility organochlorine compounds in polar regions. Ambio 22, 10–18 (1993).

    Google Scholar 

  5. 5.

    Wania, F. & Mackay, D. Tracking the distribution of persistent organic pollutants. Environ. Sci. Technol. 30, 390A–396A (1996). Developed the conceptual mechanism of global POP transport — the so-called grasshopper effect.

    Article  Google Scholar 

  6. 6.

    Benskin, J. P. et al. Perfluoroalkyl acids in the Atlantic and Canadian Arctic Oceans. Environ. Sci. Technol. 46, 5815–5823 (2012).

    Article  Google Scholar 

  7. 7.

    Carrizo, D. & Gustafsson, Ö. Pan-Arctic river fluxes of polychlorinated biphenyls. Environ. Sci. Technol. 45, 8377–8384 (2011).

    Article  Google Scholar 

  8. 8.

    Blais, J. M. et al. Biologically mediated transport of contaminants to aquatic systems. Environ. Sci. Technol. 41, 1075–1084 (2007).

    Article  Google Scholar 

  9. 9.

    Pavlova, P. A. et al. Polychlorinated biphenyls in glaciers. 1. Deposition history from an alpine ice core. Environ. Sci. Technol. 48, 7842–7848 (2014).

    Article  Google Scholar 

  10. 10.

    Casal, P. et al. Snow amplification of persistent organic pollutants at coastal Antarctica. Environ. Sci. Technol. 53, 8872–8882 (2019).

    Article  Google Scholar 

  11. 11.

    Lee, R. G. M., Coleman, P., Jones, J. L., Jones, K. C. & Lohmann, R. Emission factors and importance of PCDD/Fs, PCBs, PCNs, PAHs and PM10 from the domestic burning of coal and wood in the U.K. Environ. Sci. Technol. 39, 1436–1447 (2005).

    Article  Google Scholar 

  12. 12.

    Lohmann, R., Northcott, G. L. & Jones, K. C. Assessing the contribution of diffuse domestic burning as a source of PCDD/Fs, PCBs, and PAHs to the U.K. atmosphere. Environ. Sci. Technol. 34, 2892–2899 (2000).

    Article  Google Scholar 

  13. 13.

    Shen, H. et al. Global atmospheric emissions of polycyclic aromatic hydrocarbons from 1960 to 2008 and future predictions. Environ. Sci. Technol. 47, 6415–6424 (2013).

    Article  Google Scholar 

  14. 14.

    Klánová, J. et al. Identifying the research and infrastructure needs for the global assessment of hazardous chemicals ten years after establishing the Stockholm Convention. Environ. Sci. Technol. 45, 7617–7619 (2011).

    Article  Google Scholar 

  15. 15.

    Lohmann, R., Breivik, K., Dachs, J. & Muir, D. Global fate of POPs: Current and future research directions. Environ. Pollut. 150, 150–165 (2007).

    Article  Google Scholar 

  16. 16.

    Jurado, E. & Dachs, J. Seasonality in the “grasshopping” and atmospheric residence times of persistent organic pollutants over the oceans. Geophys. Res. Lett. 35, L17805 (2008).

    Article  Google Scholar 

  17. 17.

    Barroso, P. J., Santos, J. L., Martin, J., Aparicio, I. & Alonso, E. Emerging contaminants in the atmosphere: Analysis, occurrence and future challenges. Crit. Rev. Environ. Sci. Technol. 49, 104–171 (2019).

    Article  Google Scholar 

  18. 18.

    Su, Y., Wania, F., Lei, Y. D., Harner, T. & Shoeib, M. Temperature dependence of the air concentrations of polychlorinated biphenyls and polybrominated diphenyl ethers in a forest and a clearing. Environ. Sci. Technol. 41, 4655–4661 (2007).

    Article  Google Scholar 

  19. 19.

    Dewailly, E., Nantel, A., Weber, J. P. & Meyer, F. High levels of PCBs in breast milk of Inuit women from Arctic Quebec. Bull. Environ. Contam. Toxicol. 43, 641–646 (1989).

    Article  Google Scholar 

  20. 20.

    Choi, S.-D. et al. Passive air sampling of polychlorinated biphenyls and organochlorine pesticides at the Korean Arctic and Antarctic research stations: implications for long-range transport and local pollution. Environ. Sci. Technol. 42, 7125–7131 (2008).

    Article  Google Scholar 

  21. 21.

    Davidson, D. A. et al. Orographic cold-trapping of persistent organic pollutants by vegetation in mountains of western Canada. Environ. Sci. Technol. 37, 209–215 (2003).

    Article  Google Scholar 

  22. 22.

    Grimalt, J. O. et al. Temperature dependence of the distribution of organochlorine compounds in the mosses of the Andean mountains. Environ. Sci. Technol. 38, 5386–5392 (2004).

    Article  Google Scholar 

  23. 23.

    Van Drooge, B. L. et al. Atmospheric semivolatile organochlorine compounds in European high-mountain areas (central Pyrenees and high Tatras). Environ. Sci. Technol. 38, 3525–3532 (2004).

    Article  Google Scholar 

  24. 24.

    Daly, G. L., Lei, Y. D., Teixeira, C., Muir, D. C. G. & Wania, F. Pesticides in western Canadian mountain air and soil. Environ. Sci. Technol. 41, 6020–6025 (2007).

    Article  Google Scholar 

  25. 25.

    McLachlan, M. S. & Horstmann, M. Forests as filters of airborne organic pollutants: A model. Environ. Sci. Technol. 32, 413–420 (1998). Described the role of forests on the cycling of POPs as the forest filter effect.

    Article  Google Scholar 

  26. 26.

    Wegmann, F., Scheringer, M., Moller, M. & Hungerbuhler, K. Influence of vegetation on the environmental partitioning of DDT in two global multimedia models. Environ. Sci. Technol. 38, 1505–1512 (2004).

    Article  Google Scholar 

  27. 27.

    Prevedouros, K., MacLeod, M., Jones, K. C. & Sweetman, A. J. Modelling the fate of persistent organic pollutants in Europe: parameterisation of a gridded distribution model. Environ. Pollut. 128, 251–261 (2004).

    Article  Google Scholar 

  28. 28.

    Su, Y. S. & Wania, F. Does the forest filter effect prevent semivolatile organic compounds from reaching the Arctic? Environ. Sci. Technol. 39, 7185–7193 (2005). Provided evidence that forests can hinder the movement of POPs to the Arctic.

    Article  Google Scholar 

  29. 29.

    Wania, F. & McLachlan, M. S. Estimating the influence of forests on the overall fate of semivolatile organic compounds using a multimedia fate model. Environ. Sci. Technol. 35, 582–590 (2001).

    Article  Google Scholar 

  30. 30.

    Simonich, S. L. & Hites, R. A. Importance of vegetation in removing polycyclic aromatic hydrocarbons from the atmosphere. Nature 370, 49–51 (1994). An early article that focused on the role of vegetation in PAH cycling.

    Article  Google Scholar 

  31. 31.

    Moeckel, C., Nizzetto, L., Strandberg, B., Lindroth, A. & Jones, K. C. Air–boreal forest transfer and processing of polychlorinated biphenyls. Environ. Sci. Technol. 43, 5282–5289 (2009). Summarized the processes of POPs in the soil under the forest canopy and estimated that soil is the primary pool of POPs in forests.

    Article  Google Scholar 

  32. 32.

    Moeckel, C. et al. Persistent organic pollutants in boreal and montane soil profiles: Distribution, evidence of processes and implications for global cycling. Environ. Sci. Technol. 42, 8374–8380 (2008).

    Article  Google Scholar 

  33. 33.

    Terzaghi, E. et al. Forest filter effect: role of leaves in capturing/releasing air particulate matter and its associated PAHs. Atmos. Environ. 74, 378–384 (2013).

    Article  Google Scholar 

  34. 34.

    Horstmann, M. & McLachlan, M. S. Evidence of a novel mechanism of semivolatile organic compound deposition in coniferous forests. Environ. Sci. Technol. 30, 1794–1796 (1996). Described the forest filter effect based on field observation.

    Article  Google Scholar 

  35. 35.

    Horstmann, M. & McLachlan, M. S. Atmospheric deposition of semivolatile organic compounds to two forest canopies. Atmos. Environ. 32, 1799–1809 (1998).

    Article  Google Scholar 

  36. 36.

    Obrist, D., Zielinska, B. & Perlinger, J. A. Accumulation of polycyclic aromatic hydrocarbons (PAHs) and oxygenated PAHs (OPAHs) in organic and mineral soil horizons from four US remote forests. Chemosphere 134, 98–105 (2015).

    Article  Google Scholar 

  37. 37.

    Krauss, M., Wilcke, W. & Zech, W. Polycyclic aromatic hydrocarbons and polychlorinated biphenyls in forest soils: depth distribution as indicator of different fate. Environ. Pollut. 110, 79–88 (2000).

    Article  Google Scholar 

  38. 38.

    Komprdova, K. et al. The influence of tree species composition on the storage and mobility of semivolatile organic compounds in forest soils. Sci. Total Environ. 553, 532–540 (2016).

    Article  Google Scholar 

  39. 39.

    Wang, X., Xue, Y., Gong, P. & Yao, T. Organochlorine pesticides and polychlorinated biphenyls in Tibetan forest soil: profile distribution and processes. Environ. Sci. Pollut. Res. 21, 1897–1904 (2014).

    Article  Google Scholar 

  40. 40.

    Gong, P. et al. Trans-Himalayan transport of organochlorine compounds: Three-year observations and model-based flux estimation. Environ. Sci. Technol. 53, 6773–6783 (2019).

    Article  Google Scholar 

  41. 41.

    Daly, G. L. & Wania, F. Organic contaminants in mountains. Environ. Sci. Technol. 39, 385–398 (2005).

    Article  Google Scholar 

  42. 42.

    Liu, X. et al. Forest filter effect versus cold trapping effect on the altitudinal distribution of PCBs: A case study of Mt. Gongga, eastern Tibetan Plateau. Environ. Sci. Technol. 48, 14377–14385 (2014).

    Article  Google Scholar 

  43. 43.

    Food and Agriculture Organization of the United Nations (FAO). Global Forest Resources Assessment 2015: How are the world’s forests changing? Second edition. FAO (2016).

  44. 44.

    van Lierop, P., Lindquist, E., Sathyapala, S. & Franceschini, G. Global forest area disturbance from fire, insect pests, diseases and severe weather events. For. Ecol. Manage. 352, 78–88 (2015).

    Article  Google Scholar 

  45. 45.

    Reyer, C. P. O. et al. Are forest disturbances amplifying or canceling out climate change-induced productivity changes in European forests? Environ. Res. Lett. 12, 034027 (2017).

    Article  Google Scholar 

  46. 46.

    Bonan, G. B. Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science 320, 1444–1449 (2008).

    Article  Google Scholar 

  47. 47.

    Seymour, F. & Harris, N. L. Reducing tropical deforestation. Science 365, 756–757 (2019).

    Article  Google Scholar 

  48. 48.

    Gullison, R. E. et al. Tropical forests and climate policy. Science 316, 985–986 (2007).

    Article  Google Scholar 

  49. 49.

    Reddington, C. L. et al. Air quality and human health improvements from reductions in deforestation-related fire in Brazil. Nat. Geosci. 8, 768–771 (2015).

    Article  Google Scholar 

  50. 50.

    Cao, S. et al. Excessive reliance on afforestation in China’s arid and semi-arid regions: Lessons in ecological restoration. Earth Sci. Rev. 104, 240–245 (2011).

    Article  Google Scholar 

  51. 51.

    Huang, T. et al. Impacts of large-scale land-use change on the uptake of polycyclic aromatic hydrocarbons in the artificial Three Northern Regions Shelter Forest across northern China. Environ. Sci. Technol. 50, 12885–12893 (2016). The first article to study the enhanced deposition of POPs under a large-scale afforestation project.

    Article  Google Scholar 

  52. 52.

    Nizzetto, L. & Perlinger, J. A. Climatic, biological, and land cover controls on the exchange of gas-phase semivolatile chemical pollutants between forest canopies and the atmosphere. Environ. Sci. Technol. 46, 2699–2707 (2012).

    Article  Google Scholar 

  53. 53.

    Wang, X. Y. et al. Emission factors for selected semivolatile organic chemicals from burning of tropical biomass fuels and estimation of annual Australian emissions. Environ. Sci. Technol. 51, 9644–9652 (2017).

    Article  Google Scholar 

  54. 54.

    Gullett, B., Touati, A. & Oudejans, L. PCDD/F and aromatic emissions from simulated forest and grassland fires. Atmos. Environ. 42, 7997–8006 (2008).

    Article  Google Scholar 

  55. 55.

    Günindi, M. & Tasdemir, Y. Atmospheric polychlorinated biphenyl (PCB) inputs to a coastal city near the Marmara Sea. Mar. Pollut. Bull. 60, 2242–2250 (2010).

    Article  Google Scholar 

  56. 56.

    Bandowe, B. A. M., Bigalke, M., Kobza, J. & Wilcke, W. Sources and fate of polycyclic aromatic compounds (PAHs, oxygenated PAHs and azaarenes) in forest soil profiles opposite of an aluminium plant. Sci. Total Environ. 630, 83–95 (2018).

    Article  Google Scholar 

  57. 57.

    Van Brummelen, T. C., Verweij, R. A., Wedzinga, S. A. & Van Gestel, C. A. M. Enrichment of polycyclic aromatic hydrocarbons in forest soils near a blast furnace plant. Chemosphere 32, 293–314 (1996).

    Article  Google Scholar 

  58. 58.

    Kirchner, M. et al. Concentration measurements of PCDD/F in air and spruce needles in the Bavarian Forest and Bohemian Forest (Sumava): First results. Ecotoxicol. Environ. Saf. 63, 68–74 (2006).

    Article  Google Scholar 

  59. 59.

    Zhu, N. L. et al. Environmental fate and behavior of persistent organic pollutants in Shergyla Mountain, southeast of the Tibetan Plateau of China. Environ. Pollut. 191, 166–174 (2014).

    Article  Google Scholar 

  60. 60.

    Choi, S. D. et al. Depletion of gaseous polycyclic aromatic hydrocarbons by a forest canopy. Atmos. Chem. Phys. 8, 4105–4113 (2008).

    Article  Google Scholar 

  61. 61.

    Jaward, F. M. et al. PCBs and selected organochlorine compounds in Italian mountain air:  the influence of altitude and forest ecosystem type. Environ. Sci. Technol. 39, 3455–3463 (2005).

    Article  Google Scholar 

  62. 62.

    Ren, J. et al. Persistent organic pollutants in mountain air of the southeastern Tibetan Plateau: Seasonal variations and implications for regional cycling. Environ. Pollut. 194, 210–216 (2014).

    Article  Google Scholar 

  63. 63.

    Hornbuckle, K. C. & Eisenreich, S. J. Dynamics of gaseous semivolatile organic compounds in a terrestrial ecosystem — effects of diurnal and seasonal climate variations. Atmos. Environ. 30, 3935–3945 (1996).

    Article  Google Scholar 

  64. 64.

    Wild, E., Dent, J., Thomas, G. O. & Jones, K. C. Visualizing the air-to-leaf transfer and within-leaf movement and distribution of phenanthrene:  Further studies utilizing two-photon excitation microscopy. Environ. Sci. Technol. 40, 907–916 (2006). Provided an important method to explore the mechanisms of leaf uptake of atmospheric POPs.

    Article  Google Scholar 

  65. 65.

    Howsam, M., Jones, K. C. & Ineson, P. PAHs associated with the leaves of three deciduous tree species. I — Concentrations and profiles. Environ. Pollut. 108, 413–424 (2000).

    Article  Google Scholar 

  66. 66.

    Howsam, M., Jones, K. C. & Ineson, P. PAHs associated with the leaves of three deciduous tree species. II: uptake during a growing season. Chemosphere 44, 155–164 (2001).

    Article  Google Scholar 

  67. 67.

    Deinum, G., Baart, A. C., Bakker, D. J., Duyzer, J. H. & Van Den Hout, K. D. The influence of uptake by leaves on atmospheric deposition of vapor-phase organics. Atmos. Environ. 29, 997–1005 (1995).

    Article  Google Scholar 

  68. 68.

    Barber, J. L., Kurt, P. B., Thomas, G. O., Kerstiens, G. & Jones, K. C. Investigation into the importance of the stomatal pathway in the exchange of PCBs between air and plants. Environ. Sci. Technol. 36, 4282–4287 (2002).

    Article  Google Scholar 

  69. 69.

    Tian, L. et al. Impact factor assessment of the uptake and accumulation of polycyclic aromatic hydrocarbons by plant leaves: Morphological characteristics have the greatest impact. Sci. Total Environ. 652, 1149–1155 (2019).

    Article  Google Scholar 

  70. 70.

    Brorström-Lundén, E. & Löfgren, C. Atmospheric fluxes of persistent semivolatile organic pollutants to a forest ecological system at the Swedish west coast and accumulation in spruce needles. Environ. Pollut. 102, 139–149 (1998).

    Article  Google Scholar 

  71. 71.

    Wild, E., Dent, J., Barber, J. L., Thomas, G. O. & Jones, K. C. A novel analytical approach for visualizing and tracking organic chemicals in plants. Environ. Sci. Technol. 38, 4195–4199 (2004).

    Article  Google Scholar 

  72. 72.

    Moeckel, C., Thomas, G. O., Barber, J. L. & Jones, K. C. Uptake and storage of PCBs by plant cuticles. Environ. Sci. Technol. 42, 100–105 (2008).

    Article  Google Scholar 

  73. 73.

    Li, Q. & Chen, B. Organic pollutant clustered in the plant cuticular membranes: visualizing the distribution of phenanthrene in leaf cuticle using two-photon confocal scanning laser microscopy. Environ. Sci. Technol. 48, 4774–4781 (2014).

    Article  Google Scholar 

  74. 74.

    Li, Y. G., Chen, B. L. & Zhu, L. Z. Single-solute and bi-solute sorption of phenanthrene and pyrene onto pine needle cuticular fractions. Environ. Pollut. 158, 2478–2484 (2010).

    Article  Google Scholar 

  75. 75.

    Nizzetto, L. et al. Accumulation parameters and seasonal trends for PCBs in temperate and boreal forest plant species. Environ. Sci. Technol. 42, 5911–5916 (2008).

    Article  Google Scholar 

  76. 76.

    Cousins, I. T. & Mackay, D. Strategies for including vegetation compartments in multimedia models. Chemosphere 44, 643–654 (2001).

    Article  Google Scholar 

  77. 77.

    Riederer, M. Estimating partitioning and transport of organic chemicals in the foliage/atmosphere system: discussion of a fugacity-based model. Environ. Sci. Technol. 24, 829–837 (1990).

    Article  Google Scholar 

  78. 78.

    Tolls, J. & McLachlan, M. S. Partitioning of semivolatile organic compounds between air and Lolium multiflorum (Welsh ray grass). Environ. Sci. Technol. 28, 159–166 (1994).

    Article  Google Scholar 

  79. 79.

    Hauk, H., Umlauf, G. & McLachlan, M. S. Uptake of gaseous DDE in spruce needles. Environ. Sci. Technol. 28, 2372–2379 (1994).

    Article  Google Scholar 

  80. 80.

    Nizzetto, L., Jarvis, A., Brivio, P. A., Jones, K. C. & Di Guardo, A. Seasonality of the air–forest canopy exchange of persistent organic pollutants. Environ. Sci. Technol. 42, 8778–8783 (2008).

    Article  Google Scholar 

  81. 81.

    Buckley, E. H. Accumulation of airborne polychlorinated biphenyls in foliage. Science 216, 520–522 (1982).

    Article  Google Scholar 

  82. 82.

    Klein, W. & Weisgerber, I. PCBs and environmental contamination. Environ. Qual. Saf. 5, 237–250 (1976).

    Google Scholar 

  83. 83.

    Beall, M. L. & Nash, R. G. Organochlorine insecticide residues in soybean plant tops: root vs. vapor sorption. Agron. J. 63, 460–464 (1971).

    Article  Google Scholar 

  84. 84.

    Collins, C., Fryer, M. & Grosso, A. Plant uptake of non-ionic organic chemicals. Environ. Sci. Technol. 40, 45–52 (2006).

    Article  Google Scholar 

  85. 85.

    Nizzetto, L. et al. Accumulation of persistent organic pollutants in canopies of different forest types:  Role of species composition and altitudinal-temperature gradient. Environ. Sci. Technol. 40, 6580–6586 (2006).

    Article  Google Scholar 

  86. 86.

    Weiss, P. Vegetation/soil distribution of semivolatile organic compounds in relation to their physicochemical properties. Environ. Sci. Technol. 34, 1707–1714 (2000).

    Article  Google Scholar 

  87. 87.

    Luo, Y. et al. Age dependence accumulation of organochlorine pesticides and PAHs in needles with different forest types, southeast Tibetan Plateau. Sci. Total Environ. 716, 137176 (2020).

    Article  Google Scholar 

  88. 88.

    Chropenova, M. et al. Pine needles and pollen grains of Pinus mugo Turra – A biomonitoring tool in high mountain habitats identifying environmental contamination. Ecol. Indic. 66, 132–142 (2016).

    Article  Google Scholar 

  89. 89.

    Turgut, C. et al. Polycyclic aromatic hydrocarbons (PAHs) determined by pine needles and semipermeable membrane devices along an altitude profile in Taurus Mountains, Turkey. Environ. Sci. Pollut. Res. 24, 7077–7087 (2017).

    Article  Google Scholar 

  90. 90.

    Su, Y. S., Wania, F., Harner, T. & Lei, Y. D. Deposition of polybrominated diphenyl ethers, polychlorinated biphenyls, and polycyclic aromatic hydrocarbons to a boreal deciduous forest. Environ. Sci. Technol. 41, 534–540 (2007).

    Article  Google Scholar 

  91. 91.

    Nizzetto, L., Cassani, C. & Di Guardo, A. Deposition of PCBs in mountains: The forest filter effect of different forest ecosystem types. Ecotoxicol. Environ. Saf. 63, 75–83 (2006).

    Article  Google Scholar 

  92. 92.

    Howsam, M., Jones, K. C. & Ineson, P. Dynamics of PAH deposition, cycling and storage in a mixed-deciduous (Quercus-Fraxinus) woodland ecosystem. Environ. Pollut. 113, 163–176 (2001).

    Article  Google Scholar 

  93. 93.

    Nizzetto, L., Liu, X., Zhang, G., Komprdova, K. & Komprda, J. Accumulation kinetics and equilibrium partitioning coefficients for semivolatile organic pollutants in forest litter. Environ. Sci. Technol. 48, 420–428 (2014).

    Article  Google Scholar 

  94. 94.

    Cabrerizo, A., Dachs, J. & Barceló, D. Development of a soil fugacity sampler for determination of air–soil partitioning of persistent organic pollutants under field controlled conditions. Environ. Sci. Technol. 43, 8257–8263 (2009).

    Article  Google Scholar 

  95. 95.

    Cabrerizo, A. et al. Ubiquitous net volatilization of polycyclic aromatic hydrocarbons from soils and parameters influencing their soil–air partitioning. Environ. Sci. Technol. 45, 4740–4747 (2011).

    Article  Google Scholar 

  96. 96.

    Cabrerizo, A. et al. Factors influencing the soil–air partitioning and the strength of soils as a secondary source of polychlorinated biphenyls to the atmosphere. Environ. Sci. Technol. 45, 4785–4792 (2011).

    Article  Google Scholar 

  97. 97.

    Ren, J., Wang, X., Gong, P. & Wang, C. Characterization of Tibetan soil as a source or sink of atmospheric persistent organic pollutants: Seasonal shift and impact of global warming. Environ. Sci. Technol. 53, 3589–3598 (2019).

    Article  Google Scholar 

  98. 98.

    Liu, X. et al. Polychlorinated biphenyls and polybrominated diphenylethers in soils from planted forests and adjacent natural forests on a tropical island. Environ. Pollut. 227, 57–63 (2017).

    Article  Google Scholar 

  99. 99.

    Zheng, Q. et al. Elevated mobility of persistent organic pollutants in the soil of a tropical rainforest. Environ. Sci. Technol. 49, 4302–4309 (2015).

    Article  Google Scholar 

  100. 100.

    De Nicola, F., Baldantoni, D. & Alfani, A. PAHs in decaying Quercus ilex leaf litter: Mutual effects on litter decomposition and PAH dynamics. Chemosphere 114, 35–39 (2014).

    Article  Google Scholar 

  101. 101.

    Aichner, B., Bussian, B., Lehnik-Habrink, P. & Hein, S. Levels and spatial distribution of persistent organic pollutants in the environment: A case study of German forest soils. Environ. Sci. Technol. 47, 12703–12714 (2013).

    Article  Google Scholar 

  102. 102.

    Zhidkin, A. P., Gennadiev, A. N. & Koshovskii, T. S. Input and behavior of polycyclic aromatic hydrocarbons in arable, fallow, and forest soils of the taiga zone (Tver oblast). Eurasian Soil Sci. 50, 296–304 (2017).

    Article  Google Scholar 

  103. 103.

    Terzaghi, E., Vitale, C. M. & Di Guardo, A. Modelling peak exposure of pesticides in terrestrial and aquatic ecosystems: importance of dissolved organic carbon and vertical particle movement in soil. SAR QSAR Environ. Res. 31, 19–32 (2020).

    Article  Google Scholar 

  104. 104.

    Zheng, Q. et al. Spatial distribution of old and emerging flame retardants in Chinese forest soils: Sources, trends and processes. Environ. Sci. Technol. 49, 2904–2911 (2015).

    Article  Google Scholar 

  105. 105.

    Pandelova, M., Henkelmann, B., Bussian, B. M. & Schramm, K. W. Results of the second national forest soil inventory in Germany - Interpretation of level and stock profiles for PCDD/F and PCB in terms of vegetation and humus type. Sci. Total Environ. 610611, 1–9 (2018).

    Article  Google Scholar 

  106. 106.

    Shen, H. et al. Altitudinal and chiral signature of persistent organochlorine pesticides in air, soil, and spruce needles (Picea abies) of the Alps. Environ. Sci. Technol. 43, 2450–2455 (2009).

    Article  Google Scholar 

  107. 107.

    Wang, Q. et al. Occurrence and distribution of perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) in natural forest soils: A nationwide study in China. Sci. Total Environ. 645, 596–602 (2018).

    Article  Google Scholar 

  108. 108.

    Wenzel, K. D., Manz, M., Hubert, A. & Schuurmann, G. Fate of POPs (DDX, HCHs, PCBs) in upper soil layers of pine forests. Sci. Total Environ. 286, 143–154 (2002).

    Article  Google Scholar 

  109. 109.

    McLachlan, M. S., Czub, G. & Wania, F. The influence of vertical sorbed phase transport on the fate of organic chemicals in surface soils. Environ. Sci. Technol. 36, 4860–4867 (2002).

    Article  Google Scholar 

  110. 110.

    Van Brummelen, T. C., Verweij, R. A., Wedzinga, S. A. & Van Gestel, C. A. M. Polycyclic aromatic hydrocarbons in earthworms and isopods from contaminated forest soils. Chemosphere 32, 315–341 (1996).

    Article  Google Scholar 

  111. 111.

    Song, M. K. et al. Bacteria capable of degrading anthracene, phenanthrene, and fluoranthene as revealed by DNA based stable-isotope probing in a forest soil. J. Hazard. Mater. 308, 50–57 (2016).

    Article  Google Scholar 

  112. 112.

    Okere, U. V., Schuster, J. K., Ogbonnaya, U. O., Jones, K. C. & Semple, K. T. Indigenous 14C-phenanthrene biodegradation in “pristine” woodland and grassland soils from Norway and the United Kingdom. Environ. Sci. Process. Impacts 19, 1437–1444 (2017).

    Article  Google Scholar 

  113. 113.

    Cervantes-González, E., Guevara-García, M. A., García-Mena, J. & Ovando-Medina, V. M. Microbial diversity assessment of polychlorinated biphenyl–contaminated soils and the biostimulation and bioaugmentation processes. Environ. Monit. Assess. 191, 118 (2019).

    Article  Google Scholar 

  114. 114.

    Pieper, D. H. Aerobic degradation of polychlorinated biphenyls. Appl. Microbiol. Biotechnol. 67, 170–191 (2005).

    Article  Google Scholar 

  115. 115.

    Borja, J., Taleon, D. M., Auresenia, J. & Gallardo, S. Polychlorinated biphenyls and their biodegradation. Process Biochem. 40, 1999–2013 (2005).

    Article  Google Scholar 

  116. 116.

    Beyer, A., Wania, F., Gouin, T., Mackay, D. & Matthies, M. Selecting internally consistent physicochemical properties of organic compounds. Environ. Toxicol. Chem. 21, 941–953 (2002).

    Article  Google Scholar 

  117. 117.

    Xu, Y. et al. Polychlorinated naphthalenes (PCNs) in Chinese forest soil: Will combustion become a major source? Environ. Pollut. 204, 124–132 (2015).

    Article  Google Scholar 

  118. 118.

    Breivik, K., Sweetman, A., Pacyna, J. M. & Jones, K. C. Towards a global historical emission inventory for selected PCB congeners — A mass balance approach: 3. An update. Sci. Total Environ. 377, 296–307 (2007).

    Article  Google Scholar 

  119. 119.

    Meijer, S. N. et al. Global distribution and budget of PCBs and HCB in background surface soils: Implications or sources and environmental processes. Environ. Sci. Technol. 37, 667–672 (2003).

    Article  Google Scholar 

  120. 120.

    Zheng, Q. et al. Levels and enantiomeric signatures of organochlorine pesticides in Chinese forest soils: Implications for sources and environmental behavior. Environ. Pollut. 262, 114139 (2020).

    Article  Google Scholar 

  121. 121.

    Li, Y. F. et al. Polychlorinated biphenyls in global air and surface soil: Distributions, air–soil exchange, and fractionation effect. Environ. Sci. Technol. 44, 2784–2790 (2010).

    Article  Google Scholar 

  122. 122.

    Shunthirasingham, C. et al. Spatial and temporal pattern of pesticides in the global atmosphere. J. Environ. Monit. 12, 1650–1657 (2010).

    Article  Google Scholar 

  123. 123.

    Li, L., Liu, J. & Hu, J. Global inventory, long-range transport and environmental distribution of dicofol. Environ. Sci. Technol. 49, 212–222 (2015).

    Article  Google Scholar 

  124. 124.

    Li, Y.-F., McMillan, A. & Scholtz, M. T. Global HCH usage with 1° × 1° longitude/latitude resolution. Environ. Sci. Technol. 30, 3525–3533 (1996).

    Article  Google Scholar 

  125. 125.

    Li, Y.-F., Scholtz, M. T. & Van Heyst, B. J. Global gridded emission inventories of β-hexachlorocyclohexane. Environ. Sci. Technol. 37, 3493–3498 (2003).

    Article  Google Scholar 

  126. 126.

    Meng, W. et al. Altitudinal dependence of PCBs and PBDEs in soil along the two sides of Mt. Sygera, southeastern Tibetan Plateau. Sci. Rep. 8, 14037 (2018).

    Article  Google Scholar 

  127. 127.

    Nam, J. J. et al. Relationships between organic matter, black carbon and persistent organic pollutants in European background soils: Implications for sources and environmental fate. Environ. Pollut. 156, 809–817 (2008).

    Article  Google Scholar 

  128. 128.

    Nam, J. J. et al. PAHs in background soils from Western Europe: Influence of atmospheric deposition and soil organic matter. Chemosphere 70, 1596–1602 (2008).

    Article  Google Scholar 

  129. 129.

    Camenzuli, L., Scheringer, M. & Hungerbuhler, K. Local organochlorine pesticide concentrations in soil put into a global perspective. Environ. Pollut. 217, 11–18 (2016).

    Article  Google Scholar 

  130. 130.

    Syed, J. H. et al. Polycyclic aromatic hydrocarbons (PAHs) in Chinese forest soils: profile composition, spatial variations and source apportionment. Sci. Rep. 7, 2692 (2017).

    Article  Google Scholar 

  131. 131.

    Wania, F. & Westgate, J. N. On the mechanism of mountain cold-trapping of organic chemicals. Environ. Sci. Technol. 42, 9092–9098 (2008).

    Article  Google Scholar 

  132. 132.

    Westgate, J. N. & Wania, F. Model-based exploration of the drivers of mountain cold-trapping in soil. Environ. Sci. Process. Impacts 15, 2220–2232 (2013).

    Article  Google Scholar 

  133. 133.

    Gong, P. et al. Atmospheric transport and accumulation of organochlorine compounds on the southern slopes of the Himalayas, Nepal. Environ. Pollut. 192, 44–51 (2014).

    Article  Google Scholar 

  134. 134.

    Kirchner, M. et al. Vertical distribution of organochlorine pesticides in humus along Alpine altitudinal profiles in relation to ambiental parameters. Environ. Pollut. 157, 3238–3247 (2009).

    Article  Google Scholar 

  135. 135.

    Yang, R., Yao, T., Xu, B., Jiang, G. & Xin, X. Accumulation features of organochlorine pesticides and heavy metals in fish from high mountain lakes and Lhasa River in the Tibetan Plateau. Environ. Int. 33, 151–156 (2007).

    Article  Google Scholar 

  136. 136.

    Zheng, X. Y. et al. Distribution of PCBs and PBDEs in soils along the altitudinal gradients of Balang Mountain, the east edge of the Tibetan Plateau. Environ. Pollut. 161, 101–106 (2012).

    Article  Google Scholar 

  137. 137.

    Barber, J. L., Sweetman, A. J., van Wijk, D. & Jones, K. C. Hexachlorobenzene in the global environment: Emissions, levels, distribution, trends and processes. Sci. Total Environ. 349, 1–44 (2005).

    Article  Google Scholar 

  138. 138.

    Scharlemann, J. P. W., Tanner, E. V. J., Hiederer, R. & Kapos, V. Global soil carbon: understanding and managing the largest terrestrial carbon pool. Carbon Manag. 5, 81–91 (2014).

    Article  Google Scholar 

  139. 139.

    Dixon, R. K. et al. Carbon pools and flux of global forest ecosystems. Science 263, 185–190 (1994).

    Article  Google Scholar 

  140. 140.

    Nizzetto, L. et al. Past, present, and future controls on levels of persistent organic pollutants in the global environment. Environ. Sci. Technol. 44, 6526–6531 (2010). Summarized the migration of POPs coupled with the cycling of organic carbon.

    Article  Google Scholar 

  141. 141.

    Zhang, D. Q., Hui, D. F., Luo, Y. Q. & Zhou, G. Y. Rates of litter decomposition in terrestrial ecosystems: global patterns and controlling factors. J. Plant. Ecol. 1, 85–93 (2008).

    Article  Google Scholar 

  142. 142.

    Veldkamp, E., Schmidt, M., Powers, J. S. & Corre, M. D. Deforestation and reforestation impacts on soils in the tropics. Nat. Rev. Earth Environ. 1, 590–605 (2020).

    Article  Google Scholar 

  143. 143.

    Pugh, T. A. M., Arneth, A., Kautz, M., Poulter, B. & Smith, B. Important role of forest disturbances in the global biomass turnover and carbon sinks. Nat. Geosci. 12, 730–735 (2019).

    Article  Google Scholar 

  144. 144.

    Bowman, D. M. J. S. et al. Vegetation fires in the Anthropocene. Nat. Rev. Earth Environ. 1, 500–515 (2020).

    Article  Google Scholar 

  145. 145.

    Jalaludin, B., Johnston, F., Vardoulakis, S. & Morgan, G. Reflections on the catastrophic 2019–2020 Australian bushfires. Innovation Eur. J. Soc. Sci. Res. (2020).

  146. 146.

    Giesler, R., Clemmensen, K. E., Wardle, D. A., Klaminder, J. & Bindler, R. Boreal forests sequester large amounts of mercury over millennial time scales in the absence of wildfire. Environ. Sci. Technol. 51, 2621–2627 (2017).

    Article  Google Scholar 

  147. 147.

    Walker, X. J. et al. Increasing wildfires threaten historic carbon sink of boreal forest soils. Nature 572, 520–523 (2019). Suggested that consecutive fires in boreal forests push forests from a carbon sink to a carbon source.

    Article  Google Scholar 

  148. 148.

    Neves, P. A. et al. Depositional history of polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs) and polycyclic aromatic hydrocarbons (PAHs) in an Amazon estuary during the last century. Sci. Total Environ. 615, 1262–1270 (2018).

    Article  Google Scholar 

  149. 149.

    Zhang, L. & Wang, L. Dynamic forest carbon density and storage in the “Three North” protective forest system. J. Arid Land Resour. Environ. 24, 136–140 (2010).

    Google Scholar 

  150. 150.

    Hubau, W. et al. Asynchronous carbon sink saturation in African and Amazonian tropical forests. Nature 579, 80–87 (2020).

    Article  Google Scholar 

  151. 151.

    Beliveau, A., Lucotte, M., Davidson, R., Lopes, L. O. D. & Paquet, S. Early Hg mobility in cultivated tropical soils one year after slash-and-burn of the primary forest, in the Brazilian Amazon. Sci. Total Environ. 407, 4480–4489 (2009).

    Article  Google Scholar 

  152. 152.

    Piao, S. et al. Characteristics, drivers and feedbacks of global greening. Nat. Rev. Earth Environ. 1, 14–27 (2020).

    Article  Google Scholar 

  153. 153.

    Bastin, J.-F. et al. The global tree restoration potential. Science 365, 76–79 (2019).

    Article  Google Scholar 

  154. 154.

    Alves, C. A. et al. Particulate organic compounds emitted from experimental wildland fires in a Mediterranean ecosystem. Atmos. Environ. 44, 2750–2759 (2010).

    Article  Google Scholar 

  155. 155.

    Alves, C. A. et al. Emission of trace gases and organic components in smoke particles from a wildfire in a mixed-evergreen forest in Portugal. Sci. Total Environ. 409, 1466–1475 (2011).

    Article  Google Scholar 

  156. 156.

    Estrellan, C. R. & Iino, F. Toxic emissions from open burning. Chemosphere 80, 193–207 (2010).

    Article  Google Scholar 

  157. 157.

    Kim, E.-J., Oh, J.-E. & Chang, Y.-S. Effects of forest fire on the level and distribution of PCDD/Fs and PAHs in soil. Sci. Total Environ. 311, 177–189 (2003).

    Article  Google Scholar 

  158. 158.

    Wang, X. et al. Emissions of selected semivolatile organic chemicals from forest and savannah fires. Environ. Sci. Technol. 51, 1293–1302 (2017). Highlighted the important role of forest fires on the emissions of atmospheric POPs.

    Article  Google Scholar 

  159. 159.

    Wang, X. Y. et al. Changes in atmospheric concentrations of polycyclic aromatic hydrocarbons and polychlorinated biphenyls between the 1990s and 2010s in an Australian city and the role of bushfires as a source. Environ. Pollut. 213, 223–231 (2016).

    Article  Google Scholar 

  160. 160.

    Wang, X.-p., Gong, P., Yao, T.-d. & Jones, K. C. Passive air sampling of organochlorine pesticides, polychlorinated biphenyls, and polybrominated diphenyl ethers across the Tibetan Plateau. Environ. Sci. Technol. 44, 2988–2993 (2010).

    Article  Google Scholar 

  161. 161.

    Genualdi, S. A. et al. Trans-Pacific and regional atmospheric transport of polycyclic aromatic hydrocarbons and pesticides in biomass burning emissions to western North America. Environ. Sci. Technol. 43, 1061–1066 (2009). Provided evidence that forest fires can evaporate POPs in soil and the emitted POPs from forest fires can transport atmospherically over long ranges.

    Article  Google Scholar 

  162. 162.

    Lammel, G., Heil, A., Stemmler, I., Dvorska, A. & Klanova, J. On the contribution of biomass burning to POPs (PAHs and PCDDs) in air in Africa. Environ. Sci. Technol. 47, 11616–11624 (2013).

    Article  Google Scholar 

  163. 163.

    Wielgosinski, G., Lechtanska, P. & Namiecinska, O. Emission of some pollutants from biomass combustion in comparison to hard coal combustion. J. Energy Inst. 90, 787–796 (2017).

    Article  Google Scholar 

  164. 164.

    Aurell, J., Gullett, B. K. & Tabor, D. Emissions from southeastern U.S. grasslands and pine savannas: Comparison of aerial and ground field measurements with laboratory burns. Atmos. Environ. 111, 170–178 (2015).

    Article  Google Scholar 

  165. 165.

    Navarro, K. M., Cisneros, R., Noth, E. M., Balmes, J. R. & Hammond, S. K. Occupational exposure to polycyclic aromatic hydrocarbon of wildland firefighters at prescribed and wildland fires. Environ. Sci. Technol. 51, 6461–6469 (2017).

    Article  Google Scholar 

  166. 166.

    Okuda, T. et al. Source identification of Malaysian atmospheric polycyclic aromatic hydrocarbons nearby forest fires using molecular and isotopic compositions. Atmos. Environ. 36, 611–618 (2002).

    Article  Google Scholar 

  167. 167.

    Bourassa, A. E. et al. Satellite limb observations of unprecedented forest fire aerosol in the stratosphere. J. Geophys. Res. Atmos. 124, 9510–9519 (2019).

    Article  Google Scholar 

  168. 168.

    Kaneyasu, N. et al. Chemical and optical properties of 2003 Siberian forest fire smoke observed at the summit of Mt. Fuji, Japan. J. Geophys. Res. Atmos. 112, D13214 (2007).

    Article  Google Scholar 

  169. 169.

    Gonzalez-Alonso, L., Val Martin, M. & Kahn, R. A. Biomass-burning smoke heights over the Amazon observed from space. Atmos. Chem. Phys. 19, 1685–1702 (2019).

    Article  Google Scholar 

  170. 170.

    Wentworth, G. R., Aklilu, Y. A., Landis, M. S. & Hsu, Y. M. Impacts of a large boreal wildfire on ground level atmospheric concentrations of PAHs, VOCs and ozone. Atmos. Environ. 178, 19–30 (2018).

    Article  Google Scholar 

  171. 171.

    Becker, S. et al. Resolving the long-term trends of polycyclic aromatic hydrocarbons in the Canadian Arctic atmosphere. Environ. Sci. Technol. 40, 3217–3222 (2006).

    Article  Google Scholar 

  172. 172.

    Yuan, H. S. et al. Emission and outflow of polycyclic aromatic hydrocarbons from wildfires in China. Atmos. Environ. 42, 6828–6835 (2008).

    Article  Google Scholar 

  173. 173.

    Luo, J. et al. Effect of northern boreal forest fires on PAH fluctuations across the arctic. Environ. Pollut. 261, 114186 (2020). A global estimation of the impact of boreal forest fires on the Arctic environment.

    Article  Google Scholar 

  174. 174.

    Eckhardt, S., Breivik, K., Mano, S. & Stohl, A. Record high peaks in PCB concentrations in the Arctic atmosphere due to long-range transport of biomass burning emissions. Atmos. Chem. Phys. 7, 4527–4536 (2007).

    Article  Google Scholar 

  175. 175.

    Urbancok, D., Payne, A. J. R. & Webster, R. D. Regional transport, source apportionment and health impact of PM10 bound polycyclic aromatic hydrocarbons in Singapore’s atmosphere. Environ. Pollut. 229, 984–993 (2017).

    Article  Google Scholar 

  176. 176.

    Pokhrel, B. et al. Sources and environmental processes of polycyclic aromatic hydrocarbons and mercury along a southern slope of the Central Himalayas, Nepal. Environ. Sci. Pollut. Res. 23, 13843–13852 (2016).

    Article  Google Scholar 

  177. 177.

    García-Falcón, M. S., Soto-González, B. & Simal-Gándara, J. Evolution of the concentrations of polycyclic aromatic hydrocarbons in burnt woodland soils. Environ. Sci. Technol. 40, 759–763 (2006).

    Article  Google Scholar 

  178. 178.

    Chen, H. et al. Wildfire burn intensity affects the quantity and speciation of polycyclic aromatic hydrocarbons in soils. ACS Earth Space Chem. 2, 1262–1270 (2018).

    Article  Google Scholar 

  179. 179.

    Stein, E. D., Brown, J. S., Hogue, T. S., Burke, M. P. & Kinoshita, A. Stormwater contaminant loading following southern California wildfires. Environ. Toxicol. Chem. 31, 2625–2638 (2012).

    Article  Google Scholar 

  180. 180.

    Vila-Escale, M., Vegas-Vilarrubia, T. & Prat, N. Release of polycyclic aromatic compounds into a Mediterranean creek (Catalonia, NE Spain) after a forest fire. Water Res. 41, 2171–2179 (2007).

    Article  Google Scholar 

  181. 181.

    Silva, V. et al. Toxicity assessment of aqueous extracts of ash from forest fires. Catena 135, 401–408 (2015).

    Article  Google Scholar 

  182. 182.

    Miller, D. R., Castaneda, I. S., Bradley, R. S. & MacDonald, D. Local and regional wildfire activity in central Maine (USA) during the past 900 years. J. Paleolimnol. 58, 455–466 (2017).

    Article  Google Scholar 

  183. 183.

    Campo, J., Lorenzo, M., Cammeraat, E. L. H., Pico, Y. & Andreu, V. Emerging contaminants related to the occurrence of forest fires in the Spanish Mediterranean. Sci. Total Environ. 603, 330–339 (2017).

    Article  Google Scholar 

  184. 184.

    Olivella, M. A., Ribalta, T. G., de Febrer, A. R., Mollet, J. M. & de las Heras, F. X. C. Distribution of polycyclic aromatic hydrocarbons in riverine waters after Mediterranean forest fires. Sci. Total Environ. 355, 156–166 (2006).

    Article  Google Scholar 

  185. 185.

    Kim, E. J., Choi, S. D. & Chang, Y. S. Levels and patterns of polycyclic aromatic hydrocarbons (PAHs) in soils after forest fires in South Korea. Environ. Sci. Pollut. Res. 18, 1508–1517 (2011).

    Article  Google Scholar 

  186. 186.

    Choi, S. D. Time trends in the levels and patterns of polycyclic aromatic hydrocarbons (PAHs) in pine bark, litter, and soil after a forest fire. Sci. Total Environ. 470, 1441–1449 (2014).

    Article  Google Scholar 

  187. 187.

    Nizzetto, L., Stroppiana, D., Brivio, P. A., Boschetti, M. & Di Guardo, A. Tracing the fate of PCBs in forest ecosystems. J. Environ. Monit. 9, 542–549 (2007).

    Article  Google Scholar 

  188. 188.

    Terzaghi, E. et al. SoilPlusVeg: An integrated air-plant-litter-soil model to predict organic chemical fate and recycling in forests. Sci. Total Environ. 595, 169–177 (2017).

    Article  Google Scholar 

  189. 189.

    Priemer, D. A. & Diamond, M. L. Application of the multimedia urban model to compare the fate of SOCs in an urban and forested watershed. Environ. Sci. Technol. 36, 1004–1013 (2002).

    Article  Google Scholar 

  190. 190.

    St-Amand, A. D., Mayer, P. M. & Blais, J. M. Prediction of SVOC vegetation and atmospheric concentrations using calculated deposition velocities. Environ. Int. 35, 851–855 (2009).

    Article  Google Scholar 

  191. 191.

    St-Amand, A. D., Mayer, P. M. & Blais, J. M. Modeling PAH uptake by vegetation from the air using field measurements. Atmos. Environ. 43, 4283–4288 (2009).

    Article  Google Scholar 

  192. 192.

    Komprda, J., Komprdova, K., Sanka, M., Mozny, M. & Nizzetto, L. Influence of climate and land use change on spatially resolved volatilization of persistent organic pollutants (POPs) from background soils. Environ. Sci. Technol. 47, 7052–7059 (2013).

    Article  Google Scholar 

  193. 193.

    Friedman, C. L. & Selin, N. E. Long-range atmospheric transport of polycyclic aromatic hydrocarbons: A global 3-D model analysis including evaluation of Arctic sources. Environ. Sci. Technol. 46, 9501–9510 (2012).

    Article  Google Scholar 

  194. 194.

    Mackay, D. Finding fugacity feasible. Environ. Sci. Technol. 13, 1218–1223 (1979).

    Article  Google Scholar 

  195. 195.

    Aamot, E., Steinnes, E. & Schmid, R. Polycyclic aromatic hydrocarbons in Norwegian forest soils: Impact of long range atmospheric transport. Environ. Pollut. 92, 275–280 (1996).

    Article  Google Scholar 

  196. 196.

    Aichner, B., Bussian, B. M., Lehnik-Habrink, P. & Hein, S. Regionalized concentrations and fingerprints of polycyclic aromatic hydrocarbons (PAHs) in German forest soils. Environ. Pollut. 203, 31–39 (2015).

    Article  Google Scholar 

  197. 197.

    Kylin, H. & Sjodin, A. Accumulation of airborne hexachlorocyclohexanes and DDT in pine needles. Environ. Sci. Technol. 37, 2350–2355 (2003).

    Article  Google Scholar 

  198. 198.

    Kylin, H. et al. The trans-continental distributions of pentachlorophenol and pentachloroanisole in pine needles indicate separate origins. Environ. Pollut. 229, 688–695 (2017).

    Article  Google Scholar 

  199. 199.

    Eriksson, G., Jensen, S., Kylin, H. & Strachan, W. The pine needle as a monitor of atmospheric pollution. Nature 341, 42–44 (1989).

    Article  Google Scholar 

  200. 200.

    Hermanson, M. H. & Hites, R. A. Polychlorinated biphenyls in tree bark. Environ. Sci. Technol. 24, 666–671 (1990).

    Article  Google Scholar 

  201. 201.

    Peverly, A. A., Salamova, A. & Hites, R. A. Locating POPs sources with tree bark. Environ. Sci. Technol. 49, 13743–13748 (2015).

    Article  Google Scholar 

  202. 202.

    Simonich, S. L. & Hites, R. A. Relationships between socioeconomic indicators and concentrations of organochlorine pesticides in tree bark. Environ. Sci. Technol. 31, 999–1003 (1997).

    Article  Google Scholar 

  203. 203.

    Zhao, Y., Yang, L. & Wang, Q. Modeling persistent organic pollutant (POP) partitioning between tree bark and air and its application to spatial monitoring of atmospheric POPs in mainland China. Environ. Sci. Technol. 42, 6046–6051 (2008).

    Article  Google Scholar 

  204. 204.

    Zhu & Hites, R. A. Brominated flame retardants in tree bark from North America. Environ. Sci. Technol. 40, 3711–3716 (2006).

    Article  Google Scholar 

  205. 205.

    Simonich, S. & Hites, R. Global distribution of persistent organochlorine compounds. Science 269, 1851–1854 (1995).

    Article  Google Scholar 

  206. 206.

    Cabrerizo, A., Dachs, J., Barceló, D. & Jones, K. C. Influence of organic matter content and human activities on the occurrence of organic pollutants in Antarctic soils, lichens, grass, and mosses. Environ. Sci. Technol. 46, 1396–1405 (2012).

    Article  Google Scholar 

  207. 207.

    Fernandez, J. A., Boquete, M. T., Carballeira, A. & Aboal, J. R. A critical review of protocols for moss biomonitoring of atmospheric deposition: Sampling and sample preparation. Sci. Total Environ. 517, 132–150 (2015).

    Article  Google Scholar 

  208. 208.

    Zhu, N. L. et al. Lichen, moss and soil in resolving the occurrence of semi-volatile organic compounds on the southeastern Tibetan Plateau, China. Sci. Total Environ. 518, 328–336 (2015).

    Article  Google Scholar 

  209. 209.

    Streck, G. & Herrmann, R. Distribution of endocrine disrupting semivolatile organic compounds in several compartments of a terrestrial ecosystem. Water Sci. Technol. 42, 39–44 (2000).

    Article  Google Scholar 

  210. 210.

    Viippola, V., Rantalainen, A. L., Yli-Pelkonen, V., Tervo, P. & Setala, H. Gaseous polycyclic aromatic hydrocarbon concentrations are higher in urban forests than adjacent open areas during summer but not in winter – Exploratory study. Environ. Pollut. 208, 233–240 (2016).

    Article  Google Scholar 

  211. 211.

    Vermeulen, F. et al. Accumulation of background levels of persistent organochlorine and organobromine pollutants through the soil–earthworm–hedgehog food chain. Environ. Int. 36, 721–727 (2010).

    Article  Google Scholar 

  212. 212.

    Ellison, D. et al. Trees, forests and water: Cool insights for a hot world. Glob. Environ. Change 43, 51–61 (2017). Reviewed the forest-driven water and energy cycles under climate change.

    Article  Google Scholar 

  213. 213.

    Shrivastava, M. et al. Global long-range transport and lung cancer risk from polycyclic aromatic hydrocarbons shielded by coatings of organic aerosol. Proc. Natl Acad. Sci. USA 114, 1246–1251 (2017).

    Article  Google Scholar 

  214. 214.

    Friedman, C. L. & Selin, N. E. PCBs in the Arctic atmosphere: determining important driving forces using a global atmospheric transport model. Atmos. Chem. Phys. 16, 3433–3448 (2016).

    Article  Google Scholar 

  215. 215.

    Fernández-Varela, R., Ratola, N., Alves, A. & Amigo, J. M. Relationship between levels of polycyclic aromatic hydrocarbons in pine needles and socio-geographic parameters. J. Environ. Manage. 156, 52–61 (2015).

    Article  Google Scholar 

  216. 216.

    Scheringer, M. et al. Long-range transport and global fractionation of POPs: insights from multimedia modeling studies. Environ. Pollut. 128, 177–188 (2004).

    Article  Google Scholar 

  217. 217.

    Vacha, R., Sanka, M., Hauptman, I., Zimova, M. & Cechmankova, J. Assessment of limit values of risk elements and persistent organic pollutants in soil for Czech legislation. Plant Soil Environ. 60, 191–197 (2014).

    Article  Google Scholar 

  218. 218.

    Vorholt, J. A. Microbial life in the phyllosphere. Nat. Rev. Microbiol. 10, 828–840 (2012).

    Article  Google Scholar 

  219. 219.

    Kaiser, J. & Enserink, M. Environmental toxicology. Treaty takes a POP at the dirty dozen. Science 290, 2053 (2000).

    Article  Google Scholar 

Download references


This study was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences, Pan-Third Pole Environment Study for a Green Silk Road (Pan-TPE) (XDA2004050202), the National Natural Science Foundation of China (41877490 and 41925032), the Second Tibetan Plateau Scientific Expedition and Research (STEP) programme (grant no. 2019QZKK0605) and the Youth Innovation Promotion Association of CAS (CAS2017098).

Author information




P.G. and X.W. wrote and edited the manuscript. P.G., H.X., C.W. and X.W. substantially contributed to the design and discussion of content. P.G., Y.C. and L.G. collected the data for the article. All authors made substantial contributions to the discussion of content.

Corresponding author

Correspondence to Xiaoping Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Earth & Environment thanks Kevin Jones and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Convention on Long-range Transboundary Air Pollution:

Stockholm Convention:

Supplementary information



The amount of accumulated substances in an organism will increase during the lifetime of the organism, owing to a faster rate of uptake than loss.

Forest floor

The organic layers (O-layer) of forest soil, which consists of shed and undecomposed vegetative parts (litter) above the soil surface.


The falling of leaves, twigs, barks or other parts of plants to the ground under the canopy.


The process of water (and substances in water) entering soil from the ground surface.

Gas-phase POPs

POPs usually detected in gas phase as opposed to aerosols; includes HCHs, DDT, HCB and PCBs with less than 4-Cl.


The pore on the epidermis of leaves and/or other organs of plants, which is one of the pathways of gas exchange between air and plants.


Octanol–air partition coefficient, which is the equilibrium ratio of the solute concentration in octanol (mass/volume) to the concentration in air (mass/volume); compounds with a high KOA are more lipophilic and less volatile.

Uptake velocities

The rates of POP uptake by leaves, which is calculated by dividing uptake fluxes by atmospheric concentrations.


The falling of rain drops after the foliage shed and then drop to the ground surface under the canopy.

Dry gaseous deposition

Direct deposition of gaseous pollutants from the air to the surface ground.


Octanol–water partition coefficient, which is the ratio of the solute concentration in octanol to the concentration in water at equilibrium; a high KOW (or logKOW) means high hydrophobicity or lipotropy.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gong, P., Xu, H., Wang, C. et al. Persistent organic pollutant cycling in forests. Nat Rev Earth Environ 2, 182–197 (2021).

Download citation


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing